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1. Introduction

Thermal barrier coating systems (TBC systems) are “multi-layered”
structures. They are composed of an insulating ceramic top coat (the
thermal barrier coating = TBC), an Al-rich metallic coating (the bond
coating) and a Ni-base superalloy (the substrate). The top coat is made
of yttria-stabilized-zirconia (YSZ) and can be deposited by air plasma
spray (APS) or electron-beamphysical vapour deposition (EB-PVD). The
columnar microstructure resulting from EB-PVD increases the thermal
barrier capability to accommodate stresses. Besides, its low thermal
conductivity efficiently reduces the temperature of the underlying
metal. As YSZ is highly permeable to oxygen, the bond coating has to be
oxidation resistant. It is therefore made rich in Al so as to form, by
reaction with oxygen, a protective, slow growing, adherent and dense
scale of α-Al2O3, called the thermally grown oxide (TGO).

By forming an α-Al2O3 scale, bond coatings protect the system
against oxidation and create suitable bonding between the thermal
barrier and the superalloy. Three main commercial bond coatings
exist: aluminide coatings (pure or Pt-modified), Pt-rich γ-Ni/γ′-Ni3Al
coatings andMCrAlY coatings (whereM=Ni and/or Co). The first two
bond coatings are called diffusion coatings as they are formed by
interdiffusion. TheMCrAlY coatings are called overlay coatings as they
are made by material deposition. In addition to excellent behavior
under oxidizing conditions, the Cr-rich composition of MCrAlY
coatings enhances their corrosion resistance.

Numerous studies have already shown that the addition of Pt, before
aluminizing, greatly improves oxidation and corrosion resistance of
aluminide coatings [1–5]. In the same manner, MCrAlY coatings have
been modified by Pt. However, because MCrAlY coatings are overlay
coatings (and not diffusion coatings), Pt deposition has to be done after
MCrAlY manufacturing in order to obtain all the benefits of the Pt.
Several studies have highlighted the improved oxidation and corrosion
resistance of such Pt-modified MCrAlY coatings [1,2,6–11]. One
particular case of surface modification by Pt and Al of NiCoCrAlYTa
coating was reported using the spark plasma sintering (SPS) process
[12]. This coatingdemonstrated goodoxidation resistance up to500 hof
isothermal oxidation at 1100 °C with very small spallation after the
test. This was attributed to the formation of a continuous layer of α-
Al2O3 with some pegs composed of Y-rich oxides.

It has been demonstrated that Pt deposition and diffusion at the
superalloy surface before aluminizing lead to an increase in Al
incorporation and diffusion [5,13,14]. Gleeson et al. demonstrated that
a Pt coating leads to anAl uphill diffusion from the alloy core toward the
Pt-rich surface, a phenomenon attributed to the decrease in Al activity
by Pt [15]. This was later confirmed following thermodynamic
measurements by Copland in γ′-Ni3Al [16] and in β-NiAl with a lesser
effect [17]. Nevertheless, little work has been published on the effect of
Pt on microstructure. Lowrie and Boone studied an EB-PVD CoCrAlY
coating modified by an electroplated Pt layer (3.8–7.6 μm thick) [7].
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After heat treatment under vacuum, the external part of the coating
became almost homogeneous, with a composition of around 40Al–
20Pt–30Co–10Cr in at.%. This phase was determined as cubic and
contains a small proportion of α-Co. Quadakkers et al. worked on TBC
systems composed of a 200 μm thick NiCoCrAlY coating manufactured
by vacuumplasma spraying andmodified by an electroplated Pt layer of
8 μm [9]. After thermal barrier deposition by EB-PVD, the sub-surface
contained mainly Pt-rich β-NiAl but also Pt-rich γ-Ni phases.

The present work deals with Pt-modified NiCoCrAlYTa coatings in
order to reach a better understanding of the effect of Pt on
NiCoCrAlYTa microstructure. In this aim, one NiCoCrAlYTa coating
and two Pt-modified NiCoCrAlYTa coatings were manufactured. One
of the Pt-modified NiCoCrAlYTa coatings was made using the
“Tribomet” process (Praxair ST) and modified by an electroplated Pt
layer, the other was a vacuum plasma sprayed (VPS) NiCoCrAlYTa
coating modified by a sputtered Pt layer. By comparing the two
Pt-modified NiCoCrAlYTa coatings, the influence of the manufacturing
process on the microstructure attained after Pt diffusion was also
studied.
2. Experiments

2.1. Materials

Three bond coatings were deposited on the first-generation Ni-base
superalloy AM3 (see Table 1 for composition). One was a NiCoCrAlYTa
coating, the other twowere Pt-modified NiCoCrAlYTa coatings differing
by the way they were prepared.

The 70–80 μm thick NiCoCrAlYTa coating was made by Praxair
Surface Technologies (Oldmixon, England) using the Tribomet
process. During this process, CrAlYTa particles are embedded in a
growing (Ni,Co) electroplated layer in order to produce a uniform
dispersion [18–20].

TheTribometprocess fromPraxair STwasalsoused tomanufacture a
70–80 μmthickNiCoCrAlYTa coatingwhichwas then electroplatedwith
Pt. The thickness of the Pt layer deposited on the NiCoCrAlYTa surface
was 7 μm with an uncertainty of ±2 μm. This coating will be called
“Tribomet” Pt-modified NiCoCrAlYTa in this study.

The second Pt-modified NiCoCrAlYTa coating was manufactured
using different processes. The NiCoCrAlYTa coating was deposited by
VPS at the LERMPS laboratory (Sévenans, France). This was done using
AMDRY997powderwith a composition inweight percent of: Ni–23Co–
20Cr–8.5Al–4Ta–0.6Y (at.%: Ni–20.9Co–20.9Cr–16.9Al–1.2Ta–0.4Y).
Then, the NiCoCrAlYTa surface was partially polished using P1200 SiC
paper to reduce the roughness resulting from the VPS process. Optical
microscopy and image analysis were used to determine the proportion
of polished area. Polishing was then stopped when the proportion of
polished surface was estimated as being close to a “partially machined”
surface (namely between 24 and 34% of polished surface). After this
partial polishing, Pt was then deposited by sputtering at Cranfield
University (England). The NiCoCrAlYTa coating and Pt layer thicknesses
were the same as those of the “Tribomet” Pt-modified NiCoCrAlYTa, i.e.
70–80 μm and 7 μm respectively. On the other hand, the sputtering
process gave a lower uncertainty on the Pt thicknesswhichwas equal to
±1 μm. This coatingwill be called “Plasma” Pt-modified NiCoCrAlYTa in
this study.
Table 1
Composition of the superalloys.

Ni Al Cr Co Ta

AM3 mas.% Bal. 6.0 8.0 6.0 4.
at.% Bal. 12.85 8.89 5.88 1.

MC-NG mas.% Bal. 6.0 4.0 – 5.
at.% Bal. 13.60 4.70 – 1.
In addition to these three “AM3 superalloy+bond coating”
systems, another system was prepared. It was composed of a
“Tribomet” Pt-modified NiCoCrAlYTa coating deposited on the fourth
generation Ni-base superalloy MC-NG, see Table 1 for composition.

Irrespective of the superalloy (AM3 or MC-NG), heat treatment was
carried out for 6 h at 1080 °C under vacuum after NiCoCrAlYTa depo-
sition for non-modified coatings and after Pt deposition for Pt-modified
coatings.

All thedetails onbond coatingmanufacturing routes are summarized
in Fig. 1.

In the case of “Tribomet” coatings, the superalloyswere in the form
of rectangular specimens of 15 mm×10 mm×1 mm, with rounded
edges. In order to coat the entire surface, a stem was welded to one of
the edges. The stems were made of Hastelloy W or bulk NiCoCrAlYTa.
As they were welded to the superalloy before bond coating was laid
down, they became coated in a similar way to the superalloy. In
contrast, the superalloy specimens for “Plasma” coatings were discs of
19.6 mm diameter. They were coated on only one face.

Before characterization, the bond coatings were grit blasted to
reproduce the usual surface preparation procedure before thermal
barrier deposition by EB-PVD.

2.2. Characterization

Secondary electron microscopy (SEM) observations of bond
coating surfaces after heat treatment and of polished cross-sections
were performed with a LEO 435VP microscope using the secondary
electron imaging mode (SE) or the backscattered imaging mode
(BSE). A PGT IMIX-PC system was used to generate energy dispersive
X-ray spectroscopy (EDS) spectral maps. Quantification was based on
real standards.

Some observations were made on bond coating cross-sections
after γ-Ni etching performed using a 0.5% CuSO4 solution.

X-ray diffraction (XRD) analyses were carried out in θ–θ
configuration between 20° and 120° (as 2θ) using a Seifert 3000TT
apparatus with a copper anti-cathode (λ=1.54056 Å).

For transmission electron microscopy (TEM) sample preparation,
cross-sections were taken from the “superalloy+bond coating”
systems using a diamond wire saw. The two thin slices were glued
together, coating against coating, and embedded in a 3 mm diameter
brass tube with epoxy resin. After curing, the tube was sectioned into
approximately 300 μm thick discs that were polished on both sides and
dimpledbefore ion-milling to transparencywitha “Gatan”precision-ion
polishing system. The disc was observed periodically to ensure that the
hole was approximately located across the interface of interest. TEM
observations of the thin foil were carried out using a Jeol JEM 2010
microscope, operating at 200 kV and equipped with a “Tracor” EDS
spectrometer. EDS spectra are treated semi-quantitatively using the
well-known “Cliff and Lorimer K factors”.

3. Results

3.1. NiCoCrAlYTa bond coating

Themicrostructure of theNiCoCrAlYTa coating,manufactured by the
“Tribomet” process, is presented in Fig. 2. Uniform through coating
Ti Mo W Re Ru Hf

0 2.0 2.0 5.0 – – –

28 2.41 1.2 1.57 – – –

0 0.5 1.0 5.0 4.0 4.0 0.1
69 0.64 0.64 1.66 1.31 2.42 0.03



Fig. 1. Manufacturing of bond coatings.
thickness, the microstructure consisted of a β-NiAl phase within a γ-Ni
matrix (Fig. 2a), with a low proportion of γ′-Ni3Al phase at γ-Ni/β-NiAl
grain boundaries, as previously observed by [21–23]. The geometry of
the β-NiAl phase recalls the shape of the CrAlYTa particles entrapped
within the (Ni,Co) matrix during manufacturing (Fig. 2b). Oxides
(usually Al and/or Y-rich) and tantalum carbides were also dispersed
through the entire thickness of the coating (Fig. 2a and b). Close to the
superalloy, the tantalum carbides contained titanium. Near the surface,
the titanium concentration within the carbides was under the EDS
detection limit, i.e. very low. In addition, these carbides contained
yttrium. Finally, γ-Ni etching also revealed that the γ′-Ni3Al phase was
present within γ-Ni as small precipitates (Fig. 2c).

When a NiCoCrAlYTa overlay is deposited by vacuum plasma
spraying, the coating is also composed of β-NiAl, γ′-Ni3Al and γ-Ni
Fig. 2. SEM observations of NiCoCrAlYTa cross-sections using BSEmode. (a) Entire coating, (b
Tantalum carbides are white precipitates.
phases and tantalum carbides are uniformly distributed through the
coating depth [21,22,24].

3.2. Pt effects on NiCoCrAlYTa microstructure

3.2.1. Pt effects on phases
In order to study Pt diffusion through NiCoCrAlYTa during heat

treatment, EDS spectral maps were obtained on NiCoCrAlYTa and
Pt-modified NiCoCrAlYTa cross-sections. From these data, concen-
tration profiles were extracted. They are plotted in Fig. 3 with the
SEM image of the analyzed zones.

Within the “Tribomet”NiCoCrAlYTa coating, Al and Y concentrations
were rather constant (Fig. 3a). By adding Pt to this coating, their
concentration profiles experienced profound changes. Indeed, the
) highmagnification observation, (c) highmagnification observation after γ-Ni etching.
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Fig. 3. Concentration profiles extracted from EDS spectral maps on bond coating cross-sections and SEM images in BSEmode. (a) “Tribomet”NiCoCrAlYTa on AM3, (b) “Tribomet”
Pt-modified NiCoCrAlYTa on AM3, (c) “Plasma” Pt-modified NiCoCrAlYTa on AM3. Dashed lines indicate the ends of each substrate/coating interface. White arrows point to TaC
carbides that appear in white.
coating sub-surface became enriched in Al while the coating core was
depleted in Al, with an Al concentration even lower than in the AM3
superalloy (Figs. 3b and 4). In contrast, the Y concentration fell below
the EDS detection limit within the external part of the coating while
it remained fairly constant in the coating core (Figs. 3b and 4). The
Fig. 4. Al and Y concentration profiles within NiCoCrAlYTa coating on A
same changes in Al and Y concentrations can be noted for the “Plasma”
Pt-modified NiCoCrAlYTa coating (Fig. 3c). The Al concentration in the
external part of the coating was even higher than in the sub-surface of
the “Tribomet” Pt-modified NiCoCrAlYTa coating. As for the “Tribomet”
Pt-modified NiCoCrAlYTa coating, the Y concentration was very low
M3, with and without platinum, extracted from EDS spectral maps.
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Fig. 5. XRD of bond coatings after heat treatment, in θ–θ configuration.
within the external part of the “Plasma” Pt-modified NiCoCrAlYTa
coating, but surprisingly it was relatively high at the coating/superalloy
interface of this last coating (Fig. 3c).

It is also interesting to note that the Al concentration was quite
constant in the inner coating region, below the Pt-rich sub-surface, for
all the Pt-modified NiCoCrAlYTa coatings (Fig. 3b and c).

Another important difference observed when comparing the two
Pt-modified coatings to the non-modified coating concerns Ta
concentration. Although it was fairly constant through the NiCoCrA-
lYTa depth except at the interface with the superalloy where tantalum
Fig. 6. (a) L10 martensite SAED pattern obtained with the “Plasma” NiCoCrAlYTa-Pt
carbides were numerous, an increase in Ta concentration was
observed about 20 μm below the surface of both Pt-modified
NiCoCrAlYTa coatings (Fig. 3). Besides, tantalum carbides were visible
close to the superalloywithin the “Tribomet” Pt-modifiedNiCoCrAlYTa
but no carbide was observed in the “Plasma” coating.

As in the case of the non-modified “Tribomet” NiCoCrAlYTa
coating, the tantalum carbides contain yttrium.

The elements W and Mo are also included in the AM3 superalloy,
therefore, their concentration profiles were determined. As no change
was observed for W and Mo profiles with Pt addition, they are not
reported in Fig. 3 for clarity.

After the study of Pt diffusion through NiCoCrAlYTa by using EDS
spectral maps, XRD analyses were performed on each bond coating
deposited on AM3 superalloy after heat treatment, in θ–θ configura-
tion (Fig. 5).

The XRD data obtained for the “Tribomet” NiCoCrAlYTa confirms
the presence of γ-Ni and β-NiAl phases and also tantalum carbides
within the coating (only γ′-Ni3Al was not detected). Besides, α-Al2O3

peaks were identified. This could be the response of the oxides within
the bond coating (Fig. 2b) but the peak intensity is much higher than
expected when considering the volume fraction of oxides within the
coating. Besides, oxides often contain yttrium and only α-Al2O3 was
detected by XRD. Thus, these peaks should be related to bond coating
oxidation during heat treatment.

With addition of Pt, L10 martensite, γ′-Ni3Al, and γ-Ni phases were
detected in the outer part of the “Tribomet” Pt-modified NiCoCrAlYTa
coating (Fig. 5). Martensite was also detected in the external part of
the “Plasma” Pt-modified NiCoCrAlYTa coating (Fig. 5). However, it is
difficult to knowwhether the “Plasma” coating was composed of γ-Ni
or γ′-Ni3Al, or if it contained both phases. Tantalum carbides and
alumina were not detected in any Pt-modified NiCoCrAlYTa coatings.
The absence of tantalum carbides within the external part of both
Pt-modified NiCoCrAlYTa coatings confirms the results obtained after
EDS spectral maps (Fig. 3).

To complete the results obtained by EDS spectral maps and XRD,
TEM observations and electron diffraction analyses were performed
on both Pt-modified NiCoCrAlYTa coatings. First, electron diffraction
confirmed the presence of L10 martensite within the external zone of
each bond coating, as seen on the selected area electron diffraction
(SAED) pattern in Fig. 6a. A martensite lath, observed in the “Plasma”
Pt-modified NiCoCrAlYTa coating, is shown in Fig. 6b. The martensite
coating, (b) martensite lath observed in the “Plasma” NiCoCrAlYTa-Pt coating.
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Fig. 7. Cross-section of the outer part of the (a) “Tribomet” Pt-modified NiCoCrAlYTa bond coating, (b) “Plasma” Pt-modified NiCoCrAlYTa bond coating, after etching. SEM images in
BSE mode. Number ‘1’=L10 martensite, number ‘2’=γ′-Ni3Al, number ‘3’=γ-Ni with a fine precipitation of γ′-Ni3Al. Arrows indicate oxides present at the original Pt/NiCoCrAlYTa
interface.
region is indicated by the number ‘1’ in Fig. 7 which corresponds to
the cross-sections of the outer part of both Pt-modified NiCoCrAlYTa
coatings. L10 martensite appears in the BSE mode with the brightest
contrast.

Belowmartensite, the SAED pattern of γ′-Ni3Al phase was obtained.
γ′-Ni3Al phase (Pm3

_
m space group) has a lattice parameter equal to

3.566 Å while the γ-Ni phase (Fm3
_
m space group) has a lattice

parameter of 3.524 Å. Therefore, it is difficult to dissociate γ′-Ni3Al
alone from a mix of γ′-Ni3Al/γ-Ni in cube/cube epitaxy. To solve this
problem, dark field images were performed using γ′-Ni3Al reflexions
from γ′-Ni3Al SAED patterns. Because it highlights the γ′-Ni3Al phase, it
indicates if grains are composed of γ′-Ni3Al alone or of a γ′-Ni3Al/γ-Ni
mix. In this way, γ′-Ni3Al grains were identified in both bond coatings.
An example of a dark field image constructed from the (01

_
1) γ′-Ni3Al

reflexion (Fig. 8a) is presented in Fig. 8b. The bright field image
Fig. 8. From the “Plasma” NiCoCrAlYTa-Pt coating, observed in zone ‘2’ of Fig. 7: (a) [011] zon
image highlighted with (01

_
1) reflexion, (c) bright field image of the same γ′-Ni3Al grain.
corresponding to the dark field image is presented in Fig. 8c. γ′-Ni3Al
grains (which appear with a light grey contrast in the BSE mode)
correspond to zone ‘2’ of Fig. 7.

Grainswith a darker contrast than those ofmartensite and γ′-Ni3Al
are also visible in Fig. 7. They correspond to region number ‘3’ which
was locatedbelow theγ′-Ni3Al phase in both Pt-modifiedNiCoCrAlYTa
coatings. Besides, these grainswere also visible up to the surface in the
“Tribomet” Pt-modified NiCoCrAlYTa coating (Fig. 7a). A SEM
observation of the “Tribomet” Pt-modified NiCoCrAlYTa surface after
heat treatment under secondary vacuumconfirmed that a third type of
grain is found between the martensite and γ′-Ni3Al grains (dark
contrast in Fig. 9a). They were composed of fine precipitates (Fig. 9b).

Further analyseswere carried out in region number ‘3’ of Fig. 7. The
SAED patterns obtained correspond to γ′-Ni3Al phase. As previously,
dark field images were obtained using γ′-Ni3Al reflexions to provide
e axis SAED pattern of a γ′-Ni3Al grain indicated by an arrow on (b), (b) TEM dark field
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more information. Thus, γ′-Ni3Al precipitates were highlighted and it
is concluded that the grainswith a “dark contrast”were composed of a
γ-Ni phase containing fine γ′-Ni3Al precipitates. An example of this is
given in Fig. 9 where the (100) reflexion from the γ′-Ni3Al SAED
pattern (Fig. 9c) is used to make the dark field image of Fig. 9d, with
the “Plasma” Pt-modified NiCoCrAlYTa coating. The TEM bright field
image of Fig. 9e also shows γ′-Ni3Al precipitates within the γ-Ni
matrix. Likewise, the γ′-Ni3Al precipitates are also revealed in the
SEM image with γ-Ni etching, as seen in Fig. 9f which is the cross-
section of the “Tribomet” Pt-modified NiCoCrAlYTa core.
Fig. 9. (a) and (b) “Tribomet” NiCoCrAlYTa-Pt surface after heat treatment under seconda
NiCoCrAlYTa-Pt coating: (c) γ′-Ni3Al SAED pattern whose (100) reflexion is used to create t
field image of γ′-Ni3Al precipitates within γ-Ni matrix. (f) “Tribomet” NiCoCrAlYTa-Pt cros
In addition to the L10 martensite, γ′-Ni3Al and γ-Ni phases, oxides
are found at the original Pt/NiCoCrAlYTa interface (Fig. 10). EDS
analyses of the “Tribomet” Pt-modified NiCoCrAlYTa coating reveal
the presence of Y and Al-rich oxides (indicated by the arrows on
Fig. 10a). Electron diffraction performed on the “Plasma” Pt-modified
NiCoCrAlYTa coating (Fig. 10b) revealed that Y3Al5O12 and α-Al2O3

were present (Fig. 10c and d respectively for areas 1 and 2 of Fig. 10b).
Other oxides were found in the inner part of the “Tribomet”

Pt-modified NiCoCrAlYTa coating, within the γ-Ni matrix (Fig. 11).
They were rich in Al and/or Y. Their arrangement was sometimes
ry vacuum, SEM images in BSE mode. From the zone ‘3’ of Fig. 7, with the “Plasma”
he TEM dark field image of γ′-Ni3Al precipitates within γ-Ni matrix (d). (e) TEM bright
s-section after etching, SEM image in SE mode.
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[12-1]  Y3Al5O12

c1a

b

2

[241] αα-Al2O3

Fig. 10. (a) TEM image of “Tribomet” Pt-modified NiCoCrAlYTa coating. The arrows indicate Y and Al-rich oxides analyzed by EDS (in atomic percent ~19Al, 36Y, 36O). (b) TEM image
of “Plasma” Pt-modified NiCoCrAlYTa coating, with oxides identified by electron diffraction: (c) Y3Al5O12 SAED pattern obtained from point ‘1’ and (d) α-Al2O3 SAED pattern
obtained from point ‘2’, zone axis [12-1] and [241] respectively.
similar to the shape of the CrAlYTa particles. Such oxideswere not found
in the “Plasma” Pt-modified NiCoCrAlYTa coating.

Finally, very small precipitates were observed within the external
zone of both Pt-modified NiCoCrAlYTa coatings (Pt-rich zone). A small
proportion was identified by electron diffraction as being α-Cr
precipitates. Although the other precipitates were very numerous,
they did not diffract. Besides, EDS analyses performed on these
unknown precipitates did not allow the composition of the precipitates
to be clearly differentiated from that of the matrix. The only difference
detected concerned the oxygen content. It seems that the oxygen
concentration was higher in the precipitates than in the matrix.

The SEM, XRD, TEM and electron diffraction data obtained are
summarized in Fig. 12.
3.2.2. Pt effect on tantalum carbides
The “Tribomet” NiCoCrAlYTa coating contained numerous tantalum

carbides. With the addition of Pt, the tantalum carbides disappeared
from the external zone but remained within the coating in the region
Fig. 11. Oxides within the γ-Ni matrix, in the inner part of the “Tribomet” Pt-modified
NiCoCrAlYTa coating. SEM image in BSE mode.
close to the superalloy.No tantalumcarbideswereobserved through the
“Plasma” Pt-modified NiCoCrAlYTa coating.

The “Tribomet” Pt-modifiedNiCoCrAlYTa coatingwas also deposited
on the MC-NG superalloy. The same microstructure as with AM3
superalloy was obtained. Nevertheless, few differences were noted.
First, the coating depth containing tantalum carbides was greater with
the MC-NG superalloy, as shown in SEM images of Fig. 13. EDS spectral
maps were also obtained on the cross-section of the “Tribomet”
Pt-modified NiCoCrAlYTa coating deposited on MC-NG. The Pt and Al
concentrations are compared to those obtained for the same coating on
the AM3 superalloy in Fig. 13. It is clear that the quantity of Pt deposited
on the surface of the NiCoCrAlYTa coating differed between the two
superalloys. Calculation of the quantity of Pt using the integration of the
concentration profiles revealed that 34% less Pt was deposited with the
MC-NG superalloy than with the AM3 superalloy. The expected Pt
thickness was 7 μm, with an uncertainty of ±2 μm. This difference in Pt
quantity corresponds to a difference in the Pt thickness of around
2.4 μm. It is therefore within the “process tolerance”. Nevertheless, this
could explain the variability in the coating microstructure.

XRD analysis was also performed on the “Tribomet” Pt-modified
NiCoCrAlYTa bond coating deposited on MC-NG. The XRD pattern
obtained was identical to that with the AM3 superalloy (Fig. 5).
However, lattice parameters differed regarding the superalloy, as
illustrated in Table 2.

Irrespective of the superalloy (AM3 or MC-NG), the lattice
parameter of γ-Ni within the NiCoCrAlYTa coating was found to be
equal to 3.57 Å. With the addition of Pt, the lattice parameter
increased and became greater than or equal to 3.60 Å (Table 2). By
substituting for Ni in γ-Ni, γ′-Ni3Al, β-NiAl and L10 martensite phases,
the Pt atom, which is larger than Ni, enlarges the lattice of these
phases. However, it can be surprising to note that the lattice
parameters depend on the superalloy on which is deposited the
“Tribomet” Pt-modified NiCoCrAlYTa coating. Indeed, whatever the
phase, the lattice parameters are greater with the AM3 superalloy,
except the parameter ‘a’ of martensite which was identical for both
superalloys. This is consistent with the hypothesis that more Pt was
deposited on the MC-NG superalloy.

A final comparison is done between all the “superalloy+bond
coating” systems. Their cross-sections appear in Fig. 14. Whereas the
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Fig. 12. Cross-section of a (a) “Tribomet” Pt-modified NiCoCrAlYTa coating, (b) “Plasma” Pt-modified NiCoCrAlYTa coating.
“Tribomet” NiCoCrAlYTa coating contained tantalum carbides through
its entire depth (Fig. 14a), tantalum carbides were only located close to
the superalloy when Pt was added to the “Tribomet” Pt-modified
NiCoCrAlYTa (Fig. 14b and c). However, the depth affected by tantalum
carbides was greater with the MC-NG superalloy than with the AM3
superalloy. Through the entire depth of the “Plasma” Pt-modified
NiCoCrAlYTa coating, tantalum carbides were absent (Fig. 14d). Using
Fig. 13. Composition profiles extracted from EDS spectral maps of NiCoCrAlYTa-Pt cross-sect
coating/superalloy interface.
the Pt profile extracted from the EDS spectral map, the quantity of Pt
deposited for the “Plasma” system is estimated to be 7% higher than that
of the “Tribomet” Pt-modified NiCoCrAlYTa coating. Thus, the systems
can be ranked according to their Pt concentration, from the lowest
concentration to the highest:

“Tribomet”/AM3bPt/“Tribomet”/MC-NGbPt/“Tribomet”/AM3b
Pt/“Plasma”/AM3.
ions on AM3 and MC-NG (SEM images in BSE mode). The dotted lines indicate the bond
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Table 2
Lattice parameters of γ-Ni, γ′-Ni3Al and martensite L10 phases present at the sub-
surface of the “Tribomet” Pt-modified NiCoCrAlYTa coating, determined using XRD.

γ-Ni γ′-Ni3Al Martensite L10

a (Å) a (Å) a (Å) c (Å) c/a

AM3 3.62 (6) 3.65 (4) 3.83 (5) 3.46 (7) 0.903
MC-NG 3.60 (4) 3.63 (5) 3.83 (0) 3.43 (0) 0.896
They can also be ranked according to their tantalum carbides
content, from the lowest to the highest:

Pt/“Plasma”/AM3bPt/“Tribomet”/AM3bPt/“Tribomet”/MC-NGb

“Tribomet”/AM3.
It is interesting to note that the greater the Pt quantity added to the

MCrAlY was, the lower the tantalum carbide content was.
4. Discussion

4.1. Pt effect on phases

After heat treatment under secondary vacuum, Pt-modified
NiCoCrAlYTa coatings showed a sub-surface enriched in Al while
their core was depleted of Al (Figs. 3 and 4). The presence of a Pt layer
on the NiCoCrAlYTa surface led to an uphill diffusion of Al during heat
treatment. Such an effect of Pt on Al diffusion in MCrAlY coatings has
been observed only once by Raffaitin in an unpublished work [23].
This can be related to the study of Gleeson et al. [15] in γ-Ni/γ′-Ni3Al
coatings in which the uphill diffusion of Al was explained by a
decrease in Al activity by Pt. For MCrAlYs, this means that the Al
contained in the CrAlYTa particles (for “Tribomet” coating) or in the
AMDRY splats (for “Plasma” coating) diffuses toward the Pt-rich
surface and finally forms L10 martensite (Figs. 5, 6 and 12) and even
β-NiAl (analyzed by high-temperature XRD). This phenomenon is so
extensive that no more β-NiAl phase was observed within the
coating core, even close to the superalloy. Pt modified the entire
NiCoCrAlYTa coating microstructure.

Martensite, which transforms into β-NiAl at high temperatures,
dissolves little yttrium compared to γ′-Ni3Al or γ-Ni. This explains the
low/nil yttrium concentration (at least below the EDS detection limit)
observed within the sub-surface of the “Plasma” Pt-modified
NiCoCrAlYTa coating (Fig. 3). Concerning the yttrium concentration
profile of the “Tribomet” Pt-modified NiCoCrAlYTa coating, the
presence of martensite in the external part of the coating but also
the fact that yttrium is partially trapped within tantalum carbides
could explain the absence of this element within the sub-surface. The
large yttrium concentration around the coating/superalloy interface
Fig. 14. Bond coating cross-sections, SEM images in BSE mode. (a) “Tribomet” NiCoCrAlYTa o
NiCoCrAlYTa on AM3, (d) “Plasma” Pt-modified NiCoCrAlYTa on AM3.
in the case of the “Plasma” Pt-modified NiCoCrAlYTa coating remains
misunderstood at the moment.

The increase in tantalum concentration a few microns below
the surface of both Pt-modified coatings is related to the presence of
γ′-Ni3Al (below martensite) (Figs. 3 and 12). The coating core was
composed of a γ-Ni matrix with fine γ′-Ni3Al precipitates which
probably form during the slow cooling phase of the heat treatment.
At a high temperature, the coating core would then be single-phased
γ-Ni. γ-Ni grains (with fine γ′-Ni3Al precipitates) were also found up
to the surface of the “Tribomet” Pt-modified NiCoCrAlYTa coating
(Fig. 7). This was not the case of the “Plasma” Pt-modified
NiCoCrAlYTa coating for which a 10 μm thick martensite layer was
observed on top of a 5 μm thick γ′-Ni3Al layer which was on top of the
internal γ-Ni/γ′-Ni3Al part. Nevertheless, martensite and γ′-Ni3Al
layers were not completely distinct as some γ′-Ni3Al grains were
found within the martensite layer of the “Plasma” Pt-modified
NiCoCrAlYTa coating. These different microstructures could come
from themanufacturing process used for NiCoCrAlYTa deposition. The
“Tribomet” NiCoCrAlYTa coating consisted of CrAlYTa particles embed-
ded in a (Ni,Co) matrix before Pt deposition. The microstructure was
then heterogeneous in composition. The “Plasma” NiCoCrAlYTa coating
was composed of NiCoCrAlYTa splats of constant composition. When
interdiffusion occurs between the “Plasma” NiCoCrAlYTa coating of
uniform composition and the Pt layer, the microstructure after heat
treatment looks like superimposed “layers”. In the case where
interdiffusion occurs between the “Tribomet” NiCoCrAlYTa coating
of heterogeneous composition and the Pt layer, γ-Ni grains (with fine
γ′-Ni3Al precipitates) were found up to the coating surface, among
martensite and γ′-Ni3Al grains. Therefore, it can be concluded that the
manufacturing process used for NiCoCrAlYTa deposition influences the
Pt-modified NiCoCrAlYTa microstructure. This is due to the lack of
chemical and microstructural homogeneity of the non-heat-treated
“Tribomet” NiCoCrAlYTa coating. Indeed, the heat treatment that
conventionally follows NiCoCrAlYTa deposition was postponed until
after Pt deposition in the case of Pt-modified NiCoCrAlYTa coatings. If
the heat treatment had been performed before Pt deposition, the
microstructures of both “Tribomet” and “Plasma” NiCoCrAlYTa would
have been closer and similar microstructures would have been
expected.

As previously mentioned, martensite transforms into β-NiAl at high
temperatures. Thevolume changeassociatedwith this transformation is
around 2.0%±0.3% [25,26]. In Pt-modified aluminide coatings, this
volume change can favour bond coating surface rumpling [27,28]. In the
present study, martensite distribution differed according to the way in
which the NiCoCrAlYTa was produced. This could lead to different
lifetimes under thermal cycling conditions.

The fact that no β-NiAl grains were observed close to the
superalloy indicates that Pt modified the coating through its entire
depth. Because of their high Al concentration in the sub-surface
n AM3, (b) “Tribomet” Pt-modified NiCoCrAlYTa on MC-NG, (c) “Tribomet” Pt-modified
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designed to sustain high temperature oxidation while their Cr-rich
inner part prevents hot corrosion ingress, such Pt-modified NiCoCrA-
lYTa coatings can be considered to approach smart overlay coatings
[29].

Oxides were found at the original Pt/NiCoCrAlYTa interface in both
Pt-modifiedbondcoatings.Oxideswere alsoobservedwithin the core of
the “Tribomet” Pt-modified NiCoCrAlYTa coating. Here again the
manufacturing process used for NiCoCrAlYTa deposition explains this
difference. Indeed, these oxides likely come from oxidized CrAlYTa
particles used during the manufacturing of the alloy. The presence of
oxides within the “Tribomet” Pt-modified NiCoCrAlYTa coating during
the heat treatment prevents sufficient interdiffusion between the
CrAlYTa particles and the (Ni,Co) matrix. The bond coatingmay contain
some porosity after heat treatment that could be detrimental in service.
On the contrary,metallic particles of knowncomposition aremeltedand
sprayed toward the superalloy in an environment with a low oxygen
partial pressure in order to achieve “Plasma” NiCoCrAlYTa coating. This
reducing atmosphere limits particle oxidation.

Very fine precipitates were observed in the outer zone of both
Pt-modified NiCoCrAlYTa coatings. Someareα-Cr precipitates showing
that the external martensite or β-NiAl external layer was already
saturated with Cr after the heat treatment. The other precipitates could
not be properly identified as they do not diffract. It was only noted that
they contain some oxygen. Therefore, these precipitates could be
amorphous oxides but further analyses such as EELS are required to
reach any firm conclusion.

From the various cross-sections of Pt-modified NiCoCrAlYTa
coatings, it was noted that Pt does not have a smoothing effect on
the bond coating surface whatever the process used for Pt deposition.
This is in agreement with the observations of Lowrie and Boone on a
Pt-modified CoCrAlY coating [7].

4.2. Pt effect on TaC

It was noted from Fig. 14 that the larger the quantity of Pt
deposited on the NiCoCrAlYTa surface, the lower the TaC content.
Carbon concentration within the system is unknown. However,
carbon diffuses fast in γ-Ni at high temperatures [30]. Even if it is
present in low quantity within the superalloy, carbon can easily
diffuse toward the bond coating during the heat treatment (6 h at
1080 °C) to form carbides. Its concentration should therefore not be
the limiting parameter for carbide formation. The presence of carbides
within the material is dependent on the tantalum activity and carbon
activity. Tantalum is a γ′-gene element, as is Al. Besides, it is now well
known that Pt decreases Al activity. Hence, an effect similar to that
observed for Al activity can be expected with Ta activity due to Pt
addition. Pt could decrease Ta activity and then decompose the
carbides. Nevertheless, more work needs to be done to check this last
point.

4.3. Expected Pt effect on oxidation/corrosion resistance

The addition of Pt resulted in a great increase in the Al concentration
within the external part of the coatings. This should favour the selective
oxidation of Al and consequently improve the oxidation resistance of
such coatings. In addition to this, the core of the coating remains rich in
chromium, which is beneficial for the resistance to hot corrosion.
Therefore, these new coatings appear very promising for high-
temperature applications in oxidizing and corrosive environments.
Nevertheless, the dissolution of the tantalum carbides, which was
assumed to be due to Pt addition, and the presence of martensite could
be an issue. Without any or with very few tantalum carbides, titanium
could diffuse easily from the superalloy toward the surface of the
coating, oxidize and disrupt the protective oxide layer [31]. Because
martensite transforms to β-NiAl at high temperatures, stresses could
develop and lead to the surface deformation.
5. Conclusions

This works deals with the effect of Pt on the microstructure of two
NiCoCrAlYTa coatings, manufactured using different processes. First, it
was shown that Al diffuses extensively from the bulk NiCoCrAlYTa
toward the external Pt-rich zone. The sub-surface becomes enriched
in Al and L10 martensite (even β-NiAl) forms. Such aluminium
diffusion is the consequence of the decrease in Al activity in the
presence of Pt, as already demonstrated by other authors in other
systems. Al diffusion is so extensive that the β-NiAl phase was
no longer observed within the coating core. The external zone of the
Pt-modified NiCoCrAlYTa coating was therefore Al-rich while the core
of the coating was Cr-rich. This layering should provide a good
oxidation and hot corrosion resistance and protect the superalloy.

Martensite, γ′-Ni3Al and γ-Ni phases occurred in both Pt-modified
NiCoCrAlYTa coatings. However, their distribution differed regarding
the NiCoCrAlYTa manufacturing process. When vacuum plasma
spraying was used, the microstructure after heat treatment was more
uniform compared to that obtained when the NiCoCrAlYTa coating was
made by the “Tribomet” process. If the heat treatment was performed
before Pt deposition, the microstructures of both Pt-modified
NiCoCrAlYTa coatings (“Tribomet” and “Plasma”) would be closer.

Pt, which clearly affects Al activity, also seems to decrease Ta activity
leading to TaC dissolution. Further investigation should confirm this last
point.
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