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Evidence of a Novel Source of Random Telegraph

Signal in CMOS Image Sensors
V. Goiffon, Member, IEEE, P. Magnan, Member, IEEE, P. Martin-Gonthier, Member, IEEE,

C. Virmontois, Student Member, IEEE, and M. Gaillardin, Member, IEEE

Abstract—This letter reports a new source of dark current ran-
dom telegraph signal in CMOS image sensors due to meta-stable
Shockley–Read–Hall generation mechanism at oxide interfaces.
The role of oxide defects is discriminated thanks to the use of
ionizing radiations. A dedicated RTS detection technique and sev-
eral test conditions (radiation dose, temperature, integration time,
photodiode bias) reveal the particularities of this novel source
of RTS.

Index Terms—Active pixel sensors (APS), CMOS image sensors
(CIS), dark current, interface states, random telegraph signal
(RTS), shallow trench isolation (STI), total ionizing dose (TID).

I. INTRODUCTION

TWO types of parasitic random telegraph signals (RTS)

are known to degrade the performances of CMOS im-

age sensors (CIS). The first is an enhancement of the sensor

temporal readout noise due to the discrete fluctuation of the in-

pixel source follower (SF) channel conductance [1] (explained

by channel carrier trapping and emission by oxide traps). The

second type of CIS RTS is a discrete variation of the photodiode

dark current (DC-RTS). Two sources are known for this latter

phenomenon. The first one has been identified in proton irra-

diated charge coupled devices (CCD) in the mid-1990s [2], [3]

and a few years later in CIS [4], [5]. This source of DC-RTS was

clearly attributed to displacement damage induced meta-stable

generation centers located in the depleted volume of CCDs and

CISs. At this time, ionizing radiation sources, such as 60Co

γ-rays, were used to see if oxide defects could play a role in

this kind of DC-RTS. It was clearly shown [2]–[5] that ionizing

radiation did not induce DC-RTS in CCDs and in LOCOS-

based CISs, leading to the conclusion that DC-RTS in CISs was

not due to oxide defects but to bulk damages only. A second

rare source of DC-RTS (due to trap assisted tunneling in gate

oxide) has been reported at least once [6] in CIS manufactured

with a 0.15 µm CMOS process, not optimized for imaging

application where high electric fields exist in the vicinity of the

reset MOSFET gate.

In this letter, we report a new source of DC-RTS due to meta-

stable Shockley–Read–Hall (SRH) generation mechanism at

depleted oxide interfaces. As it is demonstrated in the fol-

lowing, this DC-RTS is very similar to displacement damage
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Fig. 1. Temporal representation of a selection of typical DC-RTS.

DC-RTS except that it is due to meta-stable oxide generation

centers (most likely located at the shallow trench isolation (STI)

interface) instead of meta-stable bulk generation centers. These

meta-stable SRH generation centers are probably similar to

those at the origin of DRAM variable retention time [7].

II. EXPERIMENTAL DETAILS

The studied image sensors (IC1 and IC2) are 10 µm-pitch

128 × 128-pixel arrays with 3T-pixels and manufactured using

a 3.3 V commercial STI based 0.18 µm CMOS image sensor

process.

An automated RTS detection and RTS parameter extraction

algorithm, initially developed to study displacement damage in-

duced RTS, was used to detect dark current discrete transitions.

This method, described in detail and validated in [8], relies on

a typical edge detection technique in the temporal domain.

In order to discriminate the role of oxide defects and silicon

bulk defects, ionizing radiation sources were used to gener-

ate only oxide defects (interface states and positive trapped

charges). Two sources have been used: 10 keV X-rays for IC1

and 60Co gamma rays for IC2. Radiation doses are given in

rad(SiO2).

III. RESULTS AND DISCUSSION

A selection of DC-RTS revealed after exposure to ionizing

radiation is presented in Fig. 1. These signals represent the

dark current of three selected pixels as a function of time. The

observed RTS are very similar to what is generally observed

in the case of bulk defect induced DC-RTS, except that the

oxide RTS amplitudes appear smaller than bulk defect DC-RTS

amplitudes. The dark current of pixel 17:104 shows that such



Fig. 2. Influence of the integration time on the studied RTS behavior clearly
showing that the observed RTS are DC-RTS.

Fig. 3. Mapping of detected RTS pixels (white dots) for several TID:
(a) IC1 before irradiation, (b) IC1 300 rad, (c) IC1 1 krad, (d) IC2 3 krad,
(e) IC2 10 krad, (f) IC2 30 krad. Integration time = 1 s, sampling time = 2 s,

measurement duration 12 h, temperature = 22 ◦C. The mean dark current Id
value after each irradiation is indicated under each figure.

RTS can be nonstationary, and that a single RTS defect can

lead to more than two dark current discrete levels (as in the

case of bulk defect RTS). The observed RTS is clearly not a

source follower induced RTS temporal noise because the RTS

amplitudes reported in this paper are directly proportional to

the integration time (as illustrated in Fig. 2), whereas source

follower induced RTS noise is known to be independent of

integration time. Moreover, the RTS time constants reported

here are more than two orders of magnitude longer than the

slowest source follower RTS than can passes through the high-

pass delta double sampling filter (intersample time about 2 µs).
The mappings of detected RTS before and after exposure to

X and γ-rays are presented in Fig. 3. It can clearly be seen that

RTS pixels are detected in unirradiated devices. This number

of detected RTS pixels rises with total ionizing dose (TID)

indicating that oxide defects are responsible.

Fig. 4 presents the distributions of the RTS maximum transi-

tion amplitudes. The main part of the distributions appears to be

exponentially distributed. Extracting the exponential slope of

these distributions yields the exponential distribution average

value 1/λ. These exponential distributions are shifted by the

irradiation but they keep the same 1/λ. It strongly suggests that

Fig. 4. RTS maximum transition amplitude distribution for several TID (same
test conditions as Fig. 3). The average value and the exponential 1/λ parameter
of each distribution are respectively about 270 e−/s and 1/λ = 110 e−/s.
Extreme values go up to 2700 e−/s.

Fig. 5. Distribution of the mean time between two RTS transitions as a
function of TID (same test conditions as Fig. 3).

the nature of the created defects does not change with TID,

only their number increases. It confirms that the number of

pixels exhibiting discrete switching behaviors, increases with

TID, and therefore with the generation of oxide defects. It

must be emphasized that the extracted value (1/λ = 110 e−/s)
is ten times smaller than the one extracted on displacement

damage induced DC-RTS distributions (about 1200 e−/s [8]).

It is also important to notice that the RTS pixels observed

before irradiation behave similarly to the ones detected after

irradiation, with the same average amplitude. It strongly sug-

gests that the DC-RTS observed in unirradiated devices are also

due to this oxide defect induced DC-RTS. A slight change of

exponential slope can be noticed after 30 krad. This is most

likely due to the fact that several RTS defects are located in

most pixels, leading to larger apparent maximum amplitudes at

this TID. Finally, one can see that the weakest RTS fluctuations

are not detected leading to a divergence, at low amplitudes,

between the exponential fits and the measured distributions.

This is due to the readout and shot noises which hide the low-

amplitude RTS.

As regards the number of RTS levels per pixel, it was

also observed to increase with TID (mainly two levels before

irradiation and up to seven levels after 30 krad). This increase

can be explained both by the superimposition of more than one

RTS oxide defect contribution per pixel and by the creation of

multi-level RTS oxide defects (e.g., pixel 17:104 in Fig. 1).

The distributions of the mean time between two transitions

are illustrated in Fig. 5. The cutoff at short transition time is



Fig. 6. Influence of the photodiode (hard) reset bias on the RTS amplitude.
VDD = 3.3 V.

Fig. 7. Influence of the temperature on the RTS behavior. RTS amplitude
Eact = 0.59 eV. Dark current pedestal Eact = 0.64 eV.

due to the lower limit of the detection process (which depends

on the integration time and the number of detection filter

coefficients [8]). It can be seen that the detected RTS time

constant range covers entirely the detection window (i.e., from

a few times the filter length to the measurement duration) and

is expected to extend further if shorter sampling time or longer

observation time are used. Hence, the physical process at the

origin of this meta-stability does not appear restricted to a

particular time range.

As regards the effect of electric field on the reported DC-

RTS, Fig. 6 shows that the DC-RTS amplitude is very weakly

dependent on the photodiode reverse bias, whereas the mean

dark current is reduced with the depletion width reduction.

Hence, it can be inferred that this kind of DC-RTS is not dom-

inated by an electric field dependent contribution in contrary

to what was observed in trap assisted tunneling DC-RTS [6].

This is confirmed by the DC-RTS activation energy around

0.6 eV (see Fig. 7 for example) and the mean dark current

activation energy (Eact = 0.63± 0.03 eV on the whole array),

both around the midgap value, typical for SRH generation

currents.

In CIS 3T-pixels, the photodiode depletion region is in

contact with the STI interface, and with the RST MOSFET

gate oxide interface. Another pixel array was manufactured

on the same die with the same layout except that the STI

has been drawn 0.5 µm away from the photodiode junction.

In this case, the photodiode depletion region does not reach

the STI anymore. Firsts results achieved on this alternative

layout indicate that recessing the STI leads to a reduction of

more than 75% of the number of detected RTS pixels atfer

irradiation. This last observation strongly suggests that the STI

is the main contributor to the reported RTS, and it provides an

additional confirmation that neither reset MOSFET gate oxide

trap assisted tunneling nor bulk defect induced generation can

be the source of this DC-RTS.

IV. CONCLUSION

This letter reported discrete dark current fluctuations in CIS

attributed for the first time to meta-stable oxide SRH generation

centers located in the photodiode depletion region. The number

of such DC-RTS centers appeared to rise rapidly with the

exposure to ionizing radiation. The RTS pixels observed before

irradiation are most likely due to the same kind of oxide defects.

The STI interface appeared to be the main source of this oxide

induced DC-RTS. The different nature of high density plasma

chemical vapor deposition STI oxides and thermal LOCOS

oxides used in previous DC-RTS study might be the reason

why such oxide induced DC-RTS has not been identified be-

fore in CISs. This slow frequency dark current fluctuation is

an important issue in imaging system relying on dark frame

subtraction, since the dark current level may change between

the dark frame and the signal frame. This is especially true for

low light level applications. The large number of RTS pixels

generated after a rather small radiation dose (14% at 300 rad,

42% at 1 krad) indicates that this new contribution of DC-RTS

can have a strong impact on the performances of CIS used

in ionizing environment. It will have to be taken into account

in radiation qualification campaigns for space, medical and

scientific applications.
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