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Abstract 

This paper presents a multiobjective MILP formulation for optimizing industrial water 
networks. By expressing balance equations in terms of partial mass flows instead of 
total mass flows and concentrations, and because the contaminant mass flow (ppm) is 
very small compared to the water mass flow (T.h-1), the problem becomes linear. The 
integer variables are related to the interconnections into the network. The biobjective 
optimization of the fresh water flow rate at the network entrance and the water flow rate 
at regeneration unit inlets, parameterized by the number of interconnections, is carried 
out according to a lexicographic procedure. A monocontaminant network involving ten 
processes and one regeneration unit illustrates the approach. Even if the results are 
specific, the methodology guide can be applied to a large panel of networks. On the one 
hand, this example shows that the Pareto front is a straight line where each point is a 
feasible solution, when the number of connections is maximal (120). On the other hand, 
the Pareto front is reduced with the number of connections (11) and constituted by 
isolated points located mainly on a straight line with the same slope as for 120 
connections, but no feasible solution exists between these points.  
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1. Introduction 
During the last decades, industrialization has contributed to the rapid depletion of 
natural resources such as water or natural gas. With the increasing interest for global 
environment preservation, the unlimited resources paradigm became little by little 
obsolete. In 2000, the global needs in fresh water were estimated to be 5000 Km3 [1], 
among which 70% were used for agriculture, 20% were used by industry and 10% were 
consumed for domestic uses and have been increased by a factor of 4 for 50 years. 
Among the industrial consumers, the process industry is by far the most important user 
of fresh water. The environmental impact induced by the process industry is linked both 
to the high volumes involved and to the diversity of toxic products generated along the 
process chain. So, a real need to define optimized water networks to reduce the impact 
of contaminants on the environment, has recently emerged. This paper aims at defining 
a general methodology for taking into account the monocontaminant case. 

2. Background 
Water networks problems have been tackled by three main approaches. These 
techniques include graphical methodology [2-5], mathematical programming [6-9] and 
synthesis of mass exchange networks [10-12]. Due to the recent development of 
efficient numerical toolboxes, the graphical methods pinch-based techniques have been 
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replaced by mixed-integer programming approaches, either linear (MILP) or nonlinear 
(MINLP). The linear case is generally restricted to simple water networks involving 
only one contaminant, while the nonlinear one can theoretically be applied to more 
complex networks. 
Huang et al. [8] defined a superstructure of a complex network involving processes 
using both water and regenerating units for water with a given output concentration of 
contaminants. Linear formulations implemented for maximizing the water regeneration 
and reuse into industrial processes have been first developed by Bagajewicz and 
Savelski [9] and El-Halwagi et al. [13]. Indeed, the maximization of the water recovery 
implies the simultaneous minimization of fresh water consumption and effluent 
emissions. A linear formulation is also given by Wang et al. [14] for monocontaminant 
networks. Quesada and Grossmann [15] and, later, Galan and Grossmann [16] develop a 
MINLP strategy based on the relaxation of the bilinear terms involved in the balance 
equations. Even if significant advances have been performed in the field on nonlinear 
mixed-integer programming, the search for a solution of a linear problem is always 
easier than the one of MINLP. This concerns the global optimality of the solution 
found, as well as the ease to initialize the search. Furthermore, MILP methods may 
support important numbers of variables and high combinatorial aspects. This can be 
particularly interesting when ecoparks are taking into account because of their greater 
number of variables and constraints. In this paper, only monocontaminant networks are 
considered. However, it appears that the proposed strategy could be easily extended to 
multicontaminant problems. 

3. Solution procedure 
3.1. Superstructure definition  
Given a set of regeneration units and processes, the objective is to determine a network 
of interconnections of water streams among them so that both the overall fresh water 
consumption and the regenerated water flowrate are minimized. Water networks are 
defined as follows. All the possible connections between processes and regeneration 
units may exist, except regeneration recycling to the same regeneration unit or process. 
Each process admits maximal input and output concentrations, and in the same way, 
regeneration units have a given processing capacity. For each process using water, input 
water may be fresh water, used water coming from other processes and/or recycled 
water; the output water for such a process may join either the discharge, either other 
processes and/or to regeneration units. Similarly, for a regeneration unit, input water 
may come from processes or other regeneration units. Regenerated water may be reused 
in the processes or join other regeneration units. The generic problem to solve is built as 
a set of black-boxes, in order to adapt the formulation to a large variety of practical 
cases. In this black-box approach, the role of each process within the network is not 
taken into account. For each process input or output, contaminant mass fractions (in 
ppm) are imposed by the user, and constitute bounds for the problem. 
Each task performed by a process contaminates its input water up to a given mass 

fraction. The amount of pollutant i generated by a process j is noted,
j

iM  and is 

expressed in mass flow (g.h-1). For each practical example, the values of M have to be 
provided. A regeneration unit can be defined by two ways: 1) it has a given efficiency 

depending on the pollutant under treatment (in that case, l
iE represents the efficiency of 

the regeneration unit l for component i, 0 < E <1), 2) the mass fraction (in g.h-1) of 
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pollutant at the regeneration unit output is fixed. In most cases, for monocontaminant 
networks, the last definition, being more in agreement with the practical usage, is 
preferred. 
 

3.2. Modeling equations 
In the majority of previous works, the problem is generally stated in terms of 
concentrations and total mass flows, giving birth to bilinear formulations [6] due to 
products between concentrations and total mass flows. If partial mass flows are used 
instead of total mass flows, the balance equations are all linear. They are expressed as 
follows: 

- kj
iwp →→→→ mass flow of component i going from process j to process k (T.h-1) 

- ml
iwr →→→→ mass flow of component i going from regeneration unit l to regeneration unit 

m (T.h-1) 

- jl
iwrp →→→→ mass flow of component i going from regeneration unit l to process j (T.h-1) 

- lj
iwpr →→→→ mass flow of component i going from process j to regeneration unit l (T.h-1) 

- j
iwd mass flow of component i going from process j to the discharge (T.h-1) 

- l
iwrd mass flow of component i going from regeneration unit l to the discharge (T.h-1) 

- jw1 mass flow of fresh water at the entrance of process j (T.h-1). 

The balance equations give the following set of six linear equations (for a process j, 
Eqns 1 and 2, for a regeneration unit l, Eqns 3 and 4 and for the network entrance, Eqns 
5 and 6).  
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In these equations, index i can either represent water (if is equal to 1), or contaminants 
(if is greater than 1). 
The equation governing the concentration conservation between the output streams of 
processes and regeneration units is: 
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N being the number of contaminants, kj ≠  and o
jiCM , is the maximal concentration of 

contaminant i at the output of process or regeneration unit j. 

Insofar as kj
iwp →→→→  (order of magnitude ppm) is far lower than kjwp →→→→

1  (T.h-1), the 

nonlinear Eqn (7) can be rewritten linearly as: 

01 ≤×− →→ kjo
j,i

kj
i wpCMwp       (8) 

The same equation holds for the other output streams of process j: 

01 ≤×−→ → jlwpro
j,iCM

jl
iwpr       (9) 

In the same way, it comes: 

01 ≤×− jo
j,i

j
i wdCMwd       (10) 

The output streams of a given process must have the same pollutant concentration, that 
is to say: 

jo
j,i

j
i

jlo
j,i

jl
i

kjo
j,i

kj
i wdCMwdwprCMwprwpCMwp 111 ×−=×−=×− →→→→

(11) 
However, these equalities only hold for existing streams. If the mass flow of water is 
null for a stream, this stream does not exist, that is to say:  

if 01 =→kjwp  then 0=→kj
iwp .  

Finally, the constraints on the output streams of regeneration units are given by: 
 i) if the output concentration is fixed 

01 ≤×− →→ jlo
i,l

jl
i wrpCMwrp       (12) 

01 ≤×− →→ mlo
i,l
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i wrCMwr       (13) 
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ii) if the efficiency is fixed 
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3.3. Multiobjective optimization 
Two objective functions have to be simultaneously minimized while the third is 
considered as a constraint: 
- Fresh water flow rate at the network entrance (F1) 
- Water flow rate at inlet of the regeneration unit (F2) 
- Number of interconnections into the network (F3). 
For the example presented below, the number of interconnections in the network is 
defined in the reduced integer range [11-120]; the methodology consists in solving the 
biobjective problem (F1, F2) parameterized by the number of interconnections. A 
lexicographic optimization [17] based on the ε-constraint strategy is implemented. 
During the first phase, the first objective is minimized alone, while the second one is 
introduced in the form of a bounded constraint. The second objective is minimized in 
the second step, where the first one can vary in a closed interval whose the optimal 
value obtained in the first phase is the median. When the solutions obtained in the two 
phases are identical, an optimal solution for the biobjective problem is reached. So, for 
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each particular value of the number of interconnections, a Pareto front can be generated. 

4. Numerical example 
This example involving ten processes, one regeneration unit and one contaminant, was 
already proposed by Bagajewicz and Savelski [9]. The corresponding MILP involves 
143 binary variables related to interconnections, 332 continuous variables and 351 
constraints, and it solved with the solver CPLEX of the GAMS package. 
In order to set the problem limits, each objective was first minimized alone (see table 1), 
the minimum number of interconnections is 11, the minimum fresh water is 10 T.h-1, 
and the amount of regenerated water is null (all the used water is discharged, case 
without any practical interest). These values are reported in bold in table 1. 

Table 1. Results of the mono-objective optimization 

 Interconnections 
number 

Fresh water 
flow rate (T/h) 

Regenerated water 
flow rate (T/h) 

Interconnections 
number 11 259.9 10 

Fresh water flow rate 
(T/h) 

120 10 285.7 

Regenerated water flow 
rate (T/h) 

120 289.4 0 

 
Then, the biobjective optimization is performed for different values of the 
interconnection number. So, for 120 (respectively 11) interconnections, the Pareto 
fronts are reported in Fig. 1a (respectively 1b), Fig. 1c giving a zoom of Fig. 1b. Fig. 1d 
shows the minimum value of fresh water flow versus the number of interconnections 
(the regenerated water flow is not taken into account). As it was already shown in [3], 
the Pareto fronts of Fig. 1a, b and c are linear. For 120 interconnections, all the points 
located on the straight line are feasible solutions; for the minimum number of 
interconnections (11), the Pareto front is reduced and composed of a finite number of 
points located on a straight line with the same slope than the one corresponding to 120 
interconnections. From Fig. 1b, no solution exists for a regeneration flow greater than 
80 T.h-1. The results presented in Fig. 1c, obtained by taking a step length of 1 instead 
of 20 in the lexicographic procedure, shows no additional solution located between the 
points. From Fig. 1d, it can be observed that for 11, 12, 13 and 14 connections, the fresh 
water flow rate is respectively 90, 50, 25 and 10 T.h-1 and remains fixed at 10 T.h-1 
when the number of interconnections varies from 15 up to 120. The values obtained for 
the example problem are identical with the ones reported in the literature [6, 9], so the 
solution procedure is numerically validated. 

5. Conclusion and future works 
From this example, the following items can be pointed out: (i) for the maximum number 
of connections (120), the Pareto front is a straight line and all the points located on it are 
feasible solutions, (ii) the Pareto front is reduced with the number of connections, (iii) 
for low numbers of connections corresponding to highly constrained problems, the 
Pareto front is constituted by isolated points located on a straight line, and no feasible 
solution exists between the points. So the number of feasible solutions decreases with 
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the number of connections.  Finally, since it only requires a standard initialization phase 
and can tackle large scale problems, this approach will be implemented in the next 
future on the one hand to optimize ecopark networks, and on the other hand to solve 
multicontaminant problems. 
 
 

Fig.1 Pareto fronts obtained with the biobjective optimizations 
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