
Promoting the Use of Reliable Rate Based
Transport Protocols: The Chameleon Protocol

Emmanuel Lochin∗

CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse,
France
E-mail: emmanuel.lochin@isae.fr

Guillaume Jourjon

NICTA, Locked bag 9013, Alexandria NSW 1430, Australia
E-mail: guillaume.jourjon@nicta.com.au

Sébastien Ardon
NICTA, Locked bag 9013, Alexandria NSW 1430, Australia
E-mail: sebastien.ardon@nicta.com.au

Patrick Sénac
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse,
France
E-mail: patrick.senac@isae.fr

Abstract: Rate-based congestion control, such as TFRC, has not been designed to
enable reliability. Indeed, the birth of TFRC protocol has resulted from the need for a
congestion-controlled transport protocol in order to carry multimedia traffic. However,
certain applications still prefer the use of UDP in order to implement their own congestion
control on top of it. The present contribution proposes to design and validate a reliable
rate-based protocol based on the combined use of TFRC, SACK and an adapted flow
control. We argue that rate-based congestion control is a perfect alternative to window-
based congestion control as most of today applications need to interact with the transport
layer and should not be only limited to unreliable services. In this paper, we detail the
implementation of a reliable rate-based protocol named Chameleon and bring out to the
networking community an ns-2 implementation for evaluation purpose.

Keywords: Transport Protocol, Protocol Implementation, Reliable rate-based Protocol,
TFRC, SACK

Biographical notes: Emmanuel Lochin received his Ph.D from the LIP6 laboratory of
Pierre and Marie Curie University - Paris VI in December 2004. He is currently researcher
and network security officer at ISAE and is also member of the research group OLC
(Tools and Software for Communication) of the LAAS-CNRS.

Guillaume Jourjon received his PhD from the University of New South Wales and
the Toulouse University of Science in 2008 and a Engineer Degree from the ENSICA,
a French aeronautical engineering school in Toulouse and a Master of Research in
telecommunications and networking. He is researcher at NICTA.

Sébastien Ardon received his PhD in Computer Science from the University Pierre et
Marie Curie in Paris, at the Computer Science Laboratory of Paris 6 (LIP6). He is
researcher at NICTA.

Patrick Sénac graduated from ENSEEIHT in 1983 and received the Ph.D. degree in
computer science in 1996 from Toulouse University, France. Patrick Sénac is professor
of computer science and head of the Mathematics, Computer Science and Control
Department at the Institut Supérieur de l’Aéronautique et de l’Espace (ISAE) in
Toulouse, France, and his also member of the research group OLC (Tools and Software
for Communication) of the LAAS-CNRS.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12042425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Transport protocols suffer from an evolutionary pressure
due to the large diversity of recently identified network
properties. For instance, High Speed networks raise
several performance problems in terms of throughput
convergence (Floyd, 2003, 2004) while Delay Tolerant
Networks are at the source of multiple new routing
and end-to-end communications issues. As a result,
the networking community shows a deep interest in
rethinking the way to carry data over Internet. In
particular, the IETF Transport Area Working Group
(TSVWG) aims at specifying new congestion control
and the recent Transport Architecture Evolution mailing
list (TAE), discuss of ideas and issues surrounding
the medium to long-term architectural evolution of the
transport layer. Even the OSI model is now under
question. Indeed, in a recent paper (Ford and Iyengar,
2008), the authors argue that the transport layer should
be now sliced in three sub-layers to cope with new
network characteristics.

Recent work on transport protocols, such as TFRC
and DCCP (Handley et al., 2008; Kohler et al., 2006),
have proposed alternatives to the generally used window-
based congestion control in particular for multimedia
applications. This idea is not new as the RAP protocol
can be considered as the precursor in this area (Rejaie
et al., 1999). However, the motivation behind was
different. RAP’s goal was to slow down the development
of application level congestion controls implemented
on top of a UDP socket. Indeed, application-layer
transport protocols might induce an increase of this
new kind of “congestion-controlled” UDP traffic that
would not strictly follow the fair-share principle
introduced in (Jacobson, 1988) and might lead to a
bad equilibrium of the Internet nay, a new congestion
collapse. Thus, DCCP and TFRC compute a sending
rate which reproduces the long-term TCP behaviour
and have been defined as an alternative to UDP to
carry multimedia traffic while respecting the fair-share
principle introduced in (Jacobson, 1988). Compared to
other contributions (such as TCP variants), DCCP is
the first protocol that enables two classes of congestion
control mechanisms (window and rate-based) which have
been conceived to specifically target applications needs
before network performances. Indeed, actual congestion
control mechanisms only focus on the network congestion
and do not take into account neither the application’s
needs nor the new network services while DCCP includes
multiple congestion control algorithms which can be
selected in regards to the user needs.

In order to change between its different congestion
controls, DCCP identifies them through Congestion
Control ID (CCID). Three CCIDs are now being
standardized by the IETF. CCID-2 (Floyd and Kohler,
2006) is a window based congestion control algorithm
similar to TCP; CCID-3 (Floyd et al., 2006) mimics
the TCP-Friendly Rate Control (TFRC) algorithm and
CCID-4 (Floyd and Kohler, 2009) is an adaptation of

CCID-3 for small data packets such as VoIP packets.
CCID-2 is appropriate to senders which would like
to take advantage of the available bandwidth in an
environment with rapidly changing conditions as bursty
real-time traffic such as traffic from compressed encoded
video and network games. CCID-3 is suitable for traffic
with smooth changes in sending rates, such as telephony
or video streaming.

Although Internet transport protocols have to be
redesigned due to congestion control lack of fairness and
the difficulty of TCP to achieve high throughput; other
issues also arise in the context of wireless and lossy
channels where rate-based solutions appears as natural
candidates. Indeed, previous studies (Sharafkandi and
Malouch, 2005; Kawadia and Kumar, 2005) have
demonstrated the poor TCP performances over wireless
and multi-hop networks while other emphasize the good
behaviour of rate-based congestion control over these
networks (Chen et al., 2004; Anastasia and Passarella,
2003). In the context of satellite communications, several
studies have also demonstrated the benefit of using rate-
based congestion control protocols compared to TCP
window-based variants and in particular in (Lawas-
Grodek et al., 2002), the authors present performances
comparison between SCPS-TP, TCP, TCP-Vegas and
rate-based protocols which clearly show the strong
benefit obtained by the latter in terms of throughput
efficiency over long delay links.

Therefore and following (Leiggener et al., 2006), the
design of a reliable rate-based transport protocol is
perceived as a suitable alternative to enable a transport
reliable service over wireless multi-hop networks such
as vehicular networks (VANET). The purpose of this
paper is thus to present our design choices and challenges
tackled in the implementation a reliable rate-based
protocol named Chameleon (ns-2 source code is available
upon request at http://manu.lochin.net/chameleon/
index.php). Firstly, we give in Section 2 the motivation
and then in Section 3 the background of this work.
We present the whole structure of this new protocol in
Section 4, we detail major internal operations of the
protocol in Section 5 and discuss other possible designs in
Section 6. We demonstrate that the present composition
of SACK and TFRC does not impact on the TFRC
TCP-friendliness property and validate the flow control
mechanism by showing that there is no packet lost at
the receiver side in case of a slow receiving application
(Section 7). Finally, Section 8 concludes this work and
ns-2 implementation details are provided in Appendix.

2 Why proposing a reliable rate-based

protocol?

We believe that the possibility for the application layer
(and even lower layers) to directly interact with the
computed rate is a big step ahead but should not
be limited to unreliable data communications. This
capability, offered by TFRC, is a huge advantage to

2

Promoting the Use of Reliable Rate Based Transport Protocols: The Chameleon Protocol 3

enable efficient cross-layer mechanisms compared to
the current Window per RTT metric used by TCP.As
illustrated in XRTP (Gaonkar et al., 2007), another
rate-based transport protocol proposal, the use of
a rate-based congestion control also allows to ease
the addition of either probing mechanisms to assess
the bandwidth available or LDA (Loss Discrimination
Algorithm) schemes to differentiate wireless from wired
losses. As a matter of fact, several proposals have already
taken advantage of this congestion control to realize
cross-layer interactions between higher or lower layers.
In particular, we identified the following contributions:

• VideoTFRC (Tan et al., 2008), where the authors
improve the video applications thanks to an
enhanced TFRC able to interact with the video
codec. In (Gineste et al., 2009), the authors
also present a method to enhance TFRC for
video streaming by agnostically using applicative
cross layer semantics and measures. A similar
contribution where the authors propose Media-
TFRC: a utility-based model using the rate-
distortion function as the application utility
measure for optimizing the overall video quality, is
also described in (Yan et al., 2006);

• gTFRC (Lochin et al., 2006), where the authors
detail the first congestion control mechanism which
enables interactions between congestion control
and DiffServ, in order to correctly guarantee
the minimum throughput negotiated between the
application and the QoS network (Blake et al.,
1998);

• in (Armando et al., 2008), the authors propose
a collaborative congestion control for emergency
operations based on TFRC by giving access to the
information provided by the transport layer;

• Mobile TFRC (Zhang et al., 2008a,b), where the
authors specialize TFRC for mobile wireless LAN
scenario with an interaction between the MAC and
transport layers to increase the rate obtained by
the mobile nodes.

All these studies, that demonstrate how cross-layer
interactions can be easily enabled between the transport
layer and upper or lower layers thanks to rate-based
congestion control, motivate the present contribution
which specifies a complete rate-based reliable transport
protocol implementation as an alternative to the
current domination of TCP in terms of reliable
service. Thus, we claim that the combined use of
TFRC and SACK can help to design new transport
protocols as both mechanisms share the common goal
of improving the QoS delivered to flows by offering
respectively a mechanism for enhancing the smoothness
of the flows rate variations and a mechanism for loss
recovery. Their combined use, associated with their
potential modification, offers a source of performance
improvements that applications developers need.

The capability to directly interact with the transport
layer in order to either adapt the QoS required
by applications and to enable or disable cross-layer
mechanisms and reliability have motivated the name
of this protocol: Chameleon. To clarify the position of
Chameleon, Table 1 shows the gap filled by this proposal
compared to other standardized protocols.

3 Background of this work

This section presents the background of this work and
in particular, the SACK mechanisms used to enable full
or partial reliability and the TFRC congestion control
mechanism. Thus, the problems we have to solve with
the Chameleon protocol are the following:

• design a flow control working together with the
rate-based congestion control;

• design a reliable mechanism that interacts
conjointly with the flow control and the congestion
control;

• enable a rate-based congestion control that uses
either reliable or unreliable services (although
partial reliability can also be enabled, we do not
tackle this case in the present study).

3.1 Selective Acknowledgment: SACK

There exists a range of reliability mechanisms from
basic stop and wait to the more advanced Selective
Acknowledgment mechanism (Floyd et al., 2000b;
Mathis et al., 1996). In (Jourjon et al., 2008), the authors
outlined the design of a SACK-like mechanism, suited for
rate-based congestion control such as TFRC (Handley
et al., 2008). While TFRC offers a smooth traffic
dynamic property to the network, on the application
side, this congestion control allows a direct exchange
between the transport and application layers. As already
emphasized in the introduction, the metric used by both
layers is identical (i.e. a sending rate in bits per second)
and is not related anymore to the discrete and unusable
value of window of packets per RTT.

This previous study (Jourjon et al., 2008) mainly
focused on the benefit of using such a rate-based
protocol to efficiently reach a negotiated throughput
over a DiffServ network, but did not specify the whole
mechanism that could be used over a best-effort network.
Thus, in the present paper, we also consider the
problem of flow control implementation, i.e. how to
prevent packet loss at the receiver due to the receiving
application not reading packet fast enough from the
socket buffer allowing to present a complete protocol
specification. Such flow control mechanism is mandatory
to implement an efficient reliable transport protocol and
require specific adaptations compared to the well-known
TCP flow control version in order to be used conjointly
with a rate-based congestion control mechanism. At

4 E. Lochin et al.

Table 1 Positioning Chameleon compared to other standardized protocols.

UDP TCP SCTP DCCP Chameleon

window-based CC - X X X -
rate-based CC - - - X X
full reliable - X X - X

partial reliability - - X - X
no reliability X - - X X

appli. read rate * N/A ** - X - X
multihoming - - X - -
multipath - - X - -

* Capability of the application to read the current transmission rate of the transport layer through a setsocketopt

function.
** The rate at which UDP emits is driven by the application.

last, the design of this implementation is not static
and allows enabling or disabling the reliable mechanism
plugged into TFRC. On the contrary, except in a recent
study proposing an unreliable TCP mechanism (TCP-
UREL (Ma et al., 2007)) to offer an alternative to
DCCP/CCID-2 mechanism (Floyd and Kohler, 2006),
none TCP version allows to switch between a reliable
and unreliable congestion control service.

3.2 TFRC receiver-based

In (Padhye et al., 1998), the authors proposed a model
to estimate the TCP throughput:

X =
s

(RTT ·

√

p·2

3
+RTO ·

√

p·27

8
· p · (1 + 32 · p2))

(1)

where s is the packet mean size of the communication,
RTT is the round trip time of the connection, p is the
packet loss rate of the network path and the RTO is the
TCP retransmit timeout.

Compared to the model in (Mathis et al., 1997), this
model does not assume the periodicity of loss events.
This model has allowed the introduction of TFRC
congestion control mechanism (Floyd et al., 2000a;
Handley et al., 2008). This mechanism uses equation (1)
and defines a more complete protocol for the beginning
of the connection and the role of the both sender and
receiver side. Indeed, at the beginning of the connection,
the mechanism uses a slow start phase. This phase, as
the TCP slow start, increases exponentially the sending
rate at the reception of every feedback packet according
to equation (2):

X = 2 ∗Xprev (2)

Where Xprev is the previously computed rate. This
slow start phase stops when the sender received a non-
nil estimation of the packet loss. This estimation is
done at the receiver either by an inversion of the TCP
throughput equation (1) when the first loss occurs or by
a weighting moving average of the loss event (a loss event
is defined as one or more packet lost during a period of
one RTT) interval (i.e. interval between two loss events).

This phase can start again in the transmission if the
RTO timer is triggered.

The sender is responsible for the computation of the
RTT and the estimation of the RTO. This component
receives the information of the packet loss rate from the
receiver through feedback packets that are supposed to
be sent at least once per RTT . Then, as described above,
the sender either applies the slow start equation (2) or
the TCP throughput equation (1) and minimises the
output by comparing it to twice the receiving rate which
has been given in the feedback message.

3.3 TFRC sender-based

In (Handley et al., 2008), it is mentioned that the design
of a sender-based version of TFRC would be possible
without any further details about its implementation.
In particular, this version has been proposed to solve a
security issue known as selfish receiver behaviour. This
security concern might occur when a receiver sends an
under-evaluated value of the packet loss rate in order to
obtain a higher bandwidth. Nevertheless, in the DCCP’s
specification of TFRC (Floyd et al., 2006), section 8
proposes that the receiver sends back the loss intervals
of the communication to the sender. Thus, the sender
can check that the packet-loss rate computed by the
receiver is accurate. In (Jourjon et al., 2007), the authors
have proposed a specification of the TFRC sender-based
variant and showed that this proposal effectively solves
the identified security issue and is more efficient in terms
of computation. However, another great interest of a
sender-based version deals with the possibility to propose
TFRC improvements without involving receiver side
modifications. For instance, TCP, which is sender-based,
allows to ease the deployment of novel TCP variants.
Although this sender-based variant does not impact on
the throughput performances of TFRC (Jourjon et al.,
2007), we choose to base our proposal on the standard
and “official” receiver-based implementation, for the
sake of simplicity.

Promoting the Use of Reliable Rate Based Transport Protocols: The Chameleon Protocol 5

4 Specification of the Chameleon protocol

We present in this section the protocol used for the
integration of a flow control and, in particular, the
composition of the TFRC congestion control and SACK
reliable mechanisms and modifications associated.

4.1 Modification of the SACK feedback packet

The concept of Selective ACKnowledgments (SACK)
was originally introduced in (Mathis et al., 1996)
as a TCP option that aims to optimize its reliable
service by allowing a faster recovery in the case of a
burst of lost packets (Floyd et al., 2000b). By sending
selective acknowledgements, the receiver of data can
inform the sender which segments or packets have
been successfully received and which ones have to be
selectively retransmitted.

The conception of Chameleon implies the
modification and the definition of new fields in the TFRC
data and feedback headers. In both headers, each field
is either encoded over 4 or 8 bytes except for the proto

ID (two bits), the type (two bits), processing time

(one byte), and the SACK payload (variable length).
We defined the datagram oriented SACK mechanism
similarly to the stream oriented mechanism: the SACK

payload, constituted by a sequence pair numbers.
These pairs represent the edge of a continuous sequence
of corrected received packets. The length represents
the number of pairs in the SACK payload. Finally the
Offset represents the sequence number of the first
packet of the first pair.

As TFRC mandates a new sequence number for each
packet sent, we have to introduce a new identifier: the
Application Identifier (AID), to perform the reliability
which is detailed in Section 4.1.1.

4.1.1 Application Identifier (AID)

The reason to use this AID number is that TFRC
assumes that all data packets contain a sequence number
that is incremented by one for each data packet sent.
If a lost data packet is retransmitted, it is given a new
sequence number that is the latest in the transmission
sequence, and not the same sequence number as the lost
data packet.

As a result, we need to introduce a separate identifier:
the application identifier (AID). With this identifier, the
receiver is able to detect retransmitted, delayed or lost
data packets. Thus, each retransmitted data packet has
the AID of the lost data packet and a new sequence
number. TFRC cannot distinguish a new data packet
from a retransmitted one, but the SACK and flow control
mechanisms are able to identify it.

4.1.2 Retransmission of lost packets

In case the sender is not allowed to send more new
data packets, it waits until it gets a feedback message

with non-zero window size. While the sender is blocked,
it is still able to retransmit lost data packets. It is
important that the sender is always able to retransmit
packets which are indicated as lost by the receiver,
because the receiver could wait for a missing data packet
which prevents all the following data packets in the
receiver’s buffer from their delivery to the application
(to guarantee in-order delivery). So it might happen that
the receiver is waiting only for one data packet and is not
able to receive more data packets due to buffer overflow
and consequently: advertise a window size of zero.

4.2 Chameleon data packet header

The Chameleon data packet header contains the
following fields:

1. Sequence number: data packet’s sequence
number. For simplicity, where security issue can be
neglected, the initial sequence number (ISN) starts
at 0. Otherwise the sender and receiver have to
negotiate the ISN before data transmission. The
sequence number is incremented by one for each
packet transmitted;

2. AID: application identifier. As previously
explained, this ID is used to distinguish correctly
received from retransmitted or delayed data
packets and identify missing packets due to loss.
Furthermore, the SACK mechanism is based on
AID and not on sequence number. Therefore
acknowledgments or losses of data packets are
reported in AIDs;

3. Timestamp: the time when the data packet is
sent. It is used by the receiver to determine which
losses belong to the same loss event (Handley et al.,
2008);

4. RTT: estimated round-trip time of the sender. It
is used by the receiver, along with the timestamp,
to determine when multiple losses belong to the
same loss event. It is also used to determine the
interval size to compute the received rate, and to
determine when to send feedback packets (Handley
et al., 2008).

4.3 Chameleon feedback message header

Concerning the Chameleon feedback message header,
we added some new parameters in order to exchange
information for reliability and flow control.

Each Chameleon feedback message sent by the
receiver contains information of the original TFRC
feedback packet (Handley et al., 2008) (in bold

characters) as well as information for the flow control
and SACK mechanism (in italic bold characters).

1. Timestamp echo: the timestamp of the last data
packet received. It is used by the sender to estimate
the round-trip time;

6 E. Lochin et al.

2. Timestamp offset: the amount of time elapsed
between the receipt of the last data packet at the
receiver, and the generation of this feedback report;

3. Receive rate: the rate at which the receiver
estimates that data was received since the last
feedback report was sent;

4. Loss event rate: the receiver’s current estimate
of the loss event rate: p;

5. Timestamp: the time when the feedback message
is sent. It is used by the sender to avoid
unnecessary retransmission in a too short time
range;

6. Window: the amount of packets which the
receiver is able to receive without being
overwhelmed;

7. ACK: acknowledgment is the lowest AID which
will be acknowledged by this feedback message
(first element in the SACK vector). It is used by the
sender to know which packets of the SACK vector
belongs to which packets in the sender’s window.
It is also used to identify loss of feedback messages
(sender knows the next expected ACK). In case
of prior feedback message loss, the sender assumes
that all packets up to the value of ACK are
received correctly by the receiver and acknowledges
them;

8. Length of SACK vector: tells the sender how
long the SACK vector in the current feedback
message is. This length may vary from 0 to the
maximum size of the window;

9. SACK vector: is a vector containing values of
1 (received) and 0 (not received, retransmit). All
element of the SACK vector can be either 1 or 0,
but the last element must be 1. Starting from the
AID in ACK the sender knows which packets are
received correctly and thus can be acknowledged,
or which are lost and need to be retransmitted.

In the rest of the paper, we refer to TFRC with the
SACK mechanism and the complete protocol with flow
control as Chameleon, and TFRC with only the SACK
mechanism as TFRC-SACK.

Based on this composition, the design of a flow
control mechanism compatible with TFRC is presented
and validated in the following.

4.4 Flow control mechanism TFRC compatible

Since the SACK mechanism requires receivers to
maintain a buffer for the in-order delivery of packet to
the application, we base our design on the introduction of
a new window variable: avail win, representing the space
available in this buffer. This window should not be

confused with the congestion-control window of

TCP. Although the purpose of this variable is similar to

the TCP flow control algorithm (which is to maintain at
the sender, the amount of buffer space available at the
receiver and prevent the sender from transmitting more
packets than there is available buffer space) the design is
more challenging as a rate-based congestion control does
not implement any control window. Furthermore, this
new window variable cannot be compared to the DCCP
Slow Receiver option (Kohler et al., 2006). Indeed,
although this option mimic the behaviour of a flow
control, this mechanism is just a simple threshold which
avoids to overflow the receiver without sake of reliability.
Other candidate solutions for the design, including
modification of the TFRC equation, are discussed in
section 6.

Figures 1 and 2 shows the sender and the receiver
window. In this figure, the dark boxes represent data
packets already sent or received.

10 11 12 13 14 15 16 1817

left border right border

total window size

avail_win

Figure 1 The sender’s window. Left border: highest
acknowledged packet ID; Right border: highest
packet ID sent so far. avail win: available window
size to send further data packets.

10 11 12 13 14 15 16

right borderleft border next left border

next SACK information

total window size

avail_win

Figure 2 The receiver’s window. Left border: highest
packet ID of the previously sent SACK vector;
Next left border: highest packet ID of all correctly
and in-order received packets. Right border:
highest packet ID received so far. avail win:
available window size to receive further data
packets.

At the sender, the flow control mechanism should
stop transmitting data packets if the receiver’s buffer is
full. To achieve this, we use the avail win variable, which
represents at the receiver side the available space in the
buffer in number of packets. This variable is integrated in
the TFRC-SACK feedback messages as a one-byte field.
The avail win variable therefore indicates, at the sender,
the supposed number of packets which can be sent. The
avail win value is never negative and is upper bounded

Promoting the Use of Reliable Rate Based Transport Protocols: The Chameleon Protocol 7

by the total window size. When this variable is non nil,
the sender sends data packets at the rate computed by
TFRC algorithm. Each time a packet is sent, avail win
is decreased by one at the sender. When avail win is
nil, the sender has already sent the maximum number
of data packets which could have been accepted by the
receiver. Note that the TFRC rate still condition the
speed at which packets are sent, the avail win variable
condition the maximum number of packets which can be
sent between receiving two feedback messages.

Indeed, as mentioned previously, each feedback
message sent by the receiver contains the available
buffer space. At the sender, upon reception of a
feedback message, the avail win variable is computed
by withdrawing the number of packets sent since
the header’s Offset from the header’s avail win. A
feedback message can therefore unfreeze the sender if the
newly computed avail win is non nil or the SACK vector
indicates that some packets need to be retransmitted.

At the receiver side, the flow control mechanism
monitors the receiver’s buffer size and computes the
availability to receive more new data packets. When a
data packet is received, if its sequence number (Snew)
is higher than the highest previously received sequence
number (Seqold), avail win is reduced by Seqnew −

Seqold. Otherwise, this packet is out-of-order and is
therefore placed in the reception buffer. When the
application reads packets from the buffer, the avail win
is increased by the corresponding number of read
packets.

5 Flow control in Chameleon

In this section, we illustrate the interaction of the
flow control mechanism with the other mechanisms
of Chameleon. These interactions are mandatory to
integrate the flow control and the SACK mechanisms
into the TFRC implementation.

5.1 Source: sending operation (Figure 3)

When the application has a data packet to send, the flow
control checks if there is available window (avail win

> 0). If the source is allowed to send a packet, the flow
control decreases the avail win by one and forwards
the data packet to TFRC’s sending rate computation
for transmission. The SACK mechanism inserts the data
packet into a waiting data queue in order to retransmit
it when considered as lost by the destination.

In case where avail win is zero, it means the sender
has already sent the maximum number of data packets.
Therefore the flow control mechanism blocks further
reception of new data packets from the application.

5.2 Destination: receiving operation (Figure 4)

Once the data packet arrived at the destination, TFRC
and SACK mechanisms update and compute their own

variables. For example, TFRC periodically computes the
loss event rate and the receive rate, and the SACK
mechanism identifies if the data packet is an expected,
delayed or a retransmitted one and acknowledges
its successful arrival by updating the SACK vector.
However, the flow control is independent of the other
mechanisms and does not need to be subsequent to the
SACK mechanism. The flow control needs to know only
the AID of the received data packet in order to update
the avail win variable. If the AID (pkt.AID) is higher
than the highest AID of all previously received data
packets (max AID), then it decreases the avail win by
their difference (max AID - pkt.AID) and the received
AID becomes the highest AID.

5.3 Destination: sending operation (Figure 4)

Every RTT (or after an RTT fraction, see Section
5.6), the destination triggers the feedback message
transmission. During the creation of the feedback
message, each mechanism sets its relevant values in
the feedback message. The flow control mechanism
advertises only its current avail win size to the source.
The SACK mechanism sets the ACK, length of the SACK
vector vec_length fields and appends the SACK vector
whose length may vary for every feedback messages.
For TFRC, the timestamp of the last received data
packet (timestamp echo), the elapsed time between the
time of data packet reception and time of the feedback
message creation (timestamp offset), receive rate

and loss event rate are set in the feedback message.

5.4 Source: receiving operation (Figure 3)

As soon as a feedback message arrives, each mechanism
reads the values needed from the feedback message
(i.e. flow control needs window and SACK needs SACK

vector).

The flow control mechanism gets the latest available
window size of the destination. However, the value of the
advertised window size is not simply the avail win for
the source. In order to compute the correct avail win,
the flow control has to consider all sent data packets
which were not received until the time of the feedback
message creation. These data packets could still be
delayed in the network and arrive just afterwards.
Therefore, the avail win is the advertised window
minus the number of all packets sent after the last data
packet acknowledged by the feedback message (we clarify
the acknowledgment and the window computation by an
example in the next Section 5.5).

If the computed avail win is not equal to zero
and the source was previously blocked, then the flow
control mechanism still accepts new data packets from
the application.

8 E. Lochin et al.

Data

Packet

STOP

Creating

Packets

− number of packets sent after

last packet in SACK vector

.windowFB.msg

Delete acknowledged

data packet from

sending buffer

(until the first packet

indicated as lost in the

SACK vector)

Retransmit

immediately

(whatever the

window size)

Retransmission ?

Data
Packet
Sent

STATE = Window Full

avail_win > 0
avail_win =

avail_win − 1

avail_win == 0

avail_win =

avail_win > 0

Window Full
STATE ==

AND

FLOW CONTROL

TRUE

TRUE

TRUE

APPLICATION CONGESTION CTL.

& RELIABILITY

TFRC

X= f(p,RTT,s)
at Sending Rate
Sending Packet

Window Full
STATE !=

CONTINUE

Creating

Packets

AND

SACK

Add packet
to sending
queue

Sending Queue

window

TRUE

FALSE

Feedback Message

SACK vector

window
SACK vector

Figure 3 Flow chart modeling of flow control at sender.

Pkt.AID > max_AID

Data packet

delivered to

Application

avail_win = avail_win + 1

FB.msg .window = avail_win

Create/Update

SACK vector

Expected

Delayed or Lost

Packet

expected AID
pkt.AID >

expected AID
pkt.AID <

Delayed or

Retransmitted

Packet

CONGESTION CTL.

& RELIABILITY

Send
Feedback Message

window

Data

Packet TRUE

APPLICATIONFLOW CONTROL

TRUE

TRUE

FALSE FALSE

avail_win = avail_win

− (max_AID − Data.AID)

max_AID = pkt.AID

FBmsg.ack = AID of the first element in vector

FBmsg.sack_vec=SACK vector

FBmsg.vec_length = vector length

SACK

Figure 4 Flow chart modeling of flow control at receiver.

5.5 Example of window computation at source

For the sake of simplicity, we assume in this example
a total window size of 10 packets. Furthermore, we
abbreviate the application identifier (AID).

15 1614 1711 1312 18

Sender Receiver
before

1 1 1 1 10SACK vector

15 1614

after

15 1614

advertised_window = 7

new avail_win

Figure 5 Example: Acknowledgment and window
computation at source.

Suppose the sender sends in sequence data packets
from AID 11 to 18 (sender’s window before in Figure
5). All packets before 14 were correctly received and
delivered to the application. Unfortunately, only the
packet with AID 14 is lost during the transmission

(slashed in the receiver’s window). After the reception
of packet AID 16, the receiver sends a feedback message
including a SACK vector [1, 1, 1, 0, 1, 1]. We recall the
SACK vector contains values of 1 (received) and 0 (not
received, retransmit). Every element except the last one
can be one of these two values. The last element of each
SACK vector must be always 1. If the last element would
be 0, it means that the destination has detected a loss
of data packets which might be eventually not sent at
all. The bits set to one correspond to the successfully
received data packets with AID 11 to 13, 15 and 16. The
bit set to zero report the loss of the data packet with AID
14. The advertised window size in the feedback message
is 7, because at the time of feedback message creation,
there are two packets (AID 15 and 16) in the receiver’s
buffer and one reserved for the lost packet (AID 14).
Thus, three data packets occupy the receiver’s buffer. It
is important to note that the receiver has detected the
loss of the data packet with AID 14 and has reserved the
space for later retransmission. Therefore, packets with

Promoting the Use of Reliable Rate Based Transport Protocols: The Chameleon Protocol 9

AID 15 and 16 must not be delivered to the application
and need to remain in the receiver’s buffer in order to
guarantee ordered delivery (this in-order service is a task
of the SACK mechanism).

When the sender receives the feedback message, it
has already sent the data packets up to AID 18. It
acknowledges the data packets which are stated as
correctly received (bits set to one) and removes them
from the waiting data queue. Finally, only the packets
which are waiting for their acknowledgment (AID 17 and
18) and which are lost (AID 14) remain in the sender’s
window. This means the data packets with AID 17 and
18 did not arrive at the receiver before the creation of
the feedback message and the data packet with AID
14 has to be retransmitted. Consequently, the sender
must presume that the two data packets which were not
in the SACK vector will be received correctly at the
receiver and subtract them from the advertised window
size. Thus, the new avail win size is the advertised
window size minus the number of all data packets sent
after the last data packet acknowledged by the feedback
message (7 - 2 = 5 is the avail win). Thus, avail win

corresponds to the difference between the advertised
window and the number of packets sent after the last
packet acknowledged by the SACK vector.

5.6 Choice of the frequency of the feedback
messages

The last problem we had to solve in order to provide an
efficient flow control mechanism deals with the feedback
frequency. TFRC requires at least one feedback message
per RTT to maintain the sending rate. For Chameleon,
we investigated whether more feedback messages are
necessary following all these modifications and the
impact of increasing this number of feedback messages.
The frequency of receiving feedbacks regulates the
waiting time of the sent data packets to be acknowledged
at the sender. If this time is too long, then the sender can
send packets slower, because there are many data packets
waiting to be acknowledged and the sender’s available
window might be zero.

The current TFRC RFC states that there is little
gain from sending a large number of feedback messages
per RTT. However in (Sarwar et al., 2008), the authors
show that in long-delay contexts, such as satellite-based
networks, the performance of TFRC can be improved by
increasing the feedback frequency (Sarwar et al., 2008).
In a deeper study (Lopez et al., 2009), the authors
show that increasing the numbers of feedback per RTT
may improve the perception of the congestion level
parameters at the sender. The key at the origin of such
improvement is an accurate value of the experienced
RTT by the senders. Since a more accurate RTT value
implicitly improves the drop rate seen by the receivers,
this result in faster adaptation (high responsiveness) of
TFRC to the network congestion levels. In (Lopez et al.,
2009), the authors’ analysis have also shown that the
improvements carried in by the increase of the feedback

frequency may have important effects on long-delay
dynamic networks. Indeed, in short-delay networks, one
feedback per RTT is enough to get an accurate RTT
value. Also, in non-dynamic networks, the congestion
avoidance mechanisms of TFRC which seek to avoid
oscillations and losses events, limit the benefits of having
a more accurate RTT value. Thus, the authors choose
to set the default value to two feedback per RTT as a
trade-off between long and short delay networks.

6 Discussion

The main feature of a rate-based congestion control
mechanism is the use of an equation to determine
the sending rate. This equation typically uses
network measurements (or estimations) to calculate
the theoretical rate at which TCP would send in
similar conditions. Following this observation, we first
investigated two other possible solutions to the flow
control problem.

The first solution is to obtain the reading rate of
the receiving application and to send it back to the
sender. This can be done either by estimating the
reading behaviour of the application or by assuming
that the application can communicate this reading
rate to the transport protocol. The sender would then
adjust its sending rate to the minimum between its
computed congestion control sending rate, twice the
receiver’s receiving rate, and the application’s reading
rate. However, this solution has two major drawbacks.
Firstly, the reading rate depends on different parameters
such as application type, CPU usage, etc. and may
therefore follow complex patterns, which can be difficult
to estimate. This may result in erroneous values
leading in buffer overflow. Secondly, in order to provide
packet ordering, the receiver temporarily buffers out of
order packets. This can lead to a situation where the
application’s reading rate is nil, therefore the sender
would stop even if there is space in the buffer.

The second possible solution would have been to
modify the equation used to compute the sending rate.
TFRC computes its rate (X) with (1) following (Handley
et al., 2008). As this equation is mainly driven by
the RTT and the loss event rate (p). We simplify the
notation of (1) with:

X = F (p,RTT) (3)

We propose to model the flow control impact on the
transmitting rate as follows:

X = F (p,RTT) +G(avail win, p, RTT) (4)

where G(avail win, p, RTT) is a model of the flow
control impact on the transmitting rate which takes into
account the avail win variable and F . However, we did
not pursue this solution as it seems to introduce too
much complexity inside the rate computation. Moreover,
if we want to avoid losing packets at the receiver

10 E. Lochin et al.

due to a slow reading application, we would need to
underestimate the sending rate, which would negatively
impact on the protocol performance.

As a matter of fact, it follows that there is no gain
to include the flow control in the TFRC’s sending rate
algorithm.

7 Mechanism validation

In this section, we validate our Flow Control mechanism
using simulation in ns-2.30. We first implemented the
SACK-like mechanism within ns-2.30’s TFRC. We also
extended the ns-2 simulator to include the application
layer to simulate an application reading from the socket
buffer at different rate. Using this implementation,
we conduct a set of simulations to demonstrate the
effectiveness of our flow control mechanism, and quantify
the potential impact of the SACK and flow control
modifications over the TFRC flow dynamics.

7.1 TCP-friendliness conservation and reliability

The first experiment aims at verifying the TCP-
friendliness of Chameleon when sharing a bottleneck
with other TCP flows. These days, the definition of
the TCP-friendliness is still being debated (Briscoe,
2006). In this study, we will first follow the definition
in RFC3448: “[...] a flow is “reasonably fair” if its
sending rate is generally within a factor of two of the
sending rate of a TCP flow under the same conditions.”.
This definition concerns instantaneous values. Another
common view is that, on average, a flow is TCP friendly
if the non-TCP source obtains a long-run term average
sending rate not larger than the one TCP would have
obtained under the same circumstances (Floyd and Fall,
1999).

To quantify the TCP-friendliness we therefore use an
expression of the means ratio as shown on equation (5):

T (X) =
1

n

∑n

i=1
xi

1

m

∑m

i=1
yi

(5)

where X is the protocol being studied, xi the average
throughput of the ith X flow, n the number of X flows,
yi the average throughput of the i

th TCP flow and m the
number of TCP flows. In this formula if T is inferior to
1 then the non-TCP flow is TCP-friendly, if T is equal
to 1 then we have an ideal friendliness and finally if T if
greater than 1 then the non-TCP flow overruns TCP.

In this simulation scenario, we use the butterfly
topology shown on Figure 6. There are two sources
transmitting to two destinations over a shared link
between two intermediate nodes. These two flows are
competing for the bottleneck link bandwidth. We
perform two experiments where Chameleon is first
competing with TCP-SACK, then with TCP New Reno.
All three protocols are set to the same packet size of
1KByte and a maximum window size 64KBytes. In
both experiments, the application reading rate is infinite.

10 Mbits/s

10 Mbits/s 10 Mbits/s

10 Mbits/s

1 Mbit/s

RTT=30ms between end−hosts

Other protocol

Chameleon protocol

Figure 6 Topology of the scenario

Results are presented in Figure 7. Each graph
shows the flow instantaneous throughput at the receiver
computed with an average sliding window throughput
estimation with a 1ms window.

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300 350 400

K
b

it
/s

Time (sec)

TCP/SACK
Chameleon

(a) Instantaneous throughput of
Chameleon and TCP SACK

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300 350 400

K
b

it
/s

Time (sec)

TCP/Newreno
Chameleon

(b) Instantaneous throughput of
Chameleon and TCP New Reno

Figure 7 Validation of Chameleon composition in ns-2.30

From Figure 7, we can see that the Chameleon flow
instantaneous throughput is slightly inferior to both
TCP SACK and TCP New Reno flows. In addition,
the Chameleon instantaneous throughput is well within
the 2x factor imposed by our TCP friendly definition
previously mentioned. We can therefore conclude that
this Chameleon implementation remains friendly with
both TCP SACK and TCP New Reno. Several
experiments with different RTT and bottleneck capacity
have confirmed these results. For the sake of being
concise, we give in this section a general sample of
these experiments. In Figure 7 (a), Chameleon equally
shares the bottleneck with TCP during almost 130s.
At t = 130s, TFRC suffers from consecutive losses and
therefore sharply decreases its throughput. Chameleon
then attempts to re-adjust its throughput to the
equilibrium with TCP, but this process converges slowly,
which is a well-known shortcoming of TFRC (Widmer,
2000). When competing against TCP New Reno, as
shown in Figure 7 (b), Chameleon behaves similarly
to its behaviour with TCP SACK except that it stays

Promoting the Use of Reliable Rate Based Transport Protocols: The Chameleon Protocol 11

longer at the first equilibrium (200s instead of 130s).
Furthermore after the consecutive losses Chameleon
reaches the equilibrium with TCP New Reno faster than
with TCP SACK. These differences can be explained as
the TFRC equation models TCP Reno.

Table 2 presents the TCP-friendliness index of
Chameleon calculated using equation (5). As all figures
are below one. This confirms that TFRC-SACK is
friendly with both version of TCP.

Table 2 TCP-friendliness index results

TCP version T(TFRC-SACK)

TCP/Newreno 0.82

TCP/SACK 0.72

For these experiments, we also validate the SACK
mechanism, i.e. verify that all lost packets are
retransmitted. In Table 3, we summarize the number
of sent and lost packets for each flow in the previous
experiments. We can see from this table that Chameleon
flows send less packets than both TCP versions. This
is explained as the TCP flows overall throughputs are
higher than the TFRC-SACK and the packet statistics
are collected during a fixed time period of 400s.
Furthermore, we can see that the Chameleon flows
experience less packets loss than both TCP flows (in
absolute value and in percentage). This is explained
by the fact that the rate-based congestion control
mechanism produces a smoother sending rate compared
to a window-based mechanism which is more aggressive.
Finally, by using packet marking (not shown in the
table), we verify that Chameleon retransmit all dropped
packets until correctly received.

Table 3 Packets statistics

number of sent number of lost
packets packet (percentage)

TCP/Newreno 26702 166 (0.62%)
Chameleon 21962 45 (0.2%)

TCP/SACK 28740 162 (0.55%)
Chameleon 20368 42 (0.2%)

7.2 Impact of the application read-rate

The objective of this experiment is to validate the flow
control mechanism, by measuring the sender throughput
when varying the application read rate, i.e. simulating
a slower application. We also want to confirm that
there is no packet lost due to a slow receiver unable
to accept incoming packets. In addition, in this section,
we quantify the impact of our SACK and Flow Control
mechanisms over TFRC smoothness, by measuring the
throughput smoothness during the data transfer.

In order to quantify this smoothness, we consider
the average throughput for each time unit interval. For

each time interval we compute each flow’s throughput
standard deviation (C. Jin and Low, 2004) and obtain
the following metric equation (6):

S =
1

n

n
∑

i=1

(

1

xi

√

√

√

√

1

m− 1

m
∑

j=1

(xi(k)− xi)2

)

(6)

where xi is the average throughput of the i
th Chameleon

(resp. TFRC) flow, n is the number of flows, xi(k) is
the throughput of the ith Chameleon (resp. TFRC) flow
for the kth time interval and m is the number of time
intervals.

For these experiments, we use a simple topology
where two nodes communicate through a third one.
Packets are crossing two consecutive links of respectively
10 Mbps and 1Mbps bandwidth, for an overall 20 ms
RTT (5ms delay on each link).

Figure 8 (a) shows the throughput of a Chameleon
flow as the application read rate is set to 600kbit/s at
the receiver.

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50

K
b

it
/s

Time (sec)

Chameleon
Drops

(a) Chameleon with read rate 600 Kbps,
20 ms RTT, queue limit of 10 packets (the
cross represents six losses)

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400

K
b

it
/s

Time (sec)

Application Read Rate
TFRC

Chameleon

(b) TFRC versus Chameleon with
experiencing variation of read rate

Figure 8 Validation of flow control mechanism

Each packet loss event is illustrated on Figure 8 (a)
by a cross on the x-axis. At the beginning of the
transmission, the sender sends packets according to
the slow start algorithm. This phase stops when the
first packet loss event occurs. TFRC then enters the
congestion avoidance phase. As soon as the receiver’s
buffer is full due to the application limited read rate,
the sender can no longer send further packets. As the
application reads from the buffer non nil avail win values
are sent to the sender.

Hence, the sender is only allowed to send new packets
when the receiver has delivered some packets to the

12 E. Lochin et al.

application. Consequently, Figure 8 (a) confirms that
the flow control mechanism operates correctly as the
throughput is adapted to the receiver application read
rate. Furthermore, Figure 8 (a) shows that the receiver
does not drop any packets.

In Figure 8 (b), we mix one Chameleon and one
TFRC flow in the same network conditions as previously.
However, contrary to the previous experiment, the
application read rate varies in time and follows a specific
pattern as shown in Figure 8 (b). We have chosen this
specific pattern as it represents a mix of above, below
and equal to the fair share throughput.

From Figure 8 (b), we can first see that a read rate
above to the theoretical fair share value (500kbit/s)
does not impact on the behaviour of Chameleon: TFRC
and Chameleon equally share the link bandwidth.
Furthermore, the transition from this read rate to
another one inferior to 500kbit/s does not induce any
packet loss at the receiver buffer. Between t = 100s and
t = 150s, the application read rate is set to 100kbit/s, i.e.
under the theoretical fair share value. During this phase,
we can see from Figure 8 (b) that Chameleon sending
rate is following the application reading rate while TFRC
flow can uses the rest of the bottleneck. At t = 150s,
the application reading rate is set again to values above
to the fair share for 100s. We can see from the graph
that during this period Chameleon and TFRC equally
share the bottleneck bandwidth as expected. Finally,
for the remaining variations of application reading rate,
Chameleon continues to behave in a fair manner.

To quantify the impact flow control when the receiver
application drives the transmission over the throughput
smoothness, we use the smoothness metric, as defined
in equation 6. We applied this criterion on a set of
experiments that aims at checking that the flow control
does not introduce any degradation in the smoothness
characteristic of TFRC.

In Table 4, we present the results of experiment when
two identical flows share a bottleneck of 1Mbit/s during
400s. We show in this table that Chameleon remains
as smooth as TFRC when it is not limited by the
application read rate. Furthermore when we introduce
for both flows a read rate of 300Kbit/s, the resulting
smoothness of the system is increased. This result can
be explained by the fact that the oscillations in the
throughput are usually due to the congestion control
mechanisms that tries to increase until the detection of
a loss. In the case of a system limited by the application
read rate the two flows do not try to increase nor decrease
and therefore are more stable.

Table 4 Smoothness index for different protocols

TFRC Chameleon Chameleon read rate
S 0.094 0.097 0.051

8 Conclusion and future work

In this paper we have investigated and proposed a
complete reliable rate-based protocol based on TFRC
and SACK mechanisms. Our design also introduces a
flow control variable, which regulates the sender to avoid
packet loss at the receiver due to a slow receiver.We show
that the modifications resulting from this composition
does not affect the TCP-friendliness property of TFRC.
We validate our proposal through ns-2.30 simulation and
verify TCP-friendliness metrics. We further show that
there is no packet loss due to flow control, at the receiver,
and apply a smoothness criterion to demonstrate that
the introduction of the flow control inside TFRC does
not alter the smoothness property of this mechanism.

There is room for potential improvements. Indeed,
although the present contribution only details and
demonstrates the feasibility to implement a reliable
transport protocol, several micro-mechanism can be
designed to allow partial reliability or to help to answer
to specific application needs. We hope to generate an
interest from the networking developers’ community to
use this protocol as a trade-off between application needs
and network performances. We are currently working
on a kernel implementation of this proposal inside
the DCCP GNU/Linux implementation and are still
improving our Java prototype (a Java implementation
is also available upon request) for small devices such as
PDA and cellular phones.

Acknowledgements

The authors would like to thank Yong-Han Lee (from
EPFL during his internship) for the implementation
of this proposal during his internship done at NICTA.
Frédéric Bal (from ISAE during his internship) for the
final and improved version of the Java version. Tanguy
Perennou for many valuable remarks and advices about
the presentation of this study. This work has been
supported by funding from National ICT Australia.

References

Anastasia, G. and Passarella, A. (2003). Towards a novel
transport protocol for ad hoc. In Personal Wireless
Communications (PWC).

Armando, F., Wambeke, N. V., and Chassot, C. (2008).
Introducing a collaborative congestion control based
on TFRC. In Proceedings of the World Congress on
Engineering and Computer Science (WCECS), San
Francisco, USA.

Blake, S., Black, D., Carlson, M., Davies, E., Wang,
Z., and Weiss, W. (1998). An architecture for
differentiated services. Request For Comments 2475,
IETF.

Promoting the Use of Reliable Rate Based Transport Protocols: The Chameleon Protocol 13

Briscoe, B. (2006). Flow rate fairness: Dismantling a
religion. Internal report, ACM SIGCOMM CCR.

C. Jin, D. X. W. and Low, S. H. (2004). FAST TCP:
motivation, architecture, algorithms, performance. In
Proc. of IEEE INFOCOM, Hongkong.

Chen, K., Nahrstedt, K., and Vaidya, N. (2004).
The utility of explicit rate-based flow control
in mobile ad hoc networks. In Proc. IEEE
Wireless Communications and Networking Conference
(WCNC).

Floyd, S. (2003). HighSpeed TCP for Large Congestion
Windows.

Floyd, S. (2004). Limited Slow-Start for TCP with Large
Congestion Windows. RFC 3742 (Experimental).

Floyd, S. and Fall, K. (1999). Promoting the use of end-
to-end congestion control in the Internet. IEEE/ACM
Transactions on Networking, 7(4):458–472.

Floyd, S., Handley, M., Padhye, J., and Widmer, J.
(2000a). Equation-based Congestion Control for
Unicast Applications. In Proc. of ACM SIGCOMM,
pages 43–56, Stockholm, Sweden.

Floyd, S. and Kohler, E. (2006). Profile for datagram
congestion control protocol (DCCP) Congestion
Control ID 2: TCP-like congestion control.

Floyd, S. and Kohler, E. (2009). Profile for Datagram
Congestion Control Protocol (DCCP) Congestion ID
4: TCP-Friendly Rate Control for Small Packets
(TFRC-SP) .

Floyd, S., Kohler, E., and Padhye, J. (2006). Profile for
DCCP Congestion Control ID 3: TRFC Congestion
Control. Request For Comments 4342, IETF.

Floyd, S., Mahdavi, J., Mathis, M., and Podolsky,
M. (2000b). An extension to the selective
acknowledgement (SACK) option for TCP. Request
For Comments 2883, IETF.

Ford, B. and Iyengar, J. (2008). Breaking up the
transport logjam. In in Seventh ACM Workshop
on Hot Topics in Networks (HotNets-VII), Calgary,
Alberta, Canada.

Gaonkar, S., Choudhury, R. R., Magalhaes, L., and
Kravets, R. (2007). Designing a rate-based transport
protocol for wired-wireless networks. In IEEE
BROADNETS, Raleigh, Noth Carolina.

Gineste, M., Wambeke, N. V., and Exposito, E. (2009).
Enhancing TFRC for video streaming by agnostically
using applicative cross layer semantics and measure. In
Second International Workshop of Future Multimedia
Networking.

Handley, M., Floyd, S., Pahdye, J., and Widmer, J.
(2008). Tcp friendly rate control (TFRC): Protocol
specification. Request For Comments 5348, IETF.

Jacobson, V. (1988). Congestion avoidance and
control. In Proc. of ACM SIGCOMM, pages 314–329,
Stanford, CA.

Jourjon, G., Lochin, E., and Sénac, P. (2007). Towards
sender-based tfrc. In IEEE International Conference
on Communications (ICC).

Jourjon, G., Lochin, E., and Sénac, P. (2008).
Design, implementation and evaluation of a QoS-
aware transport protocol. Elsevier Computer
Communications, 31.

Kawadia, V. and Kumar, P. R. (2005). Experimental
investigations into tcp performance over wireless
multihop networks. In In proceeding of the 2005 ACM
SIGCOMM workshop on Experimental approaches to
wireless network design and analysis.

Kohler, E., Handley, M., and Floyd, S. (2006). Datagram
congestion control protocol (DCCP). Request For
Comments 4340, IETF.

Lawas-Grodek, F. J., Tran, D. T., Dimond, R. P., and
Ivancic, W. D. (2002). SCPS-TP, TCP and rate-based
protocol evaluation for high delay, error prone links.
In In Proc. of AIAA Spaceops.

Leiggener, A., Schmitz, R., Festag, A., Eggert, L., and
Effelsberg, W. (2006). Analysis of path characteristics
and transport protocol design in vehicular ad hoc
networks. In In Proceedings of the 63. IEEE
Semiannual Vehicular Technology Conference.

Lochin, E., Dairaine, L., and Jourjon, G. (2006). gtfrc,
a tcp friendly qos-aware rate control for diffserv
assured service springer telecommunication. Springer
Telecommunication Systems Journal, 33(1-3):3–21.

Lopez, D., Lochin, E., and Boreli, G. S. R. (2009).
Understanding the impact of TFRC feedbacks
frequency over long delay links. In IEEE GIIS
2009 - Global Information Infrastructure Symposium,
Hammamet, Tunisia.

Ma, L., Wu, X., and Ooi, W. T. (2007). TCP
Urel, a TCP option for unreliable streaming.
Tech. report, School of Computing, National
University of Singapore. Available on line:
http://nemesys.comp.nus.edu.sg/projects/tcpurel/.

Mathis, M., Mahdavi, J., Floyd, S., and Romanow,
A. (1996). TCP selective acknowledgment options.
Request For Comments 2018, IETF.

Mathis, M., Semke, J., Mahdavi, J., and Ott, T. (1997).
The macroscopic behavior of the TCP congestion
avoidance algorithm. ACM SIGCOMM Computer
Communication Review, 27(3):67–82.

14 E. Lochin et al.

Padhye, J., Firoiu, V., Towsley, D., and Kurose, J.
(1998). Modeling TCP throughput: A simple model
and its empirical validation. In Proc. of ACM
SIGCOMM, pages 303–314, Vancouver, CA.

Rejaie, R., Handley, M., and Estrin, D. (1999). Rap: An
end-to-end rate-based congestion control mechanism
for realtime streams in the internet. In Proc. of IEEE
INFOCOM.

Sarwar, G., Boreli, R., Jourjon, G., and Lochin, E.
(2008). Improvements in DCCP congestion control
for satellite links. IEEE International Workshop on
Satellite and Space Communications, 2008. IWSSC
2008.

Sharafkandi, S. and Malouch, N. (2005). Simple
and effective end-to-end approach to increase TCP
throughput over ad-hoc networks. In The 19th
International Teletraffic Congress.

Tan, E., Chen, J., Ardon, S., and Lochin, E. (2008).
Video TFRC. In IEEE International Conference on
Communications (ICC).

Widmer, J. (2000). Equation-Based Congestion Control.
Diploma thesis, University of Mannheim, Germany.

Yan, J., Katrinis, K., May, M., and Plattner, B. (2006).
Media- and tcp-friendly congestion control for scalable
video streams. Multimedia, IEEE Transactions on,
8(2):196–206.

Zhang, L., Sénac, P., Lochin, E., and Diaz, M. (2008a).
Cross-layer based congestion control for WLANs. In
ICST QShine.

Zhang, L., Sénac, P., Lochin, E., and Diaz, M. (2008b).
Mobile TFRC: a congestion control for wlans. In IEEE
International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM).

A Implementation of Chameleon in ns-2

This part presents the main ns-2 issues and the
related specifications of the exchanged messages, the
application’s read rate variable and the treatment of the
windows at the sender and receiver side.

A.1 TFRC-FC-SACK (Chameleon) Messages

There are two types of messages: TFRC-FC-SACK
(Chameleon messages are named TFRC-FC-SACK in
the ns-2 implementation) data packet and TFRC-
FC-SACK feedback message. In the following, we
shortly describe how the processing of the messages is
implemented in ns-2. We pay a particular attention to
the flow control and SACK mechanisms.

A.1.1 Data Packet

For a sake of simplicity, we assume the sequence number
and the application identifier always start to 0 for each
packet, so that no negotiation of these values is needed
prior to the first data packet transmission.

For the flow control and SACK mechanisms, we
introduced the application identifier (AID) in order
to distinguish correctly received data packets from
retransmitted or delayed ones.

We emphasize again that the integration of the flow
control and SACK mechanisms did not change the
functionality of the TFRC’s congestion control and its
sending rate computation. As illustrated in the design of
the flow control, the TFRC is a “black box” where flow
control and SACK are added.

A.1.2 Feedback Message

In the feedback message, the relevant fields for the
flow control and SACK mechanisms are: win, ACK, the
SACK vector length and the SACK vector. We explain
how the ACK variable is set depending on the first element
of the SACK vector.

59 2 5 1 1 1

win ACK length
vector

AID 4AID 3 AID 5

SACK vector

10

AID 7

60 1 6 1 0 1 1 1 1

win ACK length
vector

SACK vector

AID 1 AID 6AID 5AID 3 AID 4AID 2

AID 6

Figure 9 Two different feedback messages (only the relevant
fields for flow control and SACK are shown): Top: The
SACK vector starts with one. Bottom: The SACK
vector starts with zero.

The ACK in the feedback message is the lowest AID
normally acknowledged by the feedback message. It is

Promoting the Use of Reliable Rate Based Transport Protocols: The Chameleon Protocol 15

used by the source to determine which AID corresponds
to the elements in the SACK vector containing 1 or 0
values. Furthermore, when previous feedback messages
are lost, thus not allowing the source to acknowledge
packets, the ACK indicates the correct reception of all
data packets with AID up to this ACK value instead of
the lost feedback messages.

During the feedback message creation at the
destination, the SACK mechanism sets the value of the
ACK field depending on the value of the first element in
the SACK vector. If the first element is 0 (bottom draw
in Figure 9), the data packet with AID 3 is lost, the AID
of the data packet just before the lost packet is chosen. It
is mandatory that the ACK is not the AID of the lost data
packet when it occupies the first position of the SACK
vector. Indeed, the ACK must be the AID of a correctly
received data packet. Thus, the first element corresponds
to the data packet with AID equal to ACK + 1.

In the case where the first element is 1 (top draw of
Figure 9), ACK is equal to the AID of the first element in
the SACK vector.

To clarify, we present below a simplified code of the
implementation.
At the destination, during the feedback message
creation, we define the ACK as follows:

FB.ack = highestAIDsent_ + sackvec_[0];

where FB.ack is the ACK field in the feedback message,
highestAIDsent is the highest AID sent in the previous
feedback message (i.e. value of the AID of the first
element minus one) and sackvec [0] is the value of the
first element of the SACK vector (either 1 or 0).

At the sender side, in order to determine which
AID corresponds to the elements in the received SACK
vector, it is sufficient to know the AID of the first element
of the received SACK vector:

if(sackvec_[0] == 1) then

// first element is 1

firstElement_AID = FB.ack;

else

// first element is 0

firstElement_AID = FB.ack + 1;

where firstElement AID is the AID corresponding
to the first element in the SACK vector, FB.ack is the
ACK field in the feedback message, sackvec [0] is the
value of the first element of the SACK vector (either 1
or 0).

We obviously notice that the SACK vector must end
with one. Otherwise, it would mean that the destination
states a data packet lost which might not been sent from
the source. The destination detects a lost or delayed data
packet only if it receives a data packet with a higher AID
than the next expected one.

A.2 Application’s Read Rate

The application read rate corresponds to the rate of
delivering packets from the buffer to the application. If

the destination is a low speed machine and receives a
high-speed transmission of packets, then the buffer is
used to store packets until the application can read and
process them. We call this rate of reading from the buffer
“application’s read rate”.

In ns-2, TFRC implementation is quite different
from those of TCP or UDP. TFRC does not require
to setup separate agents or applications. Instead, it
creates a complete connection between the source and
the destination nodes:

set tfrc [$ns create-connection TFRC $src

TFRCSink $dst 0]

Therefore, we must simulate the application’s
read rate in the implementation of TFRC-FC-SACK
destination.

In order to perform simulations with different
application’s read rates which is fixed in the TCL script,
we bind the TCL’s read rate variable with the one in
the C++ implementation. Furthermore, we introduce a
new timer which calls the delivery function every time it
expires. The read rate is initially given in kilobytes per
second and converted in time per seconds in the C++
implementation in order to set the timer.

if(applreadrate = ’unlimited’) then

applreadtime = -1;

// deliver as soon as pkt arrives

// do not set the timer

else

applreadtime = (packetsize*8) /

(1024*applreadrate);

// packetsize in bytes, convert to bits

// applreadrate in Kbps, convert to bits

// per second

Finally, the frequency of calling the delivery function
corresponds to the read rate of the application.

A.3 Sender’s Window, Receiver’s Window

The receiver’s window limits the buffer between the
transport layer and the application layer. This stores
packets when the application is busy and cannot read
them immediately. The same happens if a previous
packet is lost and the following packets cannot be
delivered to the application in order to ensure in-order
delivery. On the other side, the sender’s window limits
the number of packets which can be sent to the receiver
without overwhelming it. Both windows are built in
a very similar way. In the following subsections the
processing done on both windows are described.

A.3.1 Receiver’s Window

• sackedsofar: This variable is the application
identifier (AID) of data packet acknowledged so
far. This means all packets up to this AID are
received correctly and in order (contains no gap of
delayed or lost packets). All data packets having

16 E. Lochin et al.

10 11 12 13 14 15 16 1817

total window size

19 20

avail_win

max_aidsackedsofardeliveredtoapp

Figure 10 Receiver’s window

AID up to this value can be delivered to the
application;

• max aid: This variable always keeps the highest
AID received at that time. If max aid is not equal
to sackedsofar, then some packets having AID
between sackedsofar and max aid are lost or
delayed;

• deliveredtoapp: This variable indicates the last
packet delivered to the application. This value
cannot be higher than sackedsofar;

• avail win: Indicates the number of packets which
can be received before the buffer is full. This value
is sent in the feedback messages and advertises the
current receiver window size to the sender;

• total window size: The total size of the receiver’s
window. This is a constant value fixed to 65 packets
(corresponds to 64 KB buffer size).

At the initialization, the avail win is equal to the
total window size. Each time when in-order data
packet is received, it is decreased by one. If there is a gap
of data packets between the previously and the newly
received ones, then the avail win is decremented by one
plus the number of these missing packets. Whereas it is
incremented by one, only if the application has read one
data packet.

A.3.2 Sender’s Window

10 11 12 13 14 15 16 1817

total window size

19 20

sackedsofar max_aid

avail_win

Figure 11 Sender’s window

• sackedsofar: This variable is the AID of the
last data packet acknowledged. All packets up to

this AID are received correctly at the receiver,
acknowledged and removed from the sender’s
window as they do not need to be retransmitted
anymore;

• max pkt aid: It keeps the highest AID created
by the application so far;

• free window: Indicates the number of data
packets the sender is able to send more;

• total window size: It is the total size of the
sender’s window. Initially, it is set to 65 packets
(corresponds to 64 Kbytes of buffer size).

When the sender receives a feedback message with
the advertised window, it computes its available window
size (avail win) with the following equation (except the
advertised window is 0):

avail_win = adv_win - (max_pkt_aid -

(sackedsofar + sackvec_length))

where adv win is the advertised window size in the
feedback message, sackvec length is the length of the
SACK vector in the feedback message.

