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The evolution of the concentration and flow fields resulting from the gravitational mixing of two

interpenetrating miscible fluids placed in a tilted tube or channel is studied by using direct numerical

simulation. Three-dimensional s3Dd geometries, including a cylindrical tube and a square channel,
are considered as well as a purely two-dimensional s2Dd channel. Striking differences between the
2D and 3D geometries are observed during the long-time evolution of the flow. We show that these

differences are due to those existing between the 2D and 3D dynamics of the vorticity field. More

precisely, in two dimensions, the strong coherence and long persistence of vortices enable them to

periodically cut the channels of pure fluid that feed the front. In contrast, in 3D geometries, the

weaker coherence of the vortical motions makes the segregational effect due to the transverse

component of buoyancy strong enough to preserve a fluid channel near the front of each current.

This results in three different regimes for the front velocity sdepending on the tilt angled, which is
in agreement with the results of a recent experimental investigation. The evolution of the front

topology and the relation between the front velocity and the concentration jump across the front are

investigated in planar and cylindrical geometries and highlight the differences between 2D and 3D

mixing dynamics. © 2008 American Institute of Physics. fDOI: 10.1063/1.2918379g

I. INTRODUCTION

The gravitational mixing of two miscible fluids with dif-

ferent densities in a pipe or a channel of arbitrary inclination

with respect to the vertical provides a good model for a wide

variety of situations of practical interest. For instance, it

mimics flow conditions encountered in liquid-liquid separa-

tors or in oil wells but is also to some extent a relevant model

for the propagation of fires in buildings. It has also well-

known applications in geophysical flows such as avalanches

or turbidity currents, to mention just a few. When the pipe or

channel axis is almost horizontal, the problem tends toward

that of gravity currents in a confined geometry. In contrast, a

Rayleigh–Taylor configuration constrained by wall effects is

recovered when the flow axis is vertical. The present paper

describes some results obtained during an extensive numeri-

cal investigation of this class of problems. We are particu-

larly interested in evaluating the influence of the channel

geometry, as there are indications that it may induce impor-

tant differences in the dynamics of the mixing. We also wish

to evaluate if, under some circumstances, a two-dimensional

approximation is able to correctly predict the actual flow

evolution. The initial motivation of this study was provided

by the thorough experimental investigation performed by

Séon et al.
1–4
in a tilted cylindrical tube. This is why we shall

pay a peculiar attention to this configuration in what follows.

Most theoretical and computational work about gravity

currents on a horizontal plane has been achieved in two-

dimensional s2Dd configurations, e.g., theoretical

predictions
5,6
and numerical simulations.

7,8
In contrast, ex-

periments generally use three-dimensional s3Dd channels

with a rectangular cross section
9,10
. Recently, some compu-

tational studies also started to consider 3D gravity

currents
11,12

and highlighted differences with 2D simulations.

Especially, some of these investigations
12–14

pointed out that

2D simulations correctly predict the evolution of gravity/

density currents during their initial acceleration phase as well

as during the next phase within which the velocity of the

front remains constant susually termed as the slumping
phased, whereas 2D models tend to underpredict the front

velocity during later stages. This difference seems to be re-

lated to the tendency for 2D currents to create more intense

coherent vortices than their 3D counterparts, due to the pos-

sibility for vortices to be stretched and tilted in a 3D flow.

According to Ref. 12, vortices stand quite far from the head

of the current during the slumping stage and thus do not

influence significantly its behavior and velocity. In contrast,

during the viscous stage, they tend to stand closer to the head

and are in position to influence its evolution. Since 2D vor-

tices are stronger than their 3D counterpart, so is their influ-

ence. As vortex cores are located in zones of low dynamic

pressure, 2D vortices generate intense low-pressure zones

behind the head of the current and thus slow it down. While

somewhat different, a related explanation for the discrepan-

cies between 2D and 3D predictions was proposed in Ref. 14

in the case of density currents. These authors noticed that in

2D flows, the vertical mixing generated by the strong coher-

ent vortices involves a smaller viscous dissipation than in 3D

flows, whereas the energy loss associated with particle set-

tling is larger in the former case. In summary, both studies

suggest that 3D effects cannot be ignored in the long-time

dynamics of gravity/density currents, the key point being the

structural differences between 2D and 3D vorticity dynam-

ics. Much fewer investigations have been devoted to the case
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where the current takes place on a nonzero slope, a situation

in which the longitudinal component of buoyancy provides a

continuous forcing to the system. The case of a current fed

by a continuous source and that of a sudden release of heavy

fluid were both considered. Most of these studies focused on

the characteristic time at which the slope starts to influence

the front dynamics or the further evolution of the front ve-

locity and size of the head with the slope se.g., Refs. 15 and
16d. In particular, the current Froude number was found to
exhibit little dependence on the slope.

10

The situation is drastically different in a confined geom-

etry such as a tube or a closed channel. More precisely, the

recent experiments performed by Séon et al.
1,3
in a cylindri-

cal tube revealed the existence of three different regimes,

depending on the tilt angle u. In the range of density contrast,
fluid viscosity, and tube diameter they explored, they found

that for u in between 0° svertical tubed and 60°, approxi-
mately, Kelvin–Helmholtz instabilities grow along the inter-

face between the two fluids, enabling a strong transverse

mixing. When the tilt angle was set in between 60° and 80°,

approximately, the transverse component of buoyancy started

to act, increasing segregation effects. In this case, some pure

light sheavyd fluid remained stuck in the head of the ascend-
ing sdescendingd current and the velocity of the front reached
a plateau value close to 0.7Vt, where Vt,ÎAtgd is the char-

acteristic velocity of the front resulting from a balance be-

tween buoyancy and inertia forces, where At= sr2−r1d / sr2
+r1d is the Atwood number, g is the gravity, and d is the tube

diameter sthe density of the heavy and light fluids are r2 and

r1, respectivelyd. This situation where a channel of pure light
fluid rises in a pure heavy fluid is qualitatively similar to the

case of large air bubbles rising in tubes filled with liquid.

Finally, for quasi-horizontal tubes, no significant mixing was

noticed and, after the initial stage during which the above

scaling holds, potential energy was observed to be gradually

dissipated by viscosity, as in the case of horizontal uncon-

fined gravity currents.

In the present paper, we make use of the complementary

approach provided by direct numerical simulation to shed

additional light on the role of confinement and channel ge-

ometry on the flow evolution and mixing characteristics. For

instance, in a certain range of tilt angles, several experimen-

tal runs in Ref. 3 exhibited flows with vortices located far

from the head of each current, even in the late stages of the

evolution. This structure of the vortex field resembles that

numerically observed in Ref. 12 during the slumping stage of

horizontal gravity currents, a stage for which the 2D approxi-

mation proved to provide a reliable description. Therefore,

we can wonder whether in a certain range of parameters, the

main features of the gravitational mixing can be recovered

with a 2D model. Finally, for a certain “level” of lateral

confinement, it is also of interest to investigate whether or

not the precise shape of the channel cross section has a sig-

nificant influence on the flow evolution. To reach the above

goals, we carried out a series of computations in four differ-

ent geometries, namely, a purely 2D configuration, a 3D cy-

lindrical tube, a square duct with a no-slip condition on all

four walls, and a 3D periodic channel that is identical to the

previous square duct, except in that the two lateral walls are

submitted to a periodic condition instead of a no-slip one

sthe latter configuration is that used in available 3D simula-
tions of gravity currents

11–14d. After we briefly present and
validate the numerical tool we use, we devote the rest of this

paper to an analysis of the evolution of the flow and concen-

tration fields in these various geometrical configurations.

II. NUMERICAL APPROACH

Let C be the local volume fraction of the heavy fluid 2.

The mixture density is then

r = Cr2 + s1 − Cdr1. s1d

We assume the molecular diffusivity of the binary system to

be negligibly small, which implies
17

¹ · U = 0. s2d

Therefore, combining Eq. s1d with the mass balance of the
mixture implies the governing equation for C to be

]C

]t
+ ¹ · sCUd = 0, s3d

where U denotes the mass-averaged velocity.

The mixture is assumed to behave as a Newtonian fluid

with a dynamic viscosity m independent of C. Therefore, the

momentum balance can be expressed as

]U

]t
+ U · ¹U = g −

1

r
¹ P + n ¹ · s¹U + T¹Ud , s4d

where n=m /r is the svariabled kinematic viscosity of the
mixture. The Navier–Stokes system s2d–s4d with r given by

Eq. s1d is solved by using the JADIM code developed in our
group. The numerical approach is briefly summarized here;

more details can be found in Ref. 18. First of all, the volume

concentration s3d is solved by using a flux corrected transport
sFCTd scheme. For this purpose, the equation is split into
three successive substeps, one along each grid direction.

Within each substep, a Zalesak scheme
19
is used to discretize

the spatial flux of the left-hand side. This scheme combines

the use of a low-order shere first-orderd and a high-order
shere fourth-orderd spatial discretization to preserve positiv-
ity and monotonicity of the solution and to ensure second-

order spatial accuracy. It is worth pointing out that other

numerical schemes, such as the fifth-order weighted essen-

tially non-oscillating sWENOd scheme, were tried as well on
several reference test cases. Zalesak’s FCT scheme emerged

as the one that yields the most accurate solution in most

situations and was thus selected for the rest of our investiga-

tion. Equation s4d is discretized on a staggered nonuniform
grid using a finite-volume formulation; all spatial derivatives

are expressed through second-order centered schemes. Time

advancement is achieved through a third-order Runge–Kutta

algorithm for advective and source terms, whereas the vis-

cous term is advanced semi-implicitly through a Crank–

Nicholson algorithm. This advancement step produces a ve-

locity field U*. Then, condition s2d is satisfied by using a
variable-density projection technique. More precisely, we

solve the pseudo-Poisson equation
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¹ · S 1

rn+1
¹ Fn+1D = 1

Dt
¹ · U*, s5d

where rn+1 is the mixture density obtained after solving Eq.

s3d during the sn+1dth time step, Fn+1 is the pressure incre-

ment, and Dt is the current time step. The corresponding

linear system is solved with a Jacobi preconditioned conju-

gate gradient technique available in the ITPACK or PETSc

libraries.

III. PRELIMINARY VALIDATION

Thorough validations of the JADIM code in constant-

density flows may be found in previous papers ssee, e.g.,
Ref. 20 and references thereind. We therefore focus on two
variable-density situations relevant to the present study. As a

first example, Fig. 1 compares the results we obtained on a

2D full-depth lock-exchange flow with those recently pub-

lished by Birman et al.
8
on the same configuration.

The two series of snapshots indicate very similar behav-

iors. In particular the location of the front predicted by the

two computations is exactly the same at all times. The vor-

tices produced at the interface are also almost identical. Only

a slight shift of some of these vortices can be noticed. This

difference is probably attributable to a Schmidt number ef-

fect, since the two fluids are almost immiscible in our com-

putation ssee belowd, while the Schmidt number is unity in
Ref. 8 sthe Schmidt number is the ratio of the kinematic
viscosity to the binary molecular diffusion coefficientd.

Our second validation is directly related to the aforemen-

tioned experiments of Séon et al.,
3
to which the reader is

referred for details. We adjust the flow parameters so as to fit

the experimental conditions. Therefore, the Atwood number

is set to At=0.004 sas in the rest of this paper, unless speci-
fied otherwised, whereas the Reynolds number Re

=g8
1/2d3/2

/n, where g8=gsr2−r1d /r1 is set to Re=790. The

experimental Schmidt number is about 103. In the computa-

tions we let it be theoretically infinite. In practice, this means

that the physical cutoff lengthscale imposed by the molecular

diffusivity is replaced by an artificial cutoff lengthscale of

the order of the grid cell size, say, D. Indeed, when two fluid

elements, one of fluid 1 the other of fluid 2, enter a control

volume of OsD3d, they immediately mix and cannot separate
any more. Therefore, there is a small but finite effective nu-

merical diffusivity which was estimated through specific

tests. The corresponding numerical Schmidt number was

found to be of Os103d. The computational domain is a cylin-
drical tube of diameter d and length 32d. The grid is axisym-

metric with 512 cells along the tube axis, 32 cells over one

tube radius, and 64 cells along the azimuthal direction sthe
grid is refined near the wall in the radial direction so as to

capture near-wall gradients, see Fig. 2d. Some computations
were also run using 64 cells over one tube radius but this

produced only marginal changes in the solution.

As long as the front of the current is not close to an

endwall swhich is satisfied throughout all computationsd, the
tube length has no effect on the instantaneous dynamics of

the flow. However, this length directly determines the total

time over which the flow evolution can be observed before it

is influenced by the endwalls. Owing to the computational

cost, this represents a severe limitation which is not encoun-

tered in laboratory experiments. Because of this constraint

and based on the experimental evolution of the front position

displayed in Fig. 3, which reveals that the front velocity

slowly decreases in time during a fairly long, transitional

stage to reach a constant value, we expect the long-time front

velocities obtained in the “short” tube computations to be

slightly larger than their experimental counterparts, which

were obtained after a much longer observation time. We

stress again that the sole effect of the finite tube length dur-

ing the stages of the flow considered in this paper is to im-

pose a maximum observation time for the constant velocity

regime without influencing any of the characteristics of the

flow during this regime. The major characteristics of the

mixing dynamics, especially the influence of the tilt angle on

the evolution of the mixing zone, should be captured with

this short numerical domain, provided the computed flow has

reached the late stage corresponding to a balance between

gravitational and inertial effects.

The computed front velocities normalized by the charac-

teristic velocity Vt are plotted against the tilt angle u in Fig.
4; the experimental results contained in Fig. 4 of Ref. 3 are

also replotted for comparison. In both cases, the front veloci-

FIG. 1. sColor onlined Comparison of two computations of a 2D horizontal
lock-exchange flow for Re=4000 and r1 /r2=0.998 sfree-slip conditions are
used on the upper and lower wallsd. Grayscale image: Results from Ref. 8.
Solid lines: Isodensity contours for present results.

FIG. 2. sColor onlined Cylindrical grid and definition of the tilt angle.
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ties are computed from the local slope of the boundary of the

mixing zone, i.e., from the dashed line separating pure fluid

regions from the mixing zone in Fig. 3 sthroughout this pa-
per, we define the mixing zone as the flow region where

0.01,C,0.99 and determine the front velocity from spa-

tiotemporal diagrams similar to that of Fig. 3, unless speci-

fied otherwised. As expected from the Introduction, three

well distinct regimes may be readily identified. A clear pla-

teau is found for tilt angles between 55° and 80°, whereas the

expected viscous decrease of the front velocity is observed

for higher angles. For values of u less than 55°, the inertial
increase of the front velocity with the tilt angle is recovered

and the corresponding slope is close to that determined in the

experiments. The maximum velocity of the front Vp reached

for u=70° is found to be 0.717Vt, whereas a value of 0.703Vt

was reported in the experiments. The difference is about

2%, which is the order of magnitude of the experimental

accuracy.

Finally, to make sure that longer computations in longer

tubes would allow us to obtain front velocities in close

agreement with the experiments, we ran an extra simulation

in a 96d long tube with a tilt angle of 20°. For this purpose,

we made use of a parallel version of the code with 1534 grid

cells in the axial direction. The corresponding value of V f is

marked with an arrow in Fig. 4. It lies very close to the

experimental value, indicating a close agreement between

computations and experiments when the computational time

is long enough.

To conclude, the various features displayed by the com-

putational results obtained over the full range of tilt angles

are in good agreement with the experimental findings. Even

the quantitative differences observed on the values of the

front velocity can be removed by running longer computa-

tions. Therefore, we are confident that our code allows us to

perform “numerical experiments” on the large-scale concen-

tration and velocity fields generated by the gravitational

mixing.

In the following sections, we will also describe 2D simu-

lations as well as 3D simulations in square channels. The 2D

simulations are performed in a d364d domain discretized

with 6431024 cells. The dimensions of the square channels

are Îpd /23Îpd /2332d, so that they have the same cross-

sectional area as the cylindrical tube described above. A 46

3463512 grid is used to discretize them. The above

choices allow us to describe all three geometries considered

below with approximately identical resolutions.

IV. GLOBAL CHARACTERISTICS OF THE INITIAL
SLUMPING PHASE

A. Horizontal channels

We begin with results concerning the front velocity ob-

served during the initial slumping phase. This front velocity

is known to remain approximately constant as long as vis-

cous effects remain small. We first ran a simulation in a

cylindrical tube at a Reynolds number Re=790, identical to

that used in the experiments of Refs. 1–4. The corresponding

Froude number Fd=V f /
Îg8d was found to be 0.41, which is

in close agreement with the experimental value Fd=0.404. In

the same configuration, Benjamin’s
21
theoretical prediction

for an energy-conserving current is Fd=0.542. Therefore, it

turns out that at the present Reynolds number of 790, the

Froude number is only about 75% of the asymptotic value

corresponding to an infinite Reynolds number. In the purely

2D case with the same Reynolds number sd now being the
channel heightd, the computational results yield Fd=0.37,

which is also only about 74% of Benjamin’s well-known

prediction Fd=1 /2. Results obtained in a 3D square channel

by keeping the fluid viscosity and the cross-sectional area

identical to those of the above cylindrical tube computation

swhich results in Re=660d yield a similar value Fd=0.36,

indicating that 3D effects resulting from instabilities in the

bulk of the current are negligible at this stage of the flow, in

FIG. 4. Computational sjd and experimental smd values of the normalized
front velocities in a tilted cylindrical tube. The final dimensionless time

T= tsAtg /dd1/2 ranges from 18 to 42 in the simulations, while it is about 200

in the experiments. The arrow points toward the value of V f /Vt obtained

from the extended parallel simulation for which T<54.

FIG. 3. sColor onlined Spatiotemporal diagram of the front position in a

cylindrical tube with u=30°. In grayscale: Experimental diagram obtained

by Séon sRef. 2d. In color scale ftsAtg /dd1/2,20g sonlined: Computational
diagram. The rectangle corresponding to tsAtg /dd1/2,52 marks the final

stage reached in the extended parallel computation.
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line with recent findings.
12,13

These values of the Froude

number demonstrate that viscous dissipation is significant at

moderate Reynolds numbers sin particular in the present
range 53102,Re,103d, even during the initial stages of
the flow. Moreover, the results found for the cylindrical and

square channels indicate that these viscous processes have an

almost identical strength in both geometries.

The results corresponding to the two types of square

channels, i.e., with either lateral walls or periodic boundary

conditions in the spanwise direction, provide other interest-

ing indications. Indeed, we found Fd=0.36 in both cases,

even though stronger near-wall viscous effects can be ex-

pected in the square duct, as compared to the periodic 3D

channel, due to the two additional boundary layers. This

means that even though viscosity plays a role at such mod-

erate Reynolds numbers, wall friction effects on lateral walls

are negligibly small.

B. Tilted channels

The Froude number measured during the initial slump-

ing phase of inclined currents is plotted in Fig. 5. Some

experimental determinations of Fd by Séon
2
for nearly hori-

zontal cylindrical tubes are also reported in this figure; the

corresponding simulations reveal an excellent agreement

with these experiments. For intermediate tilt angles, the

Froude number is observed to gradually increase with the

angle in all four geometries. Then, a plateau region takes

place until Fd decreases with u when the tube is close to
horizontal. This decrease is found to be especially strong in

the cylindrical geometry. It is worth noting that these signifi-

cant, although mild, variations of Fd with u contrast with the
well-established independency of the front velocity with re-

spect to the slope in unconfined gravity currents over an

inclined plane.
10
Therefore, the angular dependence dis-

played in Fig. 5 is a clear mark of the constraints put on the

flow development by the geometrical confinement, especially

by the presence of the top wall. The obvious reason for this

change is that no net flow can take place in the confined

configurations considered here, so that the ascending and de-

scending currents carry the same flow rate. Hence, the verti-

cal extent of the head of the descending current is con-

strained by the ascending counterflow, which is in contrast

with the classical unconfined situation where the lack of ver-

tical confinement allows the height of the head above the

incline and, consequently, the entrainment inside it, to in-

crease with the slope, thus limiting the front velocity.

Turning to the differences between the four geometries

considered in Fig. 5, we first notice that the front velocity in

a cylindrical tube is larger than that in both 2D channels and

3D square channels at any tilt angle. From the simulation

performed in a periodic 3D channel at u=50°, we also find

an indication that the slumping phase is essentially 2D, even

in tilted tubes, when the geometry does not impose any spe-

cific three-dimensionality of the flow sin this geometry, the
spanwise symmetry is eventually broken near the end of the

slumping phase, due to numerical truncation errorsd. In con-
trast, the front velocity in 2D currents is observed to be

lower than that measured in a square channel for any nonzero

tilt angle, even though the Reynolds number of the former is

slightly larger than that of the latter. While this difference

seems surprising at first glance, it may be explained by the

following argument. Lateral walls promote 3D effects which

quickly break the initial 2D coherent structures, whereas

these structures obviously persist in a 2D flow. As will be

discussed in the next section, 3D vortical structures enable

larger front velocities than 2D vortices, so that the observed

difference is in line with this general trend. Finally, Fig. 5

reveals that Fd is roughly constant over a wide range of tilt

angles, say, between 40° and 70°–80°. Birman et al.
8
ob-

served a qualitatively similar dependency on u in a 2D flow

with Re=4000 and r1 /r2=0.998 but measured higher front

velocities, namely, Fd.0.48 for u=90° and Fd max.0.59 for
u=50°. The difference between present results and those of

Ref. 8 has two origins, keeping in mind that Fig. 1 indicates

that both codes give very similar results when using identical

boundary conditions and identical values of Re and At sother
tests, not reported here, show that this agreement also holds

for tilted geometriesd. First, the Reynolds number used in the
present computations is about five time smaller than that of

Ref. 8, so that part of the aforementioned differences is due

to the significant dependency of Fd on the Reynolds number

in the moderate-Re range. Then, Ref. 8 made use of free-slip

boundary conditions, whereas no-slip conditions are pre-

scribed in the present simulations, increasing viscous dissi-

pation and thus decreasing Fd. The same authors performed

experiments at At=6310−3 and Re=1250 in a cylindrical

tube. They observed a broad maximum Fd max of the Froude

number about 0.53 for a tilt angle umax around 75°. Figure 5

shows a very close computational value of Fd max but the

corresponding value of umax is about 55°. Interestingly, this

value of umax is exactly that corresponding to the maximum

rising speed of long gas bubbles in inclined tubes,
22
but this

agreement has to be taken with caution since the value of

umax probably depends on Re.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

F
d

θ(°)

FIG. 5. Froude number during the initial slumping phase in a tilted tube for

different geometries. Cylindrical tube sRe=790d; snd square channel sRe
=660d; spd 3D periodic channel sRe=660d; s,d 2D channel sRe=790d; ssd
experimental results in a cylindrical tube sRe=790d sRef. 3d; s—cd and
s¯cd inviscid prediction in a horizontal cylinder s0.542d and a horizontal
2D current s0.5d, respectively sRef. 21d.
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V. LONG-TIME BEHAVIOR

At the end of the slumping phase, viscous effects enter

into play and the front velocity starts decreasing in time ssee
the time record of the front velocity in Fig. 8d. This marks
the beginning of the long-time behavior of the flow. Figure 6

stopd shows typical snapshots of the concentration field in a
cylindrical tube, a square channel, and a 2D channel, respec-

tively, for two widely contrasted tilt angles during this late

stage. The corresponding swirling strength L, which may be

thought of as an indicator of the instantaneous vorticity, is

shown on the bottom of each figure sL is defined as the

imaginary part of the conjugate eigenvalues of the velocity

gradient tensor, see Refs. 23 and 24 for a comparison of the

various vortex identification schemesd.
In 3D flows, when the tilt angle lies approximately be-

tween 60° and 80° fFigs. 6sad and 6sbdg, the vortices result-
ing from the Kelvin–Helmholtz instability generated by the

shear between the ascending and descending currents are not

strong enough to cut, even temporarily, the channel of pure

light sheavyd fluid that rises along the upper slowerd wall.
Therefore, in this regime, the concentration jump across the

front of the heavy current is C f=1 skeep in mind that C=0 in

the pure light fluidd and the front velocity is independent of u

with V f=0.7Vt in the cylindrical geometry, as shown in Sec.

III. In contrast, for lower tilt angles fFigs. 6sdd and 6sedg, the
shear overwhelms the segregational effects produced by the

transverse gravity component sg sin ud and the Kelvin–

Helmholtz rolls are strong enough to temporarily cut these

channels of pure fluid. The concentration in the head of the

light sheavyd current then results from an equilibrium be-

tween the local mixing and the feeding by the pure fluid

located upstream sdownstreamd near the upper slowerd wall.
If the channel of pure fluid is cut by vortices, the local mix-

ing makes C f decrease, imposing a decrease in the front ve-

locity. Then, the vortices that broke the channel of incoming

fluid stretch and break, enabling some pure fluid to reach the

head again, which leads to a reincrease of C f. As a result, this

regime is characterized by time variations of C f. The mean

value of C f, which determines V f, thus depends on the inten-

sity and spatiotemporal organization of the vortices com-

pared to the segregational effects of the transverse compo-

nent of gravity, these various parameters all being controlled

by the tilt angle u. Séon et al.
3
noticed that in this regime, the

normalized front velocity V f /Vp in a cylindrical tube scales

as ÎC f. We computationally evaluated C f in a cylindrical

tube and a 2D channel by performing a volume average of C

FIG. 6. Snapshots of the concentration stopd and swirling strength sbottomd in three different geometries at two contrasted tilt angles sthe views are taken in
the vertical or central plane of the tube/channeld.
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over a 0.25d long volume in the head of the heavy stream.

The corresponding values of ÎC f, together with those of

V f /Vt recorded at a dimensionless time T<20, are reported
in Fig. 7 sdue to the computational time limitation discussed
in Sec. III, these values are generally slightly larger than

those determined experimentally
3d. Indeed, in the cylindrical

geometry, the normalized front velocity is found to be di-

rectly proportional to ÎC f over the whole range of angles u
,80°. Keeping in mind that V f=0.7Vt when C f=1, the com-

putations indicate V f <0.7Vt
ÎC f, which is the experimental

law obtained in Ref. 3.

In 2D situations, the Kelvin–Helmholtz vortices are

much more coherent than their 3D counterpart, enabling

them to reach higher intensities and to live longer. Thanks to

this long lifetime, a chain of vortices can easily develop in-

side the body of the current, blocking efficiently the feeding

of the fronts. This phenomenon is easily discernible in Fig.

6scd in the case u=60° where a chain of vortices has devel-
oped within the body of the mixing region and is about to

break the channels of pure fluid. The same phenomenon was

observed for any value of u in the 2D simulations, leading us
to conclude that the channels of pure fluid can be broken at

any tilt angle in this geometry. In direct connection with this

trend, C f was found to slowly decrease after a short period of

time, imposing a related decrease to the front velocity. No

intermediate regime with C f=1 was detected, explaining

why no plateau is found for 2D flows in Fig. 7. However, it

may be noticed from this figure that while V f remains linked

to ÎC f, the relation V f /Vt=0.7ÎC f does not hold anymore.

Rather, the relation that emerges from Fig. 6 is of the type

V f /Vt=0.7ÎC f+b. We also note from Fig. 6 that the front

velocity is smaller at any tilt angle in two dimensions than in

three dimensions, the difference being especially large for

40°,u,75°. This is a direct consequence of the absence of

persistent pure fluid channels in the 2D configuration.

VI. SOME SALIENT FEATURES OF THE FLOW
DYNAMICS

We previously insisted on the direct connection between

the pseudostationary front velocity V f and the front density

contrast C f in the long-time regime. The instantaneous values

of V f and ÎC f are plotted in Fig. 8 in the case of a cylindrical

tube inclined at 20°. Note that in order to observe transient

effects, these values of V f were obtained through a time dif-

ferentiation of the successive positions of the front defined as

C=0.01, not from the slope of the mixing region in a spa-

tiotemporal diagram similar to that of Fig. 3, which implic-

itly filters out “rapid” fluctuations.

It may be observed that the long-time si.e., low-
frequencyd evolution of V f indeed follows that of ÎC f. In

contrast, it is clear that the front velocity evolution displays

strong rapid variations that are not linked to the smooth evo-

lution of the density contrast at the front. The frequency f of

these fluctuations is such that fd /Vt.0.16. In order to clarify
the origin of these short-time velocity fluctuations, we exam-

ined two indicators capable of shedding some light on the

nature and topology of the flow in the front region. One of

them is the volume fraction a filled by the head of the cur-
rent swe identify the heavy current as the region of the flow
where C$0.01d, while the other is the dimensionless swirl-
ing strength LÎd / sAtgd defined previously. Both indicators
are computed through a volume average over a portion of the

tube bounded by the cross section intersecting the front po-

sition and that located one diameter upstream.

Figure 9 presents a zoom of Fig. 8 over the time interval

20øTø45, with the addition of the aforementioned two in-

dicators. It can easily be noted that the local maxima of V f

correspond to the local minima of a and L. This indicates

that the volume of the head of the current and the front

velocity are both correlated with the vortical activity within

the head. Figure 9 reveals that the deceleration periods si-

multaneously occur with the growth of the head. An increase

of the size of the head with a constant-density difference

would lead to an increased buoyancy force that should make

the front accelerate. Since this does not occur, we have to

FIG. 7. Computational and experimental values of the normalized front

velocities sV f /Vtd and density contrast s0.7ÎC fd in cylindrical and 2D tilted

tubes. j sLd, Computational values of V f /Vt s0.7ÎC fd in a cylindrical tube;

m s,d, experimental sRef. 3d values of V f /Vt s0.7ÎC fd in a cylindrical tube;
p s1d, V f /Vt s0.7ÎC fd obtained in 2D computations. The arrows point to-

ward the values of V f /Vt and 0.7ÎC f obtained in the extended parallel simu-

lation at a dimensionless time T<54.

FIG. 8. sColor onlined Time record of the front velocity ssolid lined and
square root of the relative concentration jump across the front sdashed lined
for a cylindrical tube with u=20°.
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conclude that the front deceleration is due to the increase in

the vortical activity that simultaneously takes place. The

growth of the corresponding vortex yields that of the head

volume, which leads to a local increase of the potential en-

ergy available in the head. Then, the vortical structure is

advected in the mixing zone sleading to a decrease of Ld and
the new amount of potential energy in the head is converted

back into kinetic energy smaking a decreased, thanks to a
slumping of the head, which leads to a reincrease of the front

velocity. As shown in Fig. 9, this cycle repeats itself a num-

ber of times. A similar behavior, where vortex interactions

are responsible for an increase of the potential energy in the

head, yielding fluctuations of the front velocity, was recently

reported for horizontal gravity currents.
12
However, the phe-

nomenon was found to be fairly sporadic, whereas we find it

to be present all along the long-time evolution in confined

geometries. The above observations lead us to conclude that

time variations of C f impose low-frequency variations of V f,

while interactions between the vorticity field and the current

head can be responsible for high-frequency fluctuations of

the front velocity.

The plot of the swirling strength highlights another in-

teresting feature. While the L-fields look almost “turbulent”

with a good degree of local mixing in 3D configurations, the

vortices are well defined and bounded in the 2D channel

fFigs. 6scd and 6sfdg. In the latter case, the flow inside the
mixing zone is clearly organized in cells whose characteristic

size is the diameter of the channel. Although this spatial

organization is not permanent, this vortex chain can persist

during sufficiently long times to tear off the head of the

current and definitely separate it from the mixing zone fthis
phenomenon is about to happen in Fig. 6scdg. The head then
behaves as a “bubble” of light fluid sor a “drop” of heavy
fluidd and is subsequently slowly destroyed by diffusion or
wrenching in its own wake. We observed temporary separa-

tions of the front in 2D channels for tilt angles less than 80°,

while the phenomenon was found to occur only for u less
than 40° in the square duct and the 3D periodic channel.

However, in contrast with the 2D case where reconnection of

the front may not occur after it has been separated from the

mixing region, reconnection always occurred after some time

in the above two 3D configurations. Moreover, we never

observed any separation sequence in cylindrical tubes, which

suggests that among the configurations considered here, this

is the one in which vortices have the weakest coherence.

Figure 10sad shows a stage of the flow in a cylindrical
tube during which the central region is quite well mixed and

only little pure fluid is feeding the fronts, thanks to a strong

vortical activity. We previously mentioned that such a spatial

organization is not permanent in the 2D case and the same

turns out to be true in 3D situations. Indeed, in Fig. 10sbd
which corresponds to a later stage, we notice the occurrence

of a two-layer flow structure. The corresponding snapshot of

the swirling strength indicates that the vorticity is very low

throughout this region. This succession of two contrasted

states is reminiscent of observations of intermittency re-

ported by Séon et al.
4
These authors noticed that a mixed

state in which the density is fairly constant within a cross

section but exhibits a gradient along the tube axis fas in Fig.
10sadg can be destabilized to give birth to a two-layer flow
fas in Fig. 10sbdg, which in turn can be affected by a Kelvin–
Helmholtz instability, the effect of which is to reset the initial

mixed configuration. They also pointed out that the mixing

efficiency is strongly increased during the relaxation to the

initial mixed state. Unfortunately, we could not observe the

last part of such a cycle numerically because its period is of

the same order as that required for the two currents to reach

the extremities of the computational domain. The extended

parallel simulations should allow us to remove this limita-

tion.

VII. SUMMARY AND CONCLUSIONS

The present computations shed light on several impor-

tant effects of channel geometry on the gravitational mixing

of two miscible fluids placed in an inclined channel or tube.

During the initial slumping phase, the results obtained in a

periodic 3D channel confirm that the current dynamics are

essentially 2D. They indicate that the current in a 3D square

channel is faster that its unconfined counterpart at any non-

zero tilt angle, so that 2D models would fail to predict the

correct front velocity in the former case. As expected from

inviscid theory, currents are significantly faster in cylindrical

FIG. 9. sColor onlined Time record of V f / s0.65ÎAtgdd ssolid lined, C f
1/2

sdashed lined, a ssd, and Lfd / sAtgdg1/2 snd for a cylindrical tube with
u=20°. The various curves have been arbitrarily translated in the vertical
direction. FIG. 10. Two stages of the evolution of the concentration stopd, swirling

strength scenterd, and velocity sbottomd in a cylindrical tube with u=60° sthe
views are taken in the vertical diametrical plane of the tubed. sad The middle
of the tube is filled with a highly vortical flow sT=10.4d; sbd birth of a
two-layer flow region with virtually no vorticity in the middle of the tube

sT=21.2d.
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tubes than in any rectangular geometry. A common feature

observed in all geometries in this early stage is that the front

velocity is roughly constant in an intermediate range of tilt

angles swith the values of At and Re considered in the
present computations, this range was found to be approxi-

mately 40°,u,75°d and slightly decreases in nearly verti-
cal and nearly horizontal configurations. In later stages, the

front velocity at a given tilt angle is always smaller in 2D

flows than in 3D configurations. More importantly, the three

regimes found in 3D flows at small, intermediate, and large

tilt angles have no counterpart in two dimensions. This may

be understood by examining the concentration jump across

the front in connection with the structure of the vortical mo-

tions. While C f=1 in 3D flows for 55°,u,80° because the

fronts are fed with pure fluid due to the moderate strength of

the vortices, the latter are much more intense and coherent in

two dimensions. Therefore they are able to cut the pure fluid

channels at any tilt angle, thus lowering C f. We also ob-

served that these intense 2D vortices are able to tear off the

head of the current and definitively separate it from the body

of the current. In contrast, such separations are only tempo-

rary in 3D rectangular channels and never occur in a cylin-

drical tube. Finally, despite the limited physical time reached

in most of the computations performed in a cylindrical tube,

the results fully confirm the experimental finding of Ref. 3

concerning the relation between the time-averaged velocity

and the concentration jump at the front, namely, V f

<0.7Vt
ÎC f. In two dimensions, the computational results in-

dicate that V f is still connected to ÎC f over the whole range

of tilt angles but the absence of any plateau in the variation

of V f with u prevents this relation to be reduced to the above
form, a point which will deserve further investigation. In

contrast, the short-time, i.e., high-frequency, evolution of V f

is not connected to that of C f. Rather, our results show that it

is directly related to the local vortical activity in the head

which, by a succession of hydrodynamic mechanisms, con-

verts potential energy into vortical energy and vice versa.

The results reported here show that direct numerical

simulation is a powerful and reliable tool to investigate the

complex dynamics of this class of flow. It appears to be very

complementary to laboratory experiments, especially in or-

der to elucidate the connection between the evolution of the

concentration field and that of the complex vortical structure

of the flow. In the next step of our work, we plan to explore

in detail several aspects of this connection.
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