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We study numerically the viscous phase of horizontal gravity currents of immiscible
fluids in the lock-exchange configuration. A numerical technique capable of dealing
with stiff density gradients is used, allowing us to mimic high-Schmidt-number
situations similar to those encountered in most laboratory experiments. Plane
two-dimensional computations with no-slip boundary conditions are run so as
to compare numerical predictions with the ‘short reservoir’ solution of Huppert
(J. Fluid Mech., vol. 121, 1982, pp. 43–58), which predicts the front position lf to
evolve as t1/5, and the ‘long reservoir’ solution of Gratton & Minotti (J. Fluid Mech.,
vol. 210, 1990, pp. 155–182) which predicts a diffusive evolution of the distance
travelled by the front xf ∼ t1/2. In line with dimensional arguments, computations
indicate that the self-similar power law governing the front position is selected by the
flow Reynolds number and the initial volume of the released heavy fluid. We derive
and validate a criterion predicting which type of viscous regime immediately succeeds
the slumping phase. The computations also reveal that, under certain conditions, two
different viscous regimes may appear successively during the life of a given current.
Effects of sidewalls are examined through three-dimensional computations and are
found to affect the transition time between the slumping phase and the viscous regime.
In the various situations we consider, we make use of a force balance to estimate the
transition time at which the viscous regime sets in and show that the corresponding
prediction compares well with the computational results.

1. Introduction
Gravity currents are generated when a dense fluid (of density ρ2) is released in

a lighter one (of density ρ1) or vice versa. Such flows are widely encountered in
environmental and geophysical situations (storm outflows, avalanches and the like)
(Hoult 1972; Simpson 1982) as well as in engineering problems (e.g. warm water
discharges in cold water, spreading of fire gases and ventilation; Linden 1999). While
theoretical models and extensive laboratory experiments have been devoted to this
class of flows for a long time (see Simpson 1997 for an excellent review of the field
up to the last decade), use of direct numerical simulation (DNS) to investigate them
in detail is relatively recent. Most of the computational studies to date have focused
on the early slumping phase of inertia-dominated currents during which the front
velocity is roughly constant (e.g. Härtel, Meiburg & Necker 2000; Necker et al. 2005;
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Cantero et al. 2007). This is of course partly because DNS can contribute to clarify
several important open questions related to the internal structure of the flow during
this phase. In contrast, the case of currents dominated by viscous effects or that
of the late viscous phase of gravity currents initially dominated by inertia has not
yet been widely addressed in DNS. As will become clear later, the main reason for
this is that most of the numerical techniques used in previous investigations do not
allow this viscous phase to be properly computed. In the present paper we employ
DNS to focus on the transition from the slumping phase to the subsequent viscous
regime(s) and on the characteristics of these viscous regimes themselves in the case
of an instantaneous fixed-volume release in the lock-exchange configuration.

More precisely, we consider a semi-infinite horizontal channel of height H closed
by a vertical wall located at x = −L0 and containing a volume V0 = L0H (in the
two-dimensional case) of dense fluid restrained by a lock placed at x = 0. This lock is
instantaneously opened at t = 0 so that a gravity current develops, the front position
of which is located at xf (t). We assume molecular diffusion and surface tension
effects to be negligible, so that the two fluids only mix owing to hydrodynamic
effects, and no capillary regime has to be considered. In the whole paper, we only
consider small density differences compatible with the Boussinesq approximation. All
the computational results to be discussed are issued from two-dimensional simulations
in plane channels except those of § 2 and § 3.3 in which intrinsically three-dimensional
configurations are considered. In what follows we normalize lengths and time by H

and
√

H/g′, respectively (g′ = g(ρ2 − ρ1)/ρ2 denoting the reduced gravity) and mark
the resulting dimensionless quantities with a tilde. To clarify the raison d’être of some
of the issues addressed in this paper, a brief discussion of the various successive
regimes that can be expected in the above configuration is in order.

If viscosity is neglected, the solution at early times is that of the dam-break flow
problem, namely

x̃f = Fr t̃, (1.1)

where Fr = (dxf /dt)/
√

g′H is the Froude number. In a well-known paper (Benjamin
1968) it was shown that Fr = 0.5 for an energy-conserving current. However, high-
Reynolds-number experiments rather indicate 0.45 < Fr < 0.5 (see e.g. Marino,
Thomas & Linden 2005), a difference due to small wall-friction effects (Bonometti,
Balachandar & Magnaudet 2008). Equation (1.1) characterizes the slumping phase.
If the receding front reaches the endwall during this phase, then x̃f = L̃0 for t̃ = T̃S

such that

T̃S = L̃0Fr−1. (1.2)

For much larger times (x̃f � L̃0) and provided viscous effects are still negligible,
a self-similar regime during which buoyancy is balanced by inertia is approached.
This is the inertial phase during which the current length in a plane channel obeys
(Huppert & Simpson 1980)

l̃f = x̃f + L̃0 = 1.47Ṽ
1/3
0 t̃2/3. (1.3)

In contrast, if inertia is negligible right after the opening of the gate or if it is
long before the receding front reaches the endwall, the current is self-similar with
(Gratton & Minotti 1990)

x̃f = αRe1/2 t̃1/2, (1.4)

where the flow Reynolds number is defined as Re = g′1/2H 3/2/ν (ν denoting the
kinematic viscosity) and α = 0.0922 in the two-dimensional case (Hinch et al. 2007)
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or α = 0.0739 in a cylindrical horizontal tube (Séon et al. 2007), H being the tube
diameter in the latter case. This solution holds until the receding front reaches the
endwall, say for t̃ = T̃V such that

T̃V = Re−1(L̃0/α)2. (1.5)

Then the solution ceases to be self-similar.
On the other hand, if inertia is negligible and x̃f � L̃0, a different self-similar

asymptotic corresponding to the point-source approximation is approached in which

l̃f = βRe1/5Ṽ
3/5
0 t̃1/5 (1.6)

in a two-dimensional channel (Huppert 1982) or

l̃f = βcRe1/4Ṽ
1/2
0 t̃1/4 (1.7)

in a horizontal cylindrical tube (Takagi & Huppert 2007), the prefactors β and βc

being 1.133 and (12/35)1/4 ≈ 0.765, respectively. For convenience, the viscous regimes
with x̃f ∼ t̃1/2 and l̃f ∼ t̃1/5 or l̃f ∼ t̃1/4 will be referred to as the long reservoir (LR)
and short reservoir (SR) regimes, respectively.

Several of these predictions have been convincingly validated experimentally,
while some others still deserve confirmation. Generally, experiments performed with
axisymmetric currents (Didden & Maxworthy 1982; Huppert 1982) or with currents
propagating in cylindrical tubes (Séon et al. 2007; Takagi & Huppert 2007) have been
more conclusive because influence of the boundaries is better controlled. Many other
configurations involving viscous gravity currents have been considered as well but
will not be discussed here. A comprehensive review of the field was given by Huppert
(2000).

In order to predict the succession of regimes experienced by a given current, the
characteristic transition times to each regime have to be compared. In particular, for
given flow conditions, it is first necessary to determine whether the inertial solution
(1.3) or the SR viscous solution (1.6) occurs after the receding current hits the
endwall. This can be determined by noting that the inertial phase is observed only
if the dimensionless height of the resulting current goes below 0.075, which requires
l̃f > l̃f I = 13.33Ṽ0 according to the box-model prediction (Huppert & Simpson

1980). Moreover the transition length l̃f SR and time T̃SR at which the viscous force
associated with the dam-break solution (1.1) starts to exceed that corresponding to
the SR solution (1.6) after the current has been influenced by the endwall obey
(Huppert & Simpson 1980)

l̃f SR = Re2/7Ṽ
5/7
0 , (1.8)

T̃SR = Re3/7Ṽ
4/7
0 . (1.9)

Hence the inertial phase can exist only if l̃f I < l̃f SR , which implies Re � 8650Ṽ0.
Given the moderate Reynolds numbers used in the computations to be described
below, this condition will never be met in this paper. Therefore the inertial regime
(1.3) will be ignored in what follows, and we will only be concerned with situations in
which the slumping phase solution (1.1) is followed either by the viscous LR solution
(1.4) (which sets in for t̃ = T̃LR) or by the SR solution ((1.6) which sets in for t̃ = T̃SR

or (1.7)) or by both. More precisely, the succession of phases to be observed will
depend on how T̃S , T̃SR , T̃V and T̃LR compare to each other.

Based on the above discussion, the structure of the present paper is as follows:
Section 2 briefly describes the numerical techniques we use and shows that they allow a
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faithful reproduction of the characteristics of viscous gravity currents involving nearly
immiscible fluids. Section 3 describes computational results which, to our knowledge,
provide the first clear validation of the theoretical predictions for the viscous LR
and SR regimes in two-dimensional channels, i.e. (1.4) and (1.6), respectively. We
then discuss the consequences of the effects of an O(1) Schmidt number on previous
computational predictions and examine the influence of sidewalls in experiments
through three-dimensional computations and force-balance arguments. In § 4 we first
make use of computational results to derive and validate a theoretical criterion
predicting which type of viscous regime immediately succeeds the slumping phase. In
the case in which the slumping phase is followed by the LR regime, we show that a
secondary viscous transition from the LR regime to the SR regime later occurs and
determine theoretically the corresponding transition time. Computations also help
understand the gradual evolution of the current from the time the receding front
hits the endwall to that at which the resulting disturbance reaches the front of the
advancing current. In particular, they reveal that, under certain conditions, the LR
regime can even set in a short time after the receding front has hit the endwall. We
finally summarize our main conclusions in § 5 and present a unified diagram of the
various evolutions a given viscous current may follow.

2. Numerical approach and validation
Most DNS of gravity currents reported in the literature made use of spectral or

pseudo-spectral techniques because they offer excellent accuracy even with a moderate
number of grid points (see Härtel et al. 2000; Necker et al. 2002, 2005; Cantero et al.
2007). However the numerical stability of these methods is compromised when sharp
gradients have to be dealt with, such as the density gradient across the front of a high-
Schmidt-number gravity current. (The Schmidt number is defined as the ratio of the
kinematic viscosity to the binary molecular diffusion coefficient.) The usual remedy
has been to stabilize the corresponding computations by considering a diffusion
term in the density equation. Therefore the predictions made in the aforementionned
studies correspond to a Schmidt number of order unity. This has almost no influence
on the predictions during the slumping phase in which inertia effects dominate and
is indeed representative of realistic conditions for viscous gazeous gravity currents.
However most laboratory experiments make use of liquids (essentially fresh and salt
water) for which the Schmidt number is rather O(103). To our knowledge, the only
attempt to compute the viscous phase of a gravity current using a spectral approach
has been that of Cantero et al. (2007) in which the viscous-spreading law was found
to be closer to the lf ∼ t3/8 prediction of Hoult (1972) for a gravity current flowing
on a fluid surface than to the expected result of Huppert (1982). One can of course
suspect the difference to be due to Schmidt number effects, as the theoretical model
assumes that the released volume is strictly conserved and that the interface between
the two fluids is kept sharp, which, at late times, is only true if molecular diffusion has
negligible effects. In particular, a recent study by Bonometti & Balachandar (2008)
points out that the front thickens tremendously with time in low-Reynolds-number
gravity currents with an O(1) Schmidt number.

Based on these remarks, it is clear that a different numerical strategy is required
to obtain reliable computational predictions of high-Schmidt-number viscous gravity
currents which can be compared with theoretical predictions and most laboratory
experiments. Obviously, the key point is to select a technique capable of handling stiff
density profiles. To this end, we use the in-house JADIM code. This code was originally
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developed to compute two-phase incompressible flows of immiscible fluids with highly
contrasted densities, especially bubbly flows (e.g. Bonometti & Magnaudet 2006, 2007).
Here surface tension is set to zero, since we do not wish to consider the capillary
regime of gravity currents. In the above finite-volume code, the transport equation for
the local volume fraction of the heavy fluid (which is identical to that of the density
field) is solved using a flux-corrected scheme. More precisely, the transport equation
is split into successive one-dimensional sub-steps, one along each grid direction.
Within each sub-step, the corresponding advective flux is discretized using a Zalesak
scheme (Zalesak 1979) which combines the use of a low-order (here first-order)
and a high-order (here fourth-order) spatial discretization to preserve positivity and
monotonicity of the volume fraction and to ensure second-order spatial accuracy. The
momentum equations, in which no reference to the Boussinesq approximation is made,
are discretized using second-order centred schemes. Time advancement is achieved
through a Runge–Kutta (RK3)/Crank–Nicholson algorithm. The incompressibility
condition is finally satisfied at the end of each time step, using a variable-density
projection technique. Overall, the code is second-order accurate in space and first-
order accurate in time, owing to the Euler scheme employed to advance the density
equation.

It has to be pointed out that while the set of equations used here corresponds to
immiscible fluids, since molecular diffusivity is set to zero, the treatment of the density
field on a discrete grid prevents the interface between the two fluids from remaining
infinitely sharp. Actually, the density is found to vary from ρ1 to ρ2 over one to
three grid cells, resulting in a large but finite effective Schmidt number. Bonometti &
Balachandar (2008) employed the same code and showed the effective numerical
Schmidt number to be O(103), which is typical of experiments performed with liquids.
This is essentially a qualitative estimate, since the numerical Schmidt number at a
given point of the flow depends on the local grid size and orientation of the front
with respect to the grid. Therefore a proper choice of the grid size has to be made
to ensure that the front thickness remains much less than the viscous diffusion scale
everywhere. Moreover, since this numerical diffusion spreads the interface over one
to three cells, it would be impossible to obtain an accurate description of immiscible
gravity currents at very late stages, when the current height is less than a few cells.
We took care of these various aspects to ensure that the simulations presented in the
paper are sufficiently resolved at all times. We refer the reader to Hallez & Magnaudet
(2008) for more details on the numerical technique as well as for validations with
gravity-driven flows confined in tilted tubes and to Bonometti et al. (2008) for results
obtained with the same code in non-Boussinesq density currents.

The computations to be described below were run in the lock-exchange
configuration defined in § 1, either in two-dimensional or three-dimensional channels
or in cylindrical tubes. The length-to-height (or length-to-diameter) ratio ranges from
32 to 102. The corresponding grids involve 80 nodes in the vertical direction for
two-dimensional channels and 482 nodes in the cross-section for three-dimensional
channels. In the streamwise direction, the number of grid points ranges from 512 to
3168 for all geometries, depending on the length-to-height ratio. The density ratio is
set to ρ2/ρ1 = 1.008. We assume the dynamic viscosity to be the same in both fluids,
which implies that the kinematic viscosity is slightly larger in the light fluid.

Prior to discussing new findings provided by these computations, we find it useful
to describe a validation test corresponding to a well-documented case, namely that
of a current propagating in a long cylindrical tube with the lock located midway
between the two endwalls, i.e. starting from an initial symmetric configuration. This
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Figure 1. Evolution of the front position in a current resulting from a release in a cylindrical
tube: – · – · –, computational result for a short release (L̃0 = 1); ——: computational result for
a symmetric release (here L̃0 = 17); +++, experimental data from Séon et al. (2007); the thin
dashed lines indicating the t1/2 and t1/4 regimes were plotted using the theoretical prefactors
α = 0.0739 and βc = (12/35)1/4 determined by Séon et al. (2007) and Takagi & Huppert
(2007), respectively.

problem was addressed, both theoretically and experimentally, by Séon et al. (2007).
We computed the same physical situation using the experimental set of parameters.
The tube was discretized with 32 nodes in the radial direction and 64 nodes in the
azimuthal direction. The evolution of the front position recorded in the experiment
performed under conditions Re = 790 and ρ2/ρ1 = 1.008 with almost immiscible
liquids (fresh and salt water) is plotted in figure 1, together with the corresponding
computational prediction.

The theoretical prediction (1.4) obtained by the same authors for the LR regime is
also reported for comparison. Computational results display an excellent agreement
with experimental data all along the flow evolution which includes a slumping
phase, a transitional stage and an LR viscous phase. Another computational result
corresponding to a short release (L̃0 = 1) is added with the corresponding theoretical
prediction (1.7). In the latter case, the agreement on the time exponent is again
excellent, and the numerical prefactor in (1.7) is recovered within 1 %.

From the above comparison, we conclude that our numerical technique accurately
reproduces the experimental and theoretical results of both Séon et al. (2007) and
Takagi & Huppert (2007) for the LR and SR viscous regimes in a horizontal
cylindrical tube, respectively. Therefore we are confident that our code will allow
us to carry out numerical experiments to explore various aspects of viscous gravity
currents of immiscible fluids.

3. Predictions and experiments in plane channels
3.1. Predictions in the LR regime

In two dimensions, the theoretical prediction for the LR regime (1.4) (with α = 0.0922)
has not yet received any experimental validation. Figure 2(a) reports the results of
several computations we ran to check this prediction, using large heavy fluid releases
with L̃0 > 17 to ensure that the current becomes viscously dominated before it
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Figure 2. (a) Evolution of the front position in a two-dimensional current reaching the LR
viscous regime: computational results for Re = 200, 400, 600 and 790 (black lines) all collapse
on the master curve defined by x̂f = t̂ for t̂ < 1 and x̂f = t̂1/2 for t̂ > 1; (b) theoretical and
computational predictions for the current profile corresponding to Re = 200; – – –, theoretical
prediction (3.3); , computational results taken at 45 successive times during the viscous
phase; · · · ·, two profiles obtained during the development of the viscous phase.

reaches the nearest endwall. In this figure, the front position x̃f and time t̃ have

been rescaled by the transition position x̃f LR and time T̃LR to the LR regime at

the considered Reynolds number so that we define x̂f = x̃f /x̃f LR and t̂ = t̃/T̃LR .
The transition takes place at the time at which the viscous force associated with
the slumping solution starts to exceed that associated with the LR viscous solution.
Equivalently, the transitional characteristics can be computed by equating the front
positions predicted by (1.1) and (1.4), which yields

x̃f LR = α2ReFr−1, (3.1)

T̃LR = α2ReFr−2. (3.2)

Introducing x̂f and t̂ , (1.1) and (1.4) reduce to x̂f = t̂ and x̂f = t̂1/2 respectively,
whereas the transition obviously takes place at (x̂f LR, t̂LR) = (1, 1). With this
renormalization, all computational curves collapse on a single master curve valid
all along the current life. The difference between the time exponent (respectively the
numerical prefactor) predicted by (1.4) and that found in computations is less than
1 % (respectively 2 %) for sufficiently well-established self-similar states. Hinch et al.
(2007) also showed the current height to be governed by

∂h̃

∂t̃
=

1

3
Re

∂

∂x̃

[
h̃3(1 − h̃3)

∂h̃

∂x̃

]
. (3.3)

The normalized current profile recorded at 45 successive times during the LR regime
of a current corresponding to Re = 200 is plotted in figure 2(b). This profile is found
to follow closely the theoretical prediction obtained by integrating (3.3). The two
profiles corresponding to early stages of the flow indicate that the self-similar viscous
profile is settled progressively, starting from the initial lock position. At early times,
the local inertia/gravity balance results in a sharp profile with a prominent blob, and
this picture holds until viscous effects dominate the front dynamics.
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Figure 3. Distance travelled by the front for various releases leading to the SR regime (h̃0 = 1
except specified otherwise). Experiments of Rottman & Simpson (1983): �, lf SR/L0 = 6; �,
lf SR/L0 = 10; �, lf SR/L0 = 12; �, lf SR/L0 = 18; �, lf SR/L0 = 25. Present experiments:

�, lf SR/L0 = 9.5; ∗, lf SR/L0 = 10.8, h̃0 = 1/6; ×, lf SR/L0 = 10.7; �, lf SR/L0 = 10.8; +,

lf SR/L0 = 10.8, h̃0 = 1/6. Computational results: ——, xf SR/L0 = 3.04, Re = 200; – · – · –,

xf SR/L0 = 2.5, Re = 790; – – –, l̃f ∼ t̃1/5.

3.2. Predictions and experiments in the SR regime

The prediction (1.6) derived by Huppert (1982) for the SR viscous regime has been
checked in several experiments, especially those of Rottman & Simpson (1983).
Nevertheless, the slopes inferred from the corresponding data reveal a significant
variability. More precisely, the slopes deduced from figure 12 of the latter paper
lead to time exponents between 0.23 and 0.27 approximately, which suggests a 1/4
exponent rather than the 1/5 exponent predicted by (1.6). A similar variability may be
observed in the results of Marino et al. (2005) and is nicely illustrated in figure 9(d )
of the paper by Cantero et al. (2007). (Note that there is a small misprint in this
figure, the time exponent displayed by the solid line being actually −4/5). We also
carried out some additional experiments in an horizontal 4 m long channel, 0.25 m
wide and 0.5 m high. The two fluids were clear water and dyed salt water. In order to
reach the SR regime, we performed lock exchanges with small volumes of salt water
of typical density 1050 kg m−3. The initial lengths L0 of the released volumes were
0.044 m, 0.095 m or 0.15 m, and their initial heights h0 were about 0.06 m, whereas
different total heights H of fresh water were employed. The evolution of x̃f in the
experiments of Rottman & Simpson (1983) and in our own experiments is reported
in figure 3. The various runs correspond to different values of lf SR/L0 (see (1.8) for
the definition of lf SR). The time exponent deduced from our experiments ranges from
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Figure 4. Distance travelled by the front of a two-dimensional current as a function of time
for Re = 200: ——, LR regime reached with L̃0 = 17); – · – · –, SR regime reached with
L̃0 = 1.5. The thin dashed (respectively dot-dashed) line corresponds to the prediction (1.4)
(respectively (1.6) with a prefactor set to 0.93β).

0.15 to 0.27, these extreme two values being obtained with the same set of parameters
(namely ρ2/ρ1, Re, L̃0 and h̃0). Finally, the evolution of the two currents of figure 3
that exhibit a 1/5 time exponent corresponds to an ‘experimental’ prefactor in (1.6)
higher than its theoretical counterpart β by 18 % and 22 %, respectively. There may
be multiple reasons for the large variability observed among experimental results. In
particular, small perturbations generated by the opening of the gate may affect the
free surface (an effect which does not exist in cylindrical tubes), and there may be
small local variations in the slope of the channel. Also, even though the channels
used in experiments have large aspect ratios, the flow is actually three-dimensional,
owing to the no-slip condition imposed by the lateral walls. We will come back to
this point later.

We ran several computations in the above situation with different Reynolds numbers
and initial volumes. The corresponding results are displayed in figures 3 and 4. In
particular, figure 4 shows the computed evolution of the front position for Re = 200
and two contrasted released volumes: a very short volume L̃0 = 1.5 and a much
longer one L̃0 = 17. The run with L̃0 = 17 corresponds to the LR solution and is
only reported here for comparison. In contrast, the run with L̃0 = 1.5 confirms that,
after the slumping phase, a current generated by a sufficiently small release evolves
in agreement with the SR self-similar solution (1.6). The numerical time exponent
and prefactor are found to be 0.198 ± 0.001 and 0.93β , respectively. More generally,
all computations leading to an SR viscous regime predict the 1/5 exponent with
less than 2 % difference, despite the finite length of the domain. The prefactor is
always found to lie between 0.86β and 1.02β . The above comparison indicates that
present computations recover the theoretical self-similar prediction characterizing the
SR viscous phase.

Cantero et al. (2007) also briefly considered this regime but found the exponent of
the front position to be closer to that corresponding to a gravity current flowing over
another fluid (Hoult 1972), i.e. l̃f ∼ t̃3/8, and the computational prefactor was more
than 3β . We strongly suspect the discrepancy to be due to the O(1) Schmidt number
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used in these pseudo-spectral computations to ensure numerical stability. Indeed, such
a large molecular diffusivity significantly reduces density gradients, which results in
two effects. In the horizontal direction, the driving force is reduced, which in turn
reduces the velocity of the current, at least for short times (Bonometti & Balachandar
2008). In the vertical direction, the current thickens dramatically, which reduces the
velocity gradient at the bottom wall and thus the resistive viscous force. In particular,
the characteristic length in the viscous stress is not the current height h(x) anymore
but rather the penetration thickness

√
νt . Equating the gravitational driving force

with the viscous force then leads to the scaling l̃f ∼ t̃3/8 found by Hoult (1972)
instead of the t̃1/5 scaling, in line with the observations of Cantero et al. (2007).
Note that even though theoretical solutions for viscous currents with Sc = O(1) are
not available, it is obvious that the self-similar behaviour (1.6) cannot subsist under
such circumstances. This is made clear by considering the equation governing the
reduced density (ρ(z̃) − ρ1)/(ρ2 − ρ1) whose integral across the current height yields
the governing equation for h̃(x̃, t̃). When molecular diffusion is absent, this equation is
of the Reynolds type, leading to the self-similar solution (1.6). In contrast, when finite
diffusion effects are present, it involves an additional diffusion flux at the interface,
which leads to a modified evolution of h̃. Based on this remark, it is clear that SR
viscous currents computed with spectral methods making use of an O(1) Schmidt
number cannot obey the scaling (1.6).

Beyond such O(1) Schmidt numbers dictated by numerical constraints, an O(1)
effective Schmidt number may also be encountered in the front region and along the
interface in turbulent currents with immiscible fluids. In this context, one can also
question the validity of (1.6) once such currents become viscously dominated, since
turbulent diffusion may well have spread the interface between the two fluids in a way
pretty similar to molecular diffusion. This could lead to results close to those obtained
by considering laminar currents with an O(1) Schmidt number. If this happens to be
the case, and we assume that finite-Schmidt-number effects result in a gradual shift in
the time exponent of the evolution law from 1/5 to 3/8, it could explain the variability
observed among the experiments, since they were generally carried out under turbulent
conditions over a broad range of Reynolds number. Three-dimensional high-Schmidt-
number/high-Reynolds-number DNS could help check this conjecture.

3.3. Three-dimensional effects

To assess possible alterations of two-dimensional predictions by flow three-
dimensionality, we ran several three-dimensional computations in a channel of aspect
ratio unity with either periodic conditions or no-slip conditions in the spanwise
direction. A small disturbance was added to the initial density profile to trigger the
transition to three-dimensionality in the former case. When the released volume is
large enough for the LR regime to occur, both types of three-dimensional currents
exhibit a t1/2 evolution in the LR regime (figure 5a). Streamwise vortices are well
visible on the body of the currents (figures 6a and 7a). Neither their spanwise spacing
nor their typical strength seems to be significantly altered by the nature of the
boundary condition on the sidewalls. More significant differences can be detected on
the shape of the current fronts: as may be seen in figure 6(b), the no-slip condition on
the sidewalls generates a marked rim at the extremities of the front, while the central
part is pretty flat. The front is found to be steeper in presence of periodic lateral
conditions with a clear presence of lobe and cleft structures (figure 7b). In presence
of periodic boundary conditions, the front velocity is almost the same as that of the
two-dimensional current, even though a tiny decrease of the distance travelled by the
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Figure 5. Comparison of the evolution of two- and three-dimensional currents at Re = 200
for a large release (LR) with L̃0 = 17 (a) and a small release (SR) with L̃0 = 1.72 (b)
in a channel of aspect ratio A = 1: ——, two-dimensional current; – – –, three-dimensional
current with periodic conditions in the spanwise direction; – · – · –, three-dimensional current
with no-slip conditions on the sidewalls. The thin dashed line in figure 5(a) (respectively b)
corresponds to the prediction (1.4) (respectively (1.6) with a prefactor set to 0.914β).

(a) (b)

W: –4.74 × 10–2 –1.58 × 10–2 –1.58 × 10–2 4.74 × 10–2

Figure 6. Structure of a three-dimensional current in the LR regime with no-slip boundary
conditions in the spanwise direction (Re = 660). (a) Vortical structures coloured by the strength
W of the streamwise vorticity normalized by

√
g′/H ; (b) current surface plotted using the

(ρ − ρ1)/(ρ2 − ρ1) = 0.65 isosurface. The spatial scales are identical on both axes.

front may be detected in figure 5(a). This decrease certainly results from the small
additional dissipation induced by the streamwise structures.

In contrast, compared to the two-dimensional reference, the transition from the
slumping phase to the LR regime occurs significantly earlier for the current with
no-slip conditions on the sidewalls. This is a direct consequence of the increased
drag resulting from the presence of the lateral boundary layers. A rough estimate of
the impact of this additional drag on the transition time to the LR regime may be
achieved by evaluating the time T̃LR∗ at which the total viscous force starts to exceed
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Figure 7. Same as in figure 6 with periodic boundary conditions in the spanwise direction.

the inertial force assuming that the dimensionless thickness of the lateral boundary
layers is δ̃(̃t), while the bottom boundary layer is fully developed at that time and has
a constant dimensionless thickness K/2. Equating the transition time T̃LR given by
(3.2) with that provided by this momentum balance in the two-dimensional case yields
K = (2α/Fr)2. Then, in the three-dimensional case, the viscous force is increased by
1 + K/(2Aδ̃(̃t)), where A denotes the channel aspect ratio, i.e. the width-to-height
ratio. Provided the lateral boundary layers are still developing when t̃ = T̃LR∗, which
is the case as long as T̃LR∗ < Re A2/4, one has δ̃(T̃LR∗) ≈ Re−1/2T̃

1/2
LR∗. Therefore the

transition time now obeys

T̃LR∗(1 + K(Re/T̃LR∗)
1/2/2A) ≈ KRe/4. (3.4)

Equation (3.4) predicts that in the case of figure 5(a) (where Re = 660), the transition is
advanced by about 43 % with respect to the two-dimensional situation. We determined
the transition time graphically from this figure by intersecting the t1 and t1/2 lines
tangent to the initial and final stages of the computational curves, respectively.
This method provides T̃LR∗ = 27.1, while the two-dimensional result is T̃LR = 46.3,
indicating that the transition is advanced by about 41.5 %, in good agreement with
the above prediction. We also examined three-dimensional effects in currents resulting
from much shorter releases leading to a direct transition from the slumping phase
to the SR viscous regime. As shown in figure 5(b), the corresponding currents
exhibit a t1/5 evolution, whatever the boundary condition in the spanwise direction.
Possible three-dimensional effects in this regime were already considered by Didden &
Maxworthy (1982) who studied currents with a constant inflow in channels of large
aspect ratios. Using their estimates for all three forces in balance right at the time
of the transition, it can be shown that the two-dimensional estimate (1.9) for this
time is reduced by (1 − 2Re−1 t̃/Aδ̃(̃t))3/7. Therefore, three-dimensional effects affect
the corresponding transition time according to

T̃SR∗

(1 − 2(T̃SR∗/Re)1/2/A)3/7
≈ Re3/7Ṽ

4/7
0 . (3.5)
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In the case of the computations presented in figure 5(b) (where Re = 200), (3.5)
predicts that three-dimensional effects decrease the transition time by about 23 %.
Again, we also determined the transition time graphically from this figure by
intersecting the corresponding t1 and t1/5 lines. This technique yields T̃SR∗ = 14.2,
while the two-dimensional result is T̃SR = 19.0. The difference corresponds to a 25 %
decrease, in good agreement with the above prediction.

To conclude, the three-dimensionality of the flow does not alter the two-dimensional
self-similar scaling found for either LR or SR currents. The only discernible effect in
both regimes is the decrease of the transition time (or position) due to the enhanced
friction exerted on the currents by the lateral walls. Therefore it turns out that the
variability of the evolution law of the front observed in the various experiments is
not due to the three-dimensionality of the flow.

4. Prediction of successive regimes in a given current
4.1. Prediction of the earliest viscous regime

The results presented in § 3 highlight the possibility to obtain either of the two
scalings (1.4) and (1.6) in a given channel, depending on the released volume and flow
Reynolds number. Therefore it is desirable to derive a criterion predicting whether
the LR or SR viscous regime first succeeds the slumping phase. This goal may be
achieved by comparing the transition times to the LR and SR viscous regimes, T̃LR

and T̃SR . Given the direct transition from the slumping phase to a viscous regime
in present computations, the transition position and time for the LR regime are
provided by (3.1) and (3.2), respectively. The change of slope at point (1, 1) in figure 2
confirms these predictions. On the other hand, processing the data of figure 3 indicates
that predictions (1.8) and (1.9) are fairly well recovered, both in experiments and in
computations, when the slumping phase is succeeded by the SR regime. Therefore
(1.9) appears as a relevant estimate of T̃SR . Then, expressing the condition T̃LR < T̃SR

provides the minimum released volume Ṽ0 c required for the LR viscous regime to
succeed the slumping phase. This condition is written as

Ṽ0 c

Re
=

( α

Fr

)7/2

, (4.1)

where α = 0.0922 is the numerical prefactor involved in (1.4). (Note that since
only two-dimensional currents are considered in this section, Ṽ0 may be replaced by
L̃0 everywhere it appears.) We validated this criterion using 17 runs performed at
Reynolds numbers ranging from 200 to 790 with various initial lengths L̃0 smaller
or larger than L̃0c. The result of this validation is displayed in figure 8. Only in a
narrow band located along the critical curve is there some doubt on the nature of
the viscous regime that sets in after the slumping phase. Interestingly, Fr is known
to increase with Reynolds number towards Benjamin’s (1968) prediction, Fr = 0.5,
and is roughly constant for Re > O(103), a condition achieved in most real flows. As
a consequence, the relation (4.1) becomes quasi-linear at high Reynolds number and
simplifies to Ṽ0 c = (3.3 ± 0.6)10−3Re for 0.45 < Fr < 0.5. This condition can also
be reversed to infer that given a released volume Ṽ0 the Reynolds number must be
lower than O(300Ṽ0) for the LR regime to occur.

4.2. The possible secondary viscous transition

As soon as the SR regime sets in, the current extends from one endwall to its head.
Then the reservoir cannot be considered infinite any more, and the condition required
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Figure 8. Critical length L̃0c of the released volume required for the LR regime to succeed
the slumping phase. Solid line: relation (4.1) evaluated using the Froude number obtained
numerically. Each symbol corresponds to a two-dimensional computational run: �, the LR
regime succeeds the slumping phase; �, the LR regime cannot occur and the slumping phase is
directly succeeded by the SR regime; , intermediate cases for which the nature of the viscous
regime that succeeds the slumping phase is difficult to determine unambiguously.

to reach the LR regime can never be fulfilled at later time; i.e. the current stays in the
SR regime whatever t̃ > T̃SR . In contrast, if the slumping phase is succeeded by the
LR regime, one can wonder whether the current can later experience a second
transition from the LR regime to the SR regime. Referring to the characteristic
times defined in the introduction, this could in principle be the case at late times
if T̃LR is shorter than the time T̃S at which the receding current would hit the wall
if it were staying in the slumping phase. Under this condition, the LR regime is
expected to exist within a finite time interval, say T̃LR < t̃ < T̃V , approximately, T̃V

being the time at which the current hits the endwall during the LR regime. Then,
for t̃ � T̃V , the conditions for the SR regime to occur are in principle fulfilled. To
validate this scenario, we ran long computations with large enough released volumes.
Figure 9 confirms that in such cases, the second viscous transition expected from the
above argument indeed happens. More precisely, as predicted by (4.1), the current
experiences a direct transition from the slumping phase towards the SR regime in
cases in which L̃0 < L̃0c (� in figure 8, � and � in figure 9). When L̃0 is close to
L̃0c, the current reaches the LR regime but immediately departs from it towards the
SR regime ( in figure 8). Finally, for larger releases, the current first reaches the LR
regime and remains in this regime for a while. However, after the receding front has
hit the wall, the viscous current eventually switches to the SR regime (� in figure 8,
� and 	 in figure 9).
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Figure 9. Evolution of the distance travelled by a two-dimensional numerical current
corresponding to Re = 200 (L̃0c = 2.87) for various released volumes: 
, L̃0 	 1.52; �,
L̃0 	 2.56; �, L̃0 	 4.04; 	, L̃0 	 8.04, – · – · –, slumping phase (1.1); ——, LR regime (1.4);
– – –, SR regime (1.6); �, transition from the slumping phase to the LR phase as predicted by
(3.1) and (3.2); grey symbols: transition from the slumping phase to the SR regime as predicted
by (1.8) and (1.9) for the largest two releases; black symbols: secondary viscous transition as
predicted by (4.4) and (4.5) for the largest two releases. To compute these transitions, β was
set to 0.986 to be consistent with the computational prefactor obtained in the SR regime.

The physical mechanism at work in this second transition may be better understood
from figure 10 which compares the evolution of the current shape during a ‘pure’
LR regime without any endwall effect (say current 1) with that of a current during
the transitional phase from the LR to the SR regime (say current 2). As can be seen
in figure 10(b)–(e), a disturbance propagates downward after the receding front of
current 2 hit the wall, even though the current dynamics are already fully controlled
by viscous effects. Nevertheless, the velocity of the front of current 2 does not change
immediately (figure 10b, c). Rather, the fronts of both currents still follow the same
evolution until the disturbance reaches the front of current 2 (figure 10d ). At this
point, the front of current 2 starts moving more slowly (figure 10e) and eventually
joins the t̃1/5 evolution. It is of interest to notice that the above mechanism is similar
to that observed by Rottman & Simpson (1983), even though in their case the current
dynamics were still dominated by inertia at the time the receding current hit the
wall. In particular they noticed that the advancing current did not ‘feel’ the endwall
immediately but rather started to be affected only when the bore generated by the
interaction of the receding current with the endwall reached the front. In the present
computations, when the current is still dominated by inertial effects at the time of the
reflection, the disturbance also takes the form of a bore propagating at the surface
of the heavy fluid. This is easily discernible on space–time diagrams of the current
height (see figure 6 of Rottman & Simpson 1983 for instance). In contrast, when
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Figure 10. Evolution of the profile of two currents corresponding to Re = 200: ——, current
1 with L̃0 � 1 (the left wall is rejected far outside the figure); – – –, current 2 with L̃0 = 8.04
(the left wall corresponds to the left side of the figure). Current 1 is in the LR regime on all
snapshots. (a) Current 2 is in the LR regime. (b) and (c) The receding current has reached the
endwall; the profile of current 2 is altered behind the front of the disturbance while its head
is still in the LR regime. (d ) The disturbance just reaches the head of current 2. (e) Current 2
slows down and switches to the SR regime.

the current is already in the LR viscous phase at the time of the reflection, as in
figure 10, the disturbance merely consists in a local modification of the shape of
the current that can only be detected through a comparison with the profile of an
undisturbed current. The position of the front of the disturbance is easily detected
in figure 10(b, c), whereas it is hard to infer from figure 10(d,e) the exact time at
which the flow regime of current 2 changes. A much better tool for this is provided
by space–time diagrams of the local height difference between current 1 and current
2 such as that of figure 11 to be discussed later. Using such diagrams, we found that
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Figure 11. Space–time diagram showing the height difference �h̃(x̃, t̃) (in greyscale) between
current 1 with L0 � 1 and current 2 with L0 = 4.04 (both currents correspond to Re = 200):
– – –, position of the front of current 2; ——, LR solution (1.4) with α = 0.094; – · – · –, SR
solution (1.6) with β = 0.974; �, position of the transition from the slumping phase to the LR
regime as predicted by (3.1) and (3.2); �, position of the transition from the slumping phase
to the SR regime as predicted by (1.8) and (1.9).

the regime of the current always changes right at the time at which the disturbance
catches the front.

The secondary viscous transition is expected to take place at the time t̃ = T̃LS

at which the viscous force corresponding to the LR solution starts to exceed that
corresponding to the SR solution. During the LR regime, the dimensionless force
associated with the bottom viscous stress and the buoyancy force balance each other.
The typical magnitude of the former force is Re−1ũf x̃f /h̃LR , while that of the latter

is h̃2
LR/2, where h̃LR and ũf denote the dimensionless averaged thickness and front

velocity of the current, respectively. Using (1.4) and noting that ũf = dx̃f /dt̃ , this
first balance implies

h̃LR = α2/3. (4.2)

Then, during the SR regime, the length l̃f of the current is given by (1.6). The above
momentum balance then yields

h̃SR (̃t) =

(
2

5

)1/3

β2/3

(
Ṽ 2

0

Re

)1/5

t̃−1/5. (4.3)
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The viscous forces in the two regimes must match at the transition time t̃ = T̃LS ,
so that the balance of (4.2) and (4.3) provides

T̃LS =

(
2

5

)5/3 (
β

α

)10/3
Ṽ 2

0

Re
≈ 930

Ṽ 2
0

Re
. (4.4)

Equation (1.6) implies in turn

l̃f LS = βRe1/5Ṽ
3/5
0

˜TLS

1/5 ≈ 4.44Ṽ0. (4.5)

Interestingly, setting x̃f = −L̃0 in (1.4) indicates that the receding current hits the

endwall at t̃ = T̃V = (L̃0/α)2/Re. Hence the prediction (4.4) implies that T̃LS is about
7.9 times larger than T̃V . Figure 9 qualitatively confirms the above prediction for T̃LS ,
even though the transition time is difficult to locate precisely, owing to the progressive
nature of the transition.

4.3. Late occurrence of the LR regime

An important ingredient in the derivation of (1.4) lies in the symmetry of the problem
with respect to the lock position. This suggests that the LR regime can only be
reached as long as the endwalls are far enough from the front of the advancing and
receding currents. However our observations indicate that under certain conditions,
a transitional LR evolution can arise even after the receding current has hit the
endwall. Figure 11 illustrates the existence of such a late transition in the form of a
space–time diagram representing the local height difference �h̃(̃t, l̃) between current
1 with L̃0 � 1 (for which endwalls have no influence) and current 2 with L̃0 = 4.04
(which corresponds to the square symbols in figure 9). In the latter case, the receding
front hits the endwall at t̃ = T̃S ≈ 12, while the transition from the slumping phase
to the LR regime is only expected to occur at t̃ = T̃LR ≈ 18 according to (3.2).
Indeed, for 0 � t̃ � T̃LR , the front position of both currents is found to evolve linearly
(see the dashed line in figure 11), confirming that current 2 is still in the slumping
phase when the receding front hits the endwall. As expected, when t̃ > T̃LR , current
1 follows the theoretical prediction (1.4) for the LR regime (indicated by the solid
line in figure 11). As soon as t̃ > T̃S , the height difference �h̃ becomes non-zero in
the upper part of the currents, say in the range 0 � l̃ � l̃D (̃t), where l̃D (̃t) denotes
the downstream point reached by the reflected disturbance. As shown by the inclined
line issued from the point (̃t = T̃S, l̃ = 0), this disturbance propagates with a constant
speed and reaches the front of current 2 at t̃ = T̃D ≈ 47. Within the time interval
T̃S < t̃ < T̃D , the evolution of the front position of both currents is found to be
identical, as already observed in the example of figure 10. However the novel feature
in figure 11 is that, even though current 2 was not yet in the viscous regime when the
endwall started to influence its dynamics, its evolution closely follows the theoretical
prediction for the LR regime for T̃LR < t̃ < T̃D . This simply confirms and extends the
conclusion of figure 10 that the evolution of the downward front is not influenced by
the endwall as long as it has not been reached by the reflected disturbance. In the
present case, the hierarchy of times is such that T̃S < T̃LR < T̃D , so that the front of the
advancing current (more precisely, the downward part of the current corresponding
to l̃D < l̃ < l̃f ) switches to the LR regime for t̃ ≈ T̃LR as if there were no endwall.

Then for t̃ > T̃D , current 2 slows down, and the position of its front departs gradually
from the LR prediction until it eventually matches the SR prediction (1.6) for t̃ ≈ 170.
The situation of current 2 at t̃ = T̃D is thus similar to that of any current experiencing
a secondary viscous transition from the LR to the SR regime. Based on this remark,
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one expects T̃D to be identical to T̃LS . In the present example, (4.4) predicts T̃LS ≈ 45.9,
which is indeed very close to the value of T̃D determined graphically from figure 11.
Conversely, assuming T̃D = T̃LS provides a direct means to evaluate the speed of the
reflected disturbance: at time T̃LS , (1.4) predicts l̃f (T̃LS) = L̃0 + αRe1/2T̃

1/2
LS . Hence the

disturbance travels with a speed c̃D = l̃f (T̃LS)/(T̃LS − T̃S), where T̃S = L̃0Fr−1, so that
c̃D ≈ 0.40 in the above example.

5. Summary and concluding remarks
To obtain some new insight on the dynamics and evolution of viscous gravity

currents, we carried out extensive Navier–Stokes computations in full-depth lock-
exchange configurations, for various released volumes and Reynolds numbers in the
range 200 � Re � 800. The specificity of the numerical technique employed here
lies in the treatment of the equation for the volume fraction of one of the fluids (or
the density field) which allows us to deal with strong gradients. Hence, in contrast
with pseudo-spectral approaches, the present numerical approach makes it possible to
mimic the behaviour of almost immiscible fluids, which is crucial for the comparison
with experimental results and theoretical predictions in the viscous regime. We first
validated our code by predicting the evolution of currents propagating in horizontal
cylindrical tubes, using the theoretical and experimental results of Séon et al. (2007)
and Takagi & Huppert (2007) in the LR and SR regimes, respectively. We then
confirmed the prediction of Hinch et al. (2007) for the LR regime of planar currents
and that of Huppert (1982) for the corresponding SR regime, whereas available
experiments including ours exhibit a significant variability of the time exponent
in the latter regime. We also explored the influence of three-dimensional effects
on the current dynamics. In particular, we showed that the boundary layers that
develop along the sidewalls result in an earlier transition to the viscous regime. We
obtained a theoretical estimate of the transition time to both viscous regimes through
a force balance and showed that these predictions agree well with the computed
evolutions.

We finally considered the successive transitions that may happen during the ‘life’
of a given current. First, we derived and validated a quantitative criterion predicting
which minimum (respectively maximum) released volume Ṽ0 c is required for the LR
(respectively SR) viscous regime to succeed directly the slumping phase. In cases in
which the LR regime occurs, we then showed that the current later experiences a
secondary viscous transition from the LR to the SR viscous regime and determined
the corresponding transition time and position through a force-balance argument.
Computations made it clear that in all cases, the current starts to obey the SR
evolution (1.6) only at the time at which the reflected disturbance reaches the front of
the advancing current, rather than at the time the receding current hits the endwall. In
some cases, we observed that the LR regime sets in during the time interval separating
these two events.

Keeping in mind that we focused on moderate Reynolds numbers for which the
inertial regime governed by (1.3) does not occur, we may summarize our conclusions
about the various ‘routes’ a given current may follow within a single diagram of
states. This diagram is shown in figure 12. In brief, the SR regime directly succeeds
the slumping phase only when the transition time T̃LR is larger than T̃SR . In contrast,
an intermediate LR regime exists every time T̃LR < T̃SR . In such cases, the LR regime
may set in before or after the receding front hits the endwall, depending on T̃LR being
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Figure 12. Diagram of the various possible evolutions of a given current according to the
initial released volume L̃0 (or Ṽ0), Froude number Fr and Reynolds number Re; Sl, LR and
SR stand for slumping, LR and SR regimes, respectively. The numbers refer to the equation
providing the expression of the corresponding transition time in terms of the above three
parameters or to that providing the corresponding evolution law.

smaller or larger than T̃S . Then the current experiences a second transition to the SR
regime at t̃ ≈ T̃LS .
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