
Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers

and makes it freely available over the web where possible.

This is an author -deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 4321

To link to this article: DOI: 10.1016/j.engappai.2010.10.012

URL: http://dx.doi.org/doi:10.1016/j.engappai.2010.10.012

To cite this version: LOCHIN Emmanuel, TALAVERA Bruno. Managing Internet

routers congested links with a Kohonen-RED queue. Engineering Applications of

Artificial Intelligence, 2011, vol. 24, n° 1, pp. 77-86.

ISSN 0952-1976

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12042243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Managing Internet routers congested links with a

Kohonen-RED queue

Emmanuel Lochin1 and Bruno Talavera2

1 CNRS-LAAS - ISAE, Université de Toulouse, France
2 Université Pierre et Marie Curie, Polytech’Paris-UPMC, France

emmanuel.lochin@isae.fr, bruno.talavera@upmc.fr

Abstract

The behaviour of the TCP AIMD algorithm is known to cause
queue length oscillations when congestion occurs at a router output
link. Indeed, due to these queueing variations, end-to-end applications
experience large delay jitter. Many studies have proposed efficient Ac-
tive Queue Management (AQM) mechanisms in order to reduce queue
oscillations and stabilize the queue length. These AQM attempt to im-
prove the Random Early Detection (RED) model. Unfortunately, these
enhancements do not react in a similar manner for various network con-
ditions and are strongly sensitive to their initial setting parameters.
Although this paper proposes a solution to overcome the difficulties of
configuring the RED parameters by using a Kohonen neural network
model, another goal of this study is to investigate whether cognitive
intelligence could be placed in the core network to solve such stability
problem. In our context, we use results from the neural network area
to demonstrate that our proposal, named Kohonen-RED (KRED), en-
ables a stable queue length without complex parameters setting or
passive measurements to obtain a correct configuration.

1 Introduction

TCP, the predominant Internet transport protocol, has the capability to
adapt its sending throughput to the changing bandwidth available following
the principle described in [12]. TCP considers a loss of packets as a con-
gestion inside the network and reacts to this congestion signal by halving
its current emission window of packets. A congestion event (or loss event)
corresponds to one or several losses occurring in one TCP window during
one current Round Trip Time period. When a Drop Tail queue overflows,

several TCP sources can observe a bunch of losses which can lead to a de-
crease of the throughput involving a brutal decrease of the buffer occupancy.
Then, as TCP always operates opportunistically, it restarts to increase ex-
ponentially (or linearly following the current mode is operating) in order
to occupy the most capacity possible. As a result, this effect results in an
accordion phenomenon where queues are constantly oscillating. This be-
haviour is harmful for the end-hosts which observe a constant oscillation
of their current throughput that can be problematic for applications which
need a relatively stable rate over the time.

More than ten years ago, the Random Early Detection (RED) was pro-
posed to avoid congested Internet links [9]. The goal was to replace the
current deployed Drop Tail queues known to provoke large queue oscilla-
tions when router’s buffers overflow. The main idea of the RED algorithm
is to drop packets before the queue is full. As a consequence, when a TCP
source gets such preventive drops, it decreases the emitted throughput ac-
cording to the AIMD (Additive Increase Multiplicative Decrease) algorithm
inherent to the TCP protocol. RED drops packets with an increasing prob-
ability (maxp) when the occupancy of the queue lies between two thresholds
(minth,maxth). The goal of RED is to maintain a small buffer occupancy
and avoid casual bursts of packet losses.

In [19], the authors illustrate that the instantaneous queue oscillations
lead the system to a chaotic state. They show that the root of the problem
comes from the estimated average queue size which is computed with inac-
curate initial values. Then, during an experiment, the queue dynamics slide
from a stable fixed point to an oscillatory behavior and finally to a chaotic
state. As a direct consequence, the network operators cannot provide any
Quality of Service (QoS) guarantee to their customers as they would need
to continuously adapt their parameters for different traffic conditions.

Several other studies emphasized these issues and in particular the au-
thors in [16] and [22] have weighted up the disadvantages for deploying such
a mechanism over the Internet. In certain cases, increasing the number of
dropped packets can have unexpected effects on the overall performance [22].
This has motivated the use of preventive marking instead of preventive drop-
ping with the use of the Explicit Congestion Notification (ECN) flag [18] of
IP packets. In this case, instead of dropping packets, the RED queue marks
the IP packet’s ECN flag to notify senders that they are crossing a congested
link and that they should decrease their sending rate. Although this flag is
currently implemented both in end-hosts (GNU/Linux, Mac OSX and Win-
dows Vista and newer) and inside the core network (Cisco IOS implements
a RED/ECN variant called WRED/ECN), ECN still remains disabled by

default for all these systems and the following study [17] published in 2004
precises that ECN is only used by 2,1% of computers.

Despite of all these issues, the RED algorithm is recommended by the In-
ternet Engineering Task Force (IETF) with the expectation that the providers
make their own effort to select suitable RED control parameters for their
network [5]. Unfortunately, some past work have already suggested that
RED is fundamentally hard to tune [14] while others claim that tuning its
parameters is an inexact science [16].

All these configuration problems partly explain the reason why network
operators do not enable this algorithm. Thus, it seems obvious and necessary
to find a method to easily and automatically tune the RED parameters.

Several studies attempted to enhance the basic RED algorithm [6, 8, 10,
3, 14, 21, 11] . As a non-exhaustive list, Fair RED (FRED) [6] and Adaptive
RED (ARED) [8] introduced the notion of adaptive AQM. These adaptive
strategies recompute the maxp probability value following an AIMD algo-
rithm. However, the parameters that weight this AIMD process still remain
difficult to estimate and far from being generic as we will see in our sim-
ulation. In [14], the authors show that RED parameters can be tuned to
improve stability, but only at the cost of large queues even when they are
dynamically adjusted. In [21], the author introduces an interesting approach
where the algorithm dynamically adjusts the moving exponential weighted
computation parameter which is normally static, in order to impact on the
accuracy of the rate estimation. Even if other different queueing approaches
have been proposed to improve the efficiency of RED-like algorithms in var-
ious network conditions, the parameters used to set these new AQM are
sometimes more complex to determine than RED ones. In particular, this
is the case for the PI controller [10]. Nowadays, general parameters able to
stabilize the queue do not yet exist whatever the AQM used and we could
discuss whether the problem is in fact solvable.

Although the validity of RED concept is still debated, we claim that
the parameters’ settings are one of the main barrier to its acceptance and
that this problem is a perfect candidate for the neural networking area. In
this paper, we seek at evaluating whether neural network theory can help
by simply acting on the standard RED parameters. As a result, this paper
does not attempt to extend the prolific models previously proposed. We do
not attempt to design another queueing mechanism or propose to enhance
the core mechanism itself. We only focus on the optimal estimation of the
probability parameter denoted maxp. Thus, this paper aims at illustrating
the impact of the role of learning mechanisms on core network Internet
problems with similar motivation than the one presented in [4]. The purpose

is to illustrate the perfect capability of a class of neural networks to solve this
stability issue without requesting complex tuning from network engineers.

This paper is structured as follows. Section 2 presents the motivation
of this work. Section 3 gives pointers related to the implementation of the
core mechanism. Then, section 4 evaluates the proposal and finally section
6 gives the perspectives of this work.

2 Motivation of using a Kohonen neural network

Kohonen networks [13] are a class of neural networks known to solve the pole
balancing problem [15]. Pole balancing is a control benchmark historically
used in mechanical engineering. It involves a pole placed on a cart via a
joint allowing movement along a single axis. The cart is able to move along
a track with a fixed length as represented in Fig. 2(a). The aim of the
problem is to keep this pole balanced by applying forces to the cart.

The main idea of our contribution is based on the analogy existing be-
tween this balancing problem and the RED queueing problem. In RED, we
can compare the pole balancing to the evolution of the queue occupancy
which oscillates between both thresholds (minth,maxth).

minth maxth

maxp

avg queue length

1

P(X)

Figure 1: The Random Early Detection (RED) queue management scheme

As shown in Fig.1, the probability to drop (or to mark) packets increases
when the buffer occupancy increases following the probability scheme con-
figured (i.e. following both thresholds set and the slope of the probability
curve). The physical forces resulting on the pole have a similar role to the
packets arrival rate in the queue. Figure 2 illustrates this view.

Self-configuring RED schemes such as FRED or ARED update the maxp
value as a function of the arrival rate in order to stabilize the queue size be-
tween both thresholds, minth and maxth. In [6], the authors explain the
queue length variation by the need of dynamically changing maxp as func-
tion of the queue occupancy. They propose to recompute this probability

(a) Pole balancing

Packets
max_th min_th

max_pInput packets Output packets

(b) Adaptive RED

Figure 2: Analogy between the single pole balancing problem and RED
AQM

Pole RED

input value[1] previous position previous
queue length

input value[2] new position current
queue length

output value[1] force to apply maxp
in Newton

Table 1: Input and output values used

following an AIMD algorithm. The update is done as function of the av-
erage queue size. If the average queue size is around maxth, the algorithm
increases maxp to drop more packets and decreases maxp if the value is
around minth.

The AIMD algorithm performed by FRED is different from ARED. In-
deed, FRED updates maxp each time a packet is enqueued while ARED
has another parameter allowing to update this value during a time inter-
val. This action period can smooth the effect of an aggressive setting of

the AIMD factors. Moreover, FRED does not apply consecutive decrease or
consecutive increase of the maxp value. This choice can be problematic in
case of rapid traffic change.

The neural network we use here is known as the Kohonen Self Organiz-
ing Map (SOM) [13]. It consists in a one or two dimensional information
processing layer of functional entities called neurons. It is connected to in-
put data seen as input vectors and provides output data also as vectors. We
present in Tab. 1 the entries used to feed the neural network in both cases
and the resulting output. The input vector contains the previous and the
current queue length and the output vector the maxp probability. For a
sake of comparison, we give in this table the vectors used with the pole bal-
ancing problem. The input data is fully mapped onto the Kohonen layer’s
neurons which respond to this data according to the weight assigned to the
connections between input vectors and neurons and deliver an output re-
sponse vector. To begin with, the neural network is presented a learning set
of example input vectors and adjusts (i.e. learns) appropriate weights for
its neurons by comparing the input vectors to the weight vectors for each
neuron thus electing a ”winning” neuron ”close” to the input vector.

In addition to this, the Kohonen SOM deals with a topological learning
feature, which implies neural neighborhood generalization of a correct learn-
ing experience so as to create clusters of neurons responding to similar input
vectors without necessarily having explicitly learnt them. If a neuron learns
that a given input vector is a vector it should respond to, its neighbours will
learn they also should respond, only in a lesser way, depending on their topo-
logical distance to the first ”winning” neuron. This way, the Kohonen SOM
is well adapted to stability preservation tasks as the one we present here.
Once the learning procedure is over, i.e. when the neural network produces
an acceptable amount of erroneous responses during learning, the weights
of the neural connections to the data input are frozen. That means that the
training process needs to be done only once without specific scenario and
should work for every kind of situation.

Given the Kohonen SOM algorithm, the neural network can generalize
its learnt experiences to other input vectors it has never seen before and
produce adapted responses. In this way, the conservation of a direction,
an equilibrium or the correct parameter to adjust a RED mechanism is
made possible although there is no way of predicting the way the neural
network learns to solve this particular problem. In our case, the learnt
sequences of input vectors are not the ones used in our tests, in order to
prove that the learning method provides a general purpose neural network
for the resolution of the problem we deal with here. Once it has learnt, it

can be used indefinitely for the task it has been trained for.
Previous related work [7] presents the use of a multi-layer perceptron

to adapt the α and β coefficients of a PI controller. In [7], the authors
don’t improve the queue length stability but smooth the PI dynamic and in
average, results obtained are globally similar. We think that such a neural
network is well adapted to pattern and shape recognition problems, whilst
a SOM such as the Kohonen SOM could be better suited to the task of
stability preservation which we deal with here. Indeed, this Kohonen SOM
algorithm preserves topological relationships between neighbouring vectors.

Each time a packet is enqueued, the Kohonen network computes a new
maxp following the previous and the current average queue size. No other
parameters are needed to perform this operation.

3 Implementation

One important point of dealing with Kohonen networks is the small memory
footprint required by the implementation. In our case, we have implemented
our proposal in ns-2 simulator [1]. The most complex structure is simply
a square matrix 25 × 25 which represents the Kohonen network. The code
used is a modification of the well-known Karsten Kutza’s implementation1.
For the sake of comparison, all the scripts and ns-2 implementation used in
this study are available for download at the author’s webpage2.

4 Evaluation and analysis

This section presents the experiments driven to evaluate the KRED and
comments the results obtained. For the sake of comparison purpose, we
base our hypothesis and initial RED parameters on this following recent
and exhaustive study [11]. This allows the reader to better compare our
results with existing work and simulations realized in this area as well as
avoiding any fancy or unjustified use of initial RED parameters.

4.1 Testbed and assumptions

We drive experiments over a standard dumbbell topology represented in Fig.
3. We compare our proposal to RED, Fair RED (FRED), ARED, Random
Exponential Marking (REM) [3] and Proportional Integral (PI) AQM. The

1http://www.neural-networks-at-your-fingertips.com/
2http://manu.lochin.net/kred

parameters used for each queue are given in table 2. For each queue, every
threshold is set in order to obtain a stabilization around half the queue size.

The parameters given Tab. 2 come from standard recommendation from
the networking community and are recalled in our reference paper [11]. All
these parameters have been deeply investigated by the past and are consis-
tent with the following study. Furthermore, the testbed and the networking
conditions have not been chosen randomly, they strictly follow [11] in order
to allow a fair comparison with the results presented.

The TCP flows are NewReno with a large window size set to 10000
packets. The RED queue is configured to drop and not to mark packets. In
order to evaluate our proposal, we drive two distinct experiments. In the
first scenario, the number of TCP flows in the network is increasing from
50 to 250 flows following the pattern Fig. 4(a). The RTT for each flow is
identical. This scenario allows us to verify the impact of the traffic load on
our proposal compared to other AQMs. In the second experiment, the traffic
changes every 50 seconds following the scenario presented in Fig. 4(b). The
rationale for using this traffic pattern is to evaluate our proposal under wide
traffic variations.

Variable RTT

SRC n

SRC 1 DST 1

DST n

..
..

..
..

..
..

..
..

..

..
..

..
..

..
..

..
..

..

10 Mbits/s RTT=2ms*

* Except in the last scenario where this value varies for each flow

5 Mbits/s RTT= x ms

RED Router RED Router

Figure 3: The simulation topology

Common qsize = 200pkts
Parameters (C.P.) qweight = 0.00008

RED C.P., maxp = 0.1, gentle = true,
minth = 0.25 ∗ qsize maxth = 0.75 ∗ qsize

FRED C.P., maxp = 0.1 α = 3.0, β = 2.0

ARED C.P., α = 0.01, β = 0.09, gentle = true,
interval = 0.3, maxp = 0.1,
minth = 0.25 ∗ qsize maxth = 0.75 ∗ qsize

REM γ = 0.001, φ = 1.001, α = 0.1,
interval = 2ms, qref = 0.5 ∗ qsize

PI a = 1.822.10−5 , b = 1.816.10−5 ,
qref = 0.5 ∗ qsize, w = 170Hz

KRED C.P., minth = 100pkts maxth = 150pkts

Table 2: RED parameters used

50 100 150 200 250 300

n
u
m

b
e
r

o
f
T

C
P

 f
lo

w
s

time (sec)

150

100

50

200

250

(a) First scenario

50 100 150 200 250 300

time (sec)

25

50

75

100

n
u

m
b

e
r

o
f

T
C

P
 f

lo
w

s

(b) Second scenario

Figure 4: The simulation scenarios

4.2 The training process

The KRED queue has been trained with an arbitrarily chosen number of
twenty long-lived TCP/Newreno flows emitted during 600 seconds without
any traffic variation on a single link topology. The delay of the core link
was set to 50ms which corresponds to an RTT of 100ms. We choose this
RTT following this measurement study [2] which shows that the global RTT
observed over the Internet is equally spread around 100ms over an interval
ranging from 1ms to 1sec. The neural network map learnt to stabilize the
KRED queue with the KRED parameters given Tab. 2 after 179 seconds.
No further training has been done.

The learning process is automatically stopped when the relative error
tends towards zero (i.e. when the queue value is correctly stabilized be-
tween the two requested bounds). The scenario used to train the neural
network is the most simple one as no traffic variation is introduced. We
attempted to train KRED following a scenario with several traffic varia-
tions (as 4(b)). The training process in that case was much longer (around
500 seconds). When we experimented the resulting Kohonen map, we did
not obtain better results for scenario #2 with this training (in fact, results
where quite similar) however, the Kohonen map did not perform well with
scenario #1 or any other scenarios involving other traffic patterns. We con-
cluded that our resulting Kohonen map was overspecialized and decided to
come back to a simple training scenario. The best and the more generic map
was obtained by training the neural network with a relatively small num-
ber of TCP sources without introducing any traffic variations. As a result,
the resulting Kohonen map is used thereafter in all experiments. We also
have driven other measurements, not presented in this paper, and clearly
obtained the same results with other traffic variation.

4.3 First scenario

Results are given in Fig. 5. Each graph presents the instantaneous and the
average queue size. The results presented for the KRED queue are obtained
after the training process. As shown in these figures, ARED 5(c) and KRED
5(f) queues obtain a stable queue length between both thresholds compared
to the other queues. To better illustrate the performance of our algorithm,
we compare the queue delay and the average drop rate of all these proposals
in table 3. This table clearly shows that both ARED and KRED obtain
similar performances in terms of drop rate ratio and queue delay. We remark
that we haven’t reported in this table the link usage obtained by each queue

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(a) RED

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(b) FRED

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(c) ARED

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(d) REM

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(e) PI

 0

 100

 150

 200

 0 50 100 150 200 250 300
#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(f) KRED

Figure 5: Performance comparison of various AQM with KRED, (1st sce-
nario)

as the latter is equal to 4.96Mbit/s with a nil standard deviation for all the
experiments.

As in [11], it seems that ARED is the best competitor, we then compare
ARED to KRED with various end-to-end RTT. The results are presented in
Fig. 6. This figure globally shows that KRED and RED stabilizes the queue
around the target value of 100 packets whatever the RTT of the network.
However, we can notice a slight advantage for KRED which is more stable
when the RTT increases.

With this first experiment, we can conclude that the overall performances
of ARED and KRED are similar in terms of stability of the queue when the
traffic load increases. As a result, both initial ARED parameters (given in
table 2) which tune the aggressiveness of the additive increase and multi-
plicative decrease drop probability value and KRED algorithm reach their
goal.

Thus the second scenario presented in the next section extends these
measurements by changing the traffic pattern during the simulation. The
original parameters remain unchanged in order to assess the adaptability of
these AQM to the rapid traffic change conditions.

AQM Mean / Std. Dev. TCP
Queue Delay (ms) drop rate

RED 22.52 / 7.55 8.42%
FRED 19.64 / 8.72 10.21%
ARED 18.30 / 7.46 10.72%
REM 18.54 / 8.52 10.29%
PI 22.05 / 10.53 9.35%

KRED 19.11 / 4.42 10.50%

Table 3: Statistics from Fig. 5

4.4 Second scenario

As shown in Fig. 7, the KRED queue obtains a stable queue length between
both thresholds compared to the AIMD process method of the FRED 7(b)
and ARED 7(c) algorithms. Furthermore, KRED reacts rapidly to the traffic
change compared to ARED. Due to this fast traffic changing, themaxp value
is constantly recomputed and the previous computed value strongly impacts
on the current result. In the case of an AIMD process which estimates the
maxp value, if the weights are small (i.e. α and β parameters of table 2), the
pace of convergence to the optimal value is slow and if the weights are high,
the resulting probability can strongly oscillate when the traffic is changing.
As a consequence, the initial configuration parameters used with success in
the first scenario by ARED are not adapted to the second one. Thus, our
proposal allows to overcome this difficult problem of initial setting which is
perfectly managed by the Kohonen neural network. Finally, table 4 gives
the statistics of this scenario and shows that KRED obtains stable queue
length without average queuing delay compromise.

In Fig. 8, we also change the nominal RTT value between all hosts.
The immediate observation is that KRED reacts much faster to the traffic
variation. However, when the queue is slightly loaded (between t = [50; 100]
and t = [200; 250]) and the RTT is high, KRED gets some difficulties to
stabilize the queue. Indeed, we do not take into consideration as in [11] the
evolution of the RTT as a parameter to impact on the dropping probability.
As this system is a control feedback loop system, the reaction of the sources
is delayed an RTT later. In case of high load, the high number of multiplexed
TCP sources allows to increase the number of clients that conjointly react
to the congestion signal (i.e. the packets prevently dropped by the queue).
Obviously, if we take into account the RTT of each flow and that we consider

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(a) ARED RTT=6ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(b) KRED RTT=6ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(c) ARED RTT=24ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(d) KRED RTT=24ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(e) ARED RTT=64ms

 0

 100

 150

 200

 0 50 100 150 200 250 300
#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(f) KRED RTT=64ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(g) ARED RTT=104ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(h) KRED RTT=104ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(i) ARED RTT=144ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(j) KRED RTT=144ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(k) ARED RTT=204ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(l) KRED RTT=204ms

Figure 6: Performance comparison of ARED and KRED with various RTT,
(1st scenario)

an average value of the RTT evolution, we could add to KRED another useful
entry parameter which indicates to the system the minimum reaction delay.
However, realizing such passive measurements of the RTT is quite complex
and allowing the queue to assess the RTT of each flow is not realistic. Indeed,

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(a) RED

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(b) FRED

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(c) ARED

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(d) REM

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(e) PI

 0

 100

 150

 200

 0 50 100 150 200 250 300
#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(f) KRED

Figure 7: Performance comparison of various AQM with KRED (2nd sce-
nario) with a nominal delay queue of 30ms

this supposes maintaining a per-flow state inside the router and greatly
complexifies the core router internal computation. This violates the well-
known Internet paradigm which states that the intelligence and processing
power of a network must reside at the outer edges while the inner network
itself remains as simple as possible [20]. In our context, the goal is to assess
if our proposal is generic enough to be used in a broad context compared
to other competitive proposals that involve complex setting parameters. As
illustrated in Fig. 8, KRED solves a broader range of network conditions
compared to other proposals.

4.5 Second scenario with variable RTT

In this last experiment, we still use the second experiment scenario where
the traffic changes every 50 seconds but in addition to this basic scenario,
each flow has a random RTT ranging from x to x+38ms. This corresponds
to a variable RTT of the access link which is ranging from 1 to 20ms of
delay.

The purpose is to simulate a more realistic traffic behaviour to assess the
performance of KRED in a general context and in particular, if we consider

AQM Mean / Std. Dev. TCP
Queue Delay (ms) drop rate

RED 29.64 / 4.21 27.25%
FRED 29.86 / 4.08 27.40%
ARED 19.58 / 3.95 30.53%
REM 18.15 / 4.73 31.05%
PI 25.39 / 7.55 28.65%

KRED 20.96 / 3.39 30.15%

Table 4: Statistics from Fig. 7

AQM Mean / Std. Dev. TCP
Queue Delay (ms) drop rate

RED 21.01 / 7.72 7.05%
FRED 21.47 / 8.31 7.50%
ARED 17.92 / 8.71 9.27%
REM 18.33 / 8.01 8.53%
PI 21.10 / 11.02 7.79%

KRED 18.79 / 4.53 8.74%

Table 5: Statistics Fig. 9

the active queue placed near the edge or inside the core network. Then,
using various RTT ranges, we illustrate several localization contexts. We do
not claim that the scenario proposed perfectly simulates a real topology, we
just want to illustrate the versatility of our proposal

Fig. 9 and table 5 report the results obtained for each queue where
each flow gets an RTT randomly chosen between [104, 142] ms. Once again,
KRED and ARED seem the most efficient queues. If we investigate the
case of smaller and higher RTT ranges in Fig. 10, KRED remains the most
versatile queue.

5 Statistical analysis

To improve the confidence and better interpret the results obtained, we have
computed the mean, standard deviation and used a metric commonly-used
in the control theory area to estimate the stability of our mechanism. The
so called ”out of range” metric gives the percentage of instantaneous values

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(a) ARED RTT=6ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(b) KRED RTT=6ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(c) ARED RTT=24ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(d) KRED RTT=24ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(e) ARED RTT=64ms

 0

 100

 150

 200

 0 50 100 150 200 250 300
#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(f) KRED RTT=64ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(g) ARED RTT=104ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(h) KRED RTT=104ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(i) ARED RTT=144ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(j) KRED RTT=144ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(k) ARED RTT=204ms

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(l) KRED RTT=204ms

Figure 8: Performance comparison of ARED and KRED with various nom-
inal RTT, (2nd scenario)

inside and outside an envelop defined between ±20% of the computed mean.
This metric allows to assess a relative stability of both queueing disciplines.
As each computed mean is different, we have also computed the coefficient
of variation (also known as relative standard deviation which corresponds

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(a) RED

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(b) FRED

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(c) ARED

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(d) REM

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(e) PI

 0

 100

 150

 200

 0 50 100 150 200 250 300
#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(f) KRED

Figure 9: Performance comparison of various AQM with KRED with a
variable RTT for each flow (2nd scenario) ranging from 104ms to 142ms

to the ratio between the standard deviation and the mean) to ease the
comparison. Tables 6, 7, 8 provide the resulting statistics respectively for
Fig. 6, 8, 10. All the statistics have been computed starting at t=50 seconds
to suppress the non-steady phase. All these results show that the dispersion
is always smaller for KRED. Clearly, the best scores are always obtained by
KRED. Although we can observe a slight advantage for KRED in Tab. 6,
the results obtained by ARED are in the same order of magnitude. This is
explained by the scenario #1 which performs smooth changes (we recall that
in this scenario the load is gradually increased) compared to scenario #2
where more abrupt changes occur, thus preventing the correct adaptability
of ARED algorithm.

6 Conclusion

This paper introduces Kohonen-RED: an adaptive RED mechanism easily
implementable. The idea deals with the use of a Kohonen neural network
to compute the optimal probability parameter in order to achieve a stable
queue length. KRED reduces the number of parameter settings and in par-
ticular the non obvious ones. The Kohonen network does not need to be

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(a) ARED RTT=(6ms;44ms)

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(b) KRED RTT=(6ms;44ms)

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(c) ARED RTT=(104ms;142ms)

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(d) KRED RTT=(104ms;142ms)

 0

 100

 150

 200

 0 50 100 150 200 250 300

#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(e) ARED RTT=(204ms;242ms)

 0

 100

 150

 200

 0 50 100 150 200 250 300
#
 o

f
p
a
c
k
e
ts

Time (sec)

current queue size
average queue size

(f) KRED RTT=(204ms;242ms)

Figure 10: Performance comparison of ARED and KRED with a variable
RTT for each flow (2nd scenario)

Experiment Mean StDev CV Out of range (%)

KRED RTT=6ms 128.2291 13.7077 0.10 6.9029
ARED RTT=6ms 119.7281 14.6109 0.12 9.7330

KRED RTT=24ms 128.5940 13.3780 0.10 5.0511
ARED RTT=24ms 121.0235 14.1784 0.12 8.0824

KRED RTT=64ms 127.0030 13.0313 0.10 4.1380
ARED RTT=64ms 117.9092 15.3494 0.13 12.0943

KRED RTT=104ms 125.9923 14.3782 0.11 7.7991
ARED RTT=104ms 115.7074 16.7704 0.14 14.6647

KRED RTT=144ms 125.1373 14.6045 0.11 8.7754
ARED RTT=144ms 114.1829 14.8270 0.13 11.1980

KRED RTT=204ms 124.1143 17.8153 0.14 16.0921
ARED RTT=204ms 113.7220 18.7730 0.16 16.5810

Table 6: Resulting statistics for scenario 1 corresponding to Fig. 6

retrained and therefore can be put in hardware in the context of a router im-
plementation. The mechanism’s efficiency has been illustrated through ns-2
simulation where other schemes fail. In this work, we use a Kohonen based

Experiment Mean StDev CV Out of range (%)

KRED RTT=6ms 113.8994 21.1866 0.18 11.3929
ARED RTT=6ms 106.9419 33.3983 0.31 35.4935

KRED RTT=24ms 113.4426 21.1925 0.18 10.0620
ARED RTT=24ms 108.5999 34.4630 0.31 33.5782

KRED RTT=64ms 112.0166 22.1133 0.19 13.6567
ARED RTT=64ms 105.4034 41.0358 0.38 50.7675

KRED RTT=104ms 109.8805 25.5262 0.23 24.6657
ARED RTT=104ms 104.3858 43.4935 0.41 51.8414

KRED RTT=144ms 106.5862 35.8957 0.33 37.3802
ARED RTT=144ms 101.4978 54.7824 0.53 63.1500

KRED RTT=204ms 103.2339 42.7257 0.41 47.2238
ARED RTT=204ms 99.0713 56.6253 0.57 66.9472

Table 7: Resulting statistics for scenario 2 corresponding to Fig. 8

Experiment Mean StDev CV Out of range (%)

KRED RTT=(6ms;44ms) 114.4116 19.2592 0.16 9.4419
ARED RTT=(6ms;44ms) 106.4614 33.9947 0.32 30.7016

KRED RTT=(104ms;142ms) 110.7031 22.2922 0.20 17.5226
ARED RTT=(104ms;142ms) 104.3362 48.6995 0.46 56.0970

KRED RTT=(204ms;242ms) 104.0744 39.5693 0.38 41.1171
ARED RTT=(204ms;242ms) 100.3485 57.4776 0.57 65.3968

Table 8: Resulting statistics for scenario with variable RTT corresponding
to Fig. 10

neural network specifically designed to solve the pole balancing problem.
One of the main contribution of this study is to show the feasibility of using
neural networks to solve a networking stability problem and the versatility
of such a mechanism. We believe that specific training can be realized as
a function of the queue characteristics (i.e. output link throughput, queue
size, ...) in order to provide several maps to fit several contexts.

Now, considering other engineering domains, we know this neural net-
work can solve several stability problems that belong to mechanical engi-
neering. Today and to the best of our knowledge, this application to net-
working problems is original. As a future work, we are still investigating this
class of neural network to assess whether it could help to stabilize a TCP

sender throughput or could be used in other networking issues. Finally and
following these promising preliminary results, we are currently evaluating
other neural network algorithms and considering the development of this
algorithm inside the GNU/Linux kernel.

Acknowledgments

The authors would like to thank Sebastien Ardon and Guillaume Jourjon
and Max Ott for the discussion about this mechanism and the support of
the National ICT Australia (NICTA).

References

[1] ns-2 network simulator.

[2] Jay Aikat, Jasleen Kaur, Donelson F. Smith, and Kevin Jeffay. Vari-
ability in tcp round-trip times. In IMC ’03: Proceedings of the 3rd
ACM SIGCOMM conference on Internet measurement, Miami Beach,
FL, USA, 2003.

[3] Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, and Qinghe Yin.
Rem: Active queue management. IEEE Network, 15(3):48–53, May
2001.

[4] Robert Beverly and Karen Sollins. The role of learning in
network architecture, 2007. Research Abstract of the Com-
puter Science and Artificial Intelligence Laboratory (CSAIL) -
http://publications.csail.mit.edu/abstracts/abstracts07/beverly2/beverly2.html.

[5] Bob Braden, David D. Clark, Jon Crowcroft, Bruce Davie, Steve Deer-
ing, Deborah Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig
Partridge, Larry Peterson, K. K. Ramakrishnan, Scott Shenker, John
Wroclawski, and Lixia Zhang. Recommendations on queue manage-
ment and congestion avoidance in the Internet. Request For Comments
2309, IETF, April 1998.

[6] Wu chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin.
A self-configuring RED gateway. In Proceedings of INFOCOM 99, vol-
ume 3, pages 1320–1328, 1999.

[7] H.C. Cho, M.S. Fadali, and Hyunjeong Lee. Neural network control
for tcp network congestion. In Proc. of the 2005 American Control
Conference, pages 3480–3485, June 2005.

[8] S. Floyd, R. Gummadi, and S. Shenker. Adaptive red: An algorithm
for increasing the robustness of red, technical report, international com-
puter science institute, August 2001.

[9] Sally Floyd and Van Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Networking,
1(4):397–413, August 1993.

[10] C. V. Hollot, Vishal Misra, Donald F. Towsley, and Weibo Gong. On
designing improved controllers for AQM routers supporting TCP flows.
In INFOCOM, pages 1726–1734, 2001.

[11] Jong hwan Kim and Ikjun Yeom. Reducing queue oscillation at a con-
gested link. IEEE Transactions on Parallel and Distributed Systems,
19(3):394–407, 2008.

[12] Van Jacobson. Congestion avoidance and control. In Proc. of ACM
SIGCOMM, pages 314–329, Stanford, CA, August 1988.

[13] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Information Sci-
ences. Third extended edition edition, 2001.

[14] Steven H. Low, Fernando Paganini, Jiantao Wang, and John C. Doyle.
Linear stability of tcp/red and a scalable control. Computer Networks,
43(5):633–647, 2003.

[15] A. Makarovic. Machine intelligence 12: towards an automated logic
of human thought. In Clarendon Press, New York, NY, USA, pages
241–258, 1991.

[16] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy
RED. In Proc. of 7th. International Workshop on Quality of Service
(IWQoS’99), London, pages 260–262, June 1999.

[17] A. Medina, M. Allman, and S. Floyd. Measuring the evolution of trans-
port protocols in the internet. Computer Communication Review, 35(2),
April 2005.

[18] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP, September 2001.

[19] Priya Ranjan, Eyad H. Abed, and Richard J. La. Nonlinear instabilities
in TCP-RED. IEEE/ACM Transactions on Networking, 12(6):1079–
1092, 2004.

[20] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 2.

[21] Shan Suthaharan. Reduction of queue oscillation in the next generation
internet routers. Computer Communications, 30(18):3881–3891, 2007.

[22] T. Ziegler, S. Fdida, and C. Brandauer. Stability criteria of RED with
TCP traffic. In IFIP ATM&IP Working Conference, Budapest, June
2001.

