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Background: Reference limits are some of the most widely used tools in the medical decision process. Their
determination is long, difficult, and expensive, mainly because of the need to select sufficient numbers of
reference individuals according to well-defined criteria. Data from hospitalized patients are, in contrast,
numerous and easily available. Even if all the information required for a direct reference interval computation
is usually not available, these data contain information that can be exploited to derive at least rough
reference intervals.

Methods: In this article, we propose a method for the indirect estimation of reference intervals. It relies on a
statistical method which has become a gold-standard in other sciences to separate components of mixtures.
It relies on some distributional assumptions that can be checked graphically. For the determination of
reference intervals, this new method is intended to separate the healthy and diseased distributions of the
measured analyte. We assessed its performance by using simulated data drawn from known distributions
and two previously published datasets (from human and veterinary clinical chemistry).

Results and discussion: The comparison of results obtained by the new method with the theoretical data of
the simulation and determination of the reference interval for the datasets was good, thus supporting the
application of this method for a rough estimation of reference intervals when the recommended procedure

cannot be used.

1. Introduction

Reference values are some of the most powerful tools in medical
decision-making both in human and veterinary medicine, even
though decision limits are being introduced in an increasing number
of cases. Recently, the recommendations for “Determining, establish-
ing, and verifying reference intervals in the clinical laboratory” have
been updated by the International Federation of Clinical Chemistry
and Laboratory Medicine (IFCC) and the Clinical and Laboratory
Standards Institute (CLSI) [1].

This working group acknowledges that the de novo determination
of reference limits, and their regular updating for the main partition-
ing groups is an enormous, time-consuming and very expensive
undertaking, even in human clinical pathology, for which very large
data bases are available, e.g. through Preventive Medicine Centers [2].
This task is even more difficult in animal clinical pathology, due to the
various species, breeds, breeding conditions, productions, etc., and
often the small number of animals available, e.g. in wild species.

Moreover, the absence of well documented reference intervals (RI) for
many analytes sometimes makes it impossible to transfer or verify
previously established reference intervals in veterinary clinical
pathology.

When direct sampling is not possible, the recommendation states
that indirect sampling techniques may be used “based on the
assumption, confirmed by observation, that most results, even on
hospital and clinic patients appear “normal™ [1]. Data thus obtained,
preferably from relatively healthy individuals, can be used for
calculations of reference intervals. Rl determined in this manner
“should be considered rough estimates at best”, as the datasets are
contaminated by an unknown number of values obtained from
individuals that are not healthy.

Very large clinical pathology databases exist in human hospitals,
and also in veterinary hospitals and animal research centers. Several
attempts have been made [3,4] to use them in the estimation of
human reference intervals and some are still being pursued, often
with very large numbers of data [5]. To our knowledge, few attempts
have been made in animal clinical pathology [6].

Several statistical methods have been proposed to estimate the 2.5
and 97.5 centiles from such “polluted” datasets, the simplest ones
being based on a cut-off value below or above which the observed data
are discarded [7,8]. This approach is easy to implement but can



severely bias results. After recursively removing the values of
individuals considered as diseased outside, Kairisto and Poola [8]
modelled the distribution of the remaining values as two half
Gaussian distributions. More sophisticated methods have been
proposed (see [6] for a brief comprehensible review). Bhattacharya
[9] proposed an indirect method based on the assumption that the
distributions of healthy and diseased are Gaussian. As advocated by
Baadenhuijsen and Smit [10] this method does not properly describe
the distributions of most analytes which present skewed distribu-
tions. To solve this problem, Baadenhuijsen and Smit extended
Bhattacharya's method to mixtures of log-normal and gamma
distributions. These two methods are very practical since the
estimations can be performed graphically without using a modern
computer. Oosterhuis et al. [11] proposed a weighting scheme that
decreased the influence of outliers in the Baadenhuijsen and Smit
method. However, such approaches are specific to the chosen
distributions and even for mixtures of Gaussian, log-Gaussian or
gamma distributions, they do not give the maximum likelihood
estimate which is the best estimate that it is possible to build when
the number of data available (n) is large.

The aim of this paper is to propose a method that allows separation
of the distributions of healthy and diseased individuals from
observation of their mixture. This method generalizes and improves
Bhattacharya-like methods.

As suggested in [1] when the actual patients status is known, we
assume that there are two Box—Cox transformations that respectively
make Gaussian the distributions of healthy and diseased individuals.
We used this distributional assumption to estimate the percentage of
healthy individuals and the distributions of healthy and diseased
individuals, from which we derived a reference interval.

2. The proposed method

Let us first describe intuitively how the proposed method works. Assume that
high values are rather observed on diseased individuals. A high value has thus a small
probability to have been observed in a healthy individual and a high probability in a
diseased individual. The model (Eq. (1)) described hereafter allows to formally
quantify these probabilities. The distribution of healthy is computed as if all observed
values came from healthy individuals. However, during this computation, each
observed value is weighted by the probability that it has been obtained on a healthy
individual. The same process is used for the diseased distribution. As an example, a
very high value has a small probability (=0) to come from a healthy individual. Its
weight during the computation of healthy distribution is =0: this means that this
value is discarded. One can see that proceeding so leads to a kind of circular
reasoning: we need to know the distribution of healthy/diseased to compute the
probability that a value has been obtained on a healthy/diseased individual while
knowing these probabilities allows to compute these distributions. The method we
propose iterates this idea until there is a strict accordance between the probabilities
used to perform the computations and the distributions thus obtained. We now
describe how to do it practically.

Let us assume that one observes Y; on the ith individual of the sample

Yi=Ux! 4+ (1 -Uxi=1,.., n )

where U, is the unobserved status of this individual equal to 1 when he is healthy and 0
otherwise. Consequently, when the individual is healthy, one observes X while X7 is
observed when he is diseased. The distribution of Y; is therefore a mixture of the
distributions for healthy and diseased individuals.

We assume that the random variables X! that appear in the model (Eq. (1)) are
mutually independent, independent of U, and respectively distributed according to a N
{m,-,{rf} up to a Box-Cox transformation k,; where
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log(x) if A = 0.

If the actual status U; of the ith individual was known, the probability density
function (pdf) of the observation ¥; would be
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with (mo? )= (mo2A) if U;=1 and (m,o® \) = (mz,03A;) otherwise.

In this case, one would estimate the reference interval

(l + f\l(rr"n —23,))“';(1 + ;\1(:;:. + 25}.))]:;\' 2)

where i, 73, and :\1 are the parameter estimations computed from the data of healthy
individuals only.

Since the U's are not observed, we need to estimate the percentage of healthy
individuals p and the parameters of the “healthy" distribution (m,&3.A;). The healthy
distribution can be well separated from the diseased distribution when the parameters
from the “diseased"” distribution (1m,,3,A;) are also estimated. We thus need to estimate
the parameter # = (p,m &7 A,m;,03,\;) to get an estimation of the reference interval.

The best way to proceed is to use the maximum likelihood estimate of the
parameter ¢ that can be obtained as the value of # that maximizes

10) = TT (PVm, 020, 00 + (1= DYV, 3, 0)) -

i=1

Unfortunately, the direct optimisation of this function is often intractable. This is
the reason why we suggest using the so-called EM algorithm [12] to solve it. The EM
algorithm consists of iterations of an Expectation and a Maximization step. At the kth
iteration, the E step computes the conditional expectation of the log-likelihood of the
complete data (Y, U) with respect to the distribution of the missing, or non-observed
data U given the observed data ¥ at the current estimated parameter value *:

Q(n_u"“) = E(IDgP{Y. U']w_a"“'].
The M step finds 6% * '" so that
gkl = argsgpQ(r). U’m}.
These two-step iterations are repeated until convergence [13].
In our problem, the actual status U; of each individual is not observed. Estimating

the mixture of distributions of diseased and healthy individuals with the EM algorithm
amounts to repeating the following iterations:

[

2

For each individual compute the weights w; and v; that respectively depend on the
likelihood that this individual belongs to the healthy and diseased group.
Compute the mean, variance and A parameter of each group by affecting to each
individual the corresponding weight.

Repeat steps 1 and 2 until the estimated parameters no longer change between two
successive iterations.
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This problem can be reduced to the following iterations. The algorithm starts with
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Solving this problem leads to the following iterations

k4 1) 1¢ (k)
P = HZ -
=1
w =a¥ /5 o and v¥ = (i --af’)/ (n - ¥ a]’.k')
i i
At g En\f log 3 w:-’“(k,,‘[y,.-] - m'l'“}z ~ 20X log y;
» i i

e i ¥ wi Koo 0 ()
; i
AT i 1y 2
= Zr: w?k'(khll oy —miE* ")
A+ _ 3 (k) ki 2
5 = arglr}l‘f log}” v; (k_\Ly,-l — My ) — 273 log y;
I I

{k 1 (k)
ny = Z:\",- k,‘-; Sy
T

2k 4+ 1 ¥ ; E 132
T e vaf (k_\; culy)=my '] :



These iterations are continued until the difference between #*' and #™**'
becomes small. Let us denote 0= (pfi, 07\ M2030) the value of 6 after
convergence of the preceding iterations. The reference interval is then obtained as
described by equation (Eq. (2)).

As we use the maximum likelihood, this reference interval is the best estimate
(with respect to the precision) that can be built when the distributional assumptions
we made are reasonable. It is therefore important to check these distributional
assumptions. We propose hereafter a test (P-value) and a graphical means of checking
that fully exploits the statistical properties of 0.

A P-value lower than 0.05 indicates that the assumptions about the distributions in
the model (Eq. (1)) are not adequately chosen. Two main reasons lead to such P-values:
1} the choice of the distributions is not consistent with the data suggesting other
distributions to be used (e.g. gamma, Weibull,...), 2) there exist “outliers”. Their effect
on the estimation of the upper limit of the reference interval seems to be limited as soon
as a rigorous analysis is performed. When the test rejects the model, some extreme
values should be removed from the analysis.

If our model (Eq. (1)) is correct, the actual distribution of the data, summarized by
its cumulative distribution function (cdf) F, should be equal to the one implied by the
model:

ky (y)—my ky (y) — my
= At Y e st
Faly) p(h( 5 ) (1 p,fb( s ) (3)

where < is the cdf of the standard Gaussian distribution.

Thus, if this model is correct, Fand F; should be equal. Since both Fand F, cannot be
observed, we propose to compare their estimates. An estimate of F is given by its
empirical cumulative distribution function (cdf)

i 18
Fly) = EZ ]'Yi-_'y;-

i=1

where 1jy -, =1 1if Y;<y and 0 otherwise.

On the other hand, an estimate of F; is F;. A quick way to proceed is to build a QQ-
plot by representing Fj “(F (¥:)) as a function of y;. When the points obtained are about
on a straight line, the model can be considered as reasonable. However and even if the
chosen model is the good one, such graphics always exhibit points far away from the
line because the sampling variation has not been taken into account to build it. Also, a
confidence region/a P-value is helpful to compare these cdf. We propose to build a 95%
uniform region Ry 5 for the QQ-Plot that can be used as follows: when at least one point
(v Fa l(ﬁ(_\-n-]]) falls outside Ry o5 there is less than 5% risk that F# F,. Equivalently, we
propose to compute a P-value by simulating the distribution of sup |F;(y) - f-{y]|
under Hy: F=F;. ¥

To perform these simulations, we used the properties of the maximum likelihood
estimator: the Central Limit Theorem guarantees that when n is large, v-'ﬁgu a) is
approximately distributed according to the following Gaussian distribution N{0./~ '(#))
where I(#) is the Fisher information matrix. This matrix depends on the true value
of # which is unknown. Louis | 14] proposed a method that gives a good approximation
of I(#) that we denote by E

We therefore propose to build Ry 55 using Monte-Carlo simulations. First, draw a large
number (K;) of 6, (say K; = 10 000) from N(# ]~ /n) and for each 0, we simulated K, =50
samples of size n using (Eq. (1)). We thus obtained K, = K, samples of size n, each of them
giving an empirical cdf G and the distance 51;1p |F|-ir,y,1 - é(y] |. The P-value of the test is

obtained as the percentage of sup |Ff-|{y) — G(y)| greater than sup |F:(¥) — .E‘[y'l |. After
¥ ¥ &
discarding the 5% simulated samples with the highest distance sup [F;(y) — G(y}|, we built
¥
the QQ-plot for each of the 95% remaining samples. The envelope of these QQ-plots gives

REI.QS-

After the distributional assumptions of the model (Eq. (1)) have been checked, the
standard error of the estimates of the reference limits are computed as the standard
deviation of the K; reference limits that can be computed using equation (Eq. (2)) but
with the Monte-Carlo sample ¢, instead of i

3. Performance assessment

The objective of this simulation was to create samples from a
predefined model distribution and to see whether or not the proposed
method was able to recover this known distribution from the samples
thus created.

The following parameters were used for the model distribution
p=09,m;=3107=0014, A1 = — 018, my=2.90, 03 =0.022, Ay =
—0.26. These values are not purely fictive and, except for the value of
p, come from example 2 given hereafter. In this distribution, the 2
subpopulations of healthy and diseased subjects are not clearly
separated and greatly overlap.

The true reference limits of the healthy subpopulation are given in
Table 1. As they have been determined from a distribution model and
are purely theoretical, there is no confidence interval for these values.

For each sample, the method gives a parameter estimate, the mean
of which is given in Table 1 for the simulations made as below. The
actual imprecision of the calculation is measured from the sample-to-
sample variation of this estimate. The standard deviation of this
variation is the standard error of the estimate (fourth line of Table 1).
In practice, only one single sample of size n is available for the
calculations, which makes it impossible to evaluate the sample-to-
sample variation. However, when n is large enough, it is possible to
calculate an approximation of this sample-to-sample variation using
the information matrix. The average of such approximations over
samples is named the asymptotic standard error (a.s.e.) and is given in
the second line of Table 1.

We simulated 100 samples of size n= 1000 and n= 10,000 and
used our method to separate the distributions of healthy and diseased
individuals. We estimated p and the limits of the reference interval of
the “healthy" distribution thus separated. Estimates of p and of the
reference limits from the 1000 and 10,000-samples are presented in
Figs.1and 2, and summarized in Table 1. In both cases, the means were
very close to the theoretical values, and the imprecision of the
estimates was two-fold higher for the 1000-sample than for the
10,000-sample series. When 10,000-samples were used, the mini-
mum and maximum estimations of p were 0.844 and 0.944, whereas
the true value was 0.9. Estimates of the lower limit of the reference
interval were very precise and accurate, whatever the number of
values. The more precise estimation of the upper limit of the reference
interval was obtained with the 10,000-samples, ranging from 145.3 to
167.4, whereas the true value was 155.76. This large imprecision can
probably be explained by the position of the actual upper limit of the
reference interval which is about at the mode of the distribution of
diseased individuals. We can see in Fig. 2 that estimations of the upper
limit are more often lower than the actual value of this limit. This
suggests that the distribution of the corresponding estimator is as
skewed as the distribution of the extreme values.

The estimates of the reference limits given by our method are
unbiased since the mean of the 100 estimates is close to the true value
for the 3 parameters. It can also be observed that the standard error of
the estimator is very close to the a.s.e. But a standard statistical result
shows that the maximum likelihood is the best estimate that it is
possible to build when n is large. Consequently, no unbiased estimate
with a smaller standard error exists, which implies that there is no
better estimation than the one thus provided.

The parameters that define the distribution of diseased individuals
are not well estimated in the above example. This can be explained the
low number of data available for the diseased individuals. The
population contains only 10% of diseased individuals therefore, the
samples of size n= 1000 and 10,000 contained about 100 and 1000
diseased individuals. These numbers of diseased individuals appear
too small for a precise estimation.

4. Two practical “real” examples

In this section, we show the results obtained when this method
was applied to two previously reported examples.

4.1. Example of plasma TSH concentration in human males

An indirect determination of the plasma TSH upper reference limit
was carried out using more than 19,000 unselected hospital results
[15]. A 2056-value sample was selected by the authors comprising
males for which repeat analyses had been discarded and the
corresponding histogram was published cf Fig. 1B of [15]. The
estimated upper limit, using the method proposed by Kairisto and
Poola [8] implemented in the program GraphROC, was 3.5 mIU/L. The



Table 1
Parameters of the simulated model distribution and estimations of the percentage of
healthy individuals and of the reference interval using the proposed method.

n= 1000 n= 10,000

r Lower lim. Upper lim. p Lower lim.  Upper lim.
True value  0.90 53.73 155.76 0.90 53.73 155.76
as.e 0.094 101 10.78 0.034 033 343
Mean 0.899 5353 155.8 0.886 53.34 154.49
S8, 0.045 118 9.62 0.022 0.6 5.19

(p = percentage of healthy individuals; Lower and Upper lim. = the limits of the
reference interval; a.s.e. = average of asymptotic standard errors; s.e. = standard
deviation of estimates obtained with the 100 samples).

only information available being a histogram, we did not have
individual data. We thus simulated individual data by assuming that
they were uniformly distributed within each histogram class. We
assumed that values included in negative classes corresponded to
results below the limit of quantification (LOQ) and deleted them
before subsequent analyses. The distribution of values above 0 was
assumed to be a mixture of two Gaussian distributions after Box-Cox
transformations. The observed and fitted distributions thus obtained
as well as the components of the mixture are presented in Fig. 3. The
overall shape of the distribution is very similar to the original one. The
percentage of individuals with a TSH concentration below the limit of
quantification was 4.21%. Using the proposed method, the estimated
percentage of healthy individuals with a TSH concentration above the
limit of quantification was 77.10%. The distributions of plasma
concentration of healthy (with TSH = LOQ) and diseased patients
were estimated to be Gaussian after a Box-Cox transformation with
parameters 0.2835 and — 1.433 respectively. Since 4.21% of individuals
were assumed to be healthy because they had a value below the LOQ,
the next step was to calculate the 97.50-4.21 = 93.29% quantile of the
distribution of the healthy individuals to obtain the upper limit of the
reference interval. This latter was estimated to be 3.770 4+ 0.333 mIU/L
which is slightly higher but very close to the estimate provided in the
original study. The diagnostic plot represented in Fig. 4 shows that the
proposed model is acceptable (P=0.05) as the observed QQ-Plot is
entirely contained within the confidence region.

4.2. Example of creatinine concentration in dog

A study to determine the diagnostic efficiency of plasma creatinine
and urea concentrations for the diagnosis of canine kidney diseases
finally included 3822 cases, of which 37% were healthy [16]. The
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Fig. 1. Estimated percentage of healthy individuals obtained from 100 samples of size
n=1000 and 100 samples of size n=10,000. The horizontal line is the value that
was used for simulations. This percentage is well estimated; the imprecision decreases
with n.
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Fig. 2. Estimated reference limits obtained from 100 samples of size n= 1000 and 100
samples of size n=10,000. The horizontal lines are the actual reference limits. The
lower reference limit is well estimated while the estimated upper reference limit has
quite a large imprecision probably because a larze percentage of diseased individuals
had concentrations close to this limit.

nonparametric reference interval was 53-151 pmol/L (90% confidence
intervals were 52 to 55 pmol/L and 148 to 159 pmol/L). As discussed
in this article, even if the health status of these animals was known,
there was no way of ensuring the quality of the diagnoses. We
therefore decided to ignore the available diagnoses in the present
study. The observed distribution of plasma creatinine in the 3822 dogs
is represented in Fig. 5. The diagnostic test described in the Proposed
methods section gave a P-value=0.580 thus showing that the
proposed model is acceptable.

The estimated percentage of healthy individuals was p =79.93%,
quite higher than the “true” percentage. The plasma concentration
distribution of healthy patients was estimated to be N(3.100;0.014)
after a Box-Cox transformation with parameter — 0.179. This led to an
upper limit of the reference interval of 160.9 + 8.7 umol/L, which is
close to the limit obtained in healthy dogs based on reported clinical
status [16].

When the method proposed by Baadenhuijsen and Smit [10] was
applied to the same data, the estimated upper limit was 135.1 pmol/L;
for a mixture of gamma distributions. Using the same method but
with the weighting scheme proposed by Oosterhuis et al. [11] we
obtained 142.6 nmol/L. In contrast the method of Kairisto and Poola
(with no use of external information) [8] gave 340.8 umol/L.

These large differences between the estimations could be explained:
1/ by the high sensitivity of Baadenhuijsen's method to the choice of
aligned points and 2/ by the threshold implied by the 44 SD rule in the
Kairisto and Poola method that keeps the data from diseased individuals
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Fig. 3. The histogram represents the observed TSH concentrations in human males
obtained from | 16]. The concentrations below the LOQ have not been represented (but
taken into account for the Rl determination (see text). The dotted, thin and thick curves
represent the TSH distribution obtained using the proposed method for the diseased,
healthy individuals and for the entire population respectively.
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Fig. 4. Diagnostic plot proposed in Section 2 for the TSH data. The empirical cdf F(thin
line} is totally included within the 95% confidence region (thick lines) or (P=0.05). The
assumptions about the model (shape of distributions) are thus in accordance with the
data.

for computation when no manual exclusion of data is performed. On this
example, the modification of the Bhattacharya method proposed by
QOosterhuis, Modderman and Pronk produced a reasonable estimate but
its imprecision cannot be computed.

5. Discussion

In this article we propose a method for estimating reference
interval of an analyte from a large set of data when the actual status of
the individuals in the analyzed sample is unknown. This method is not
new; it is currently considered as the gold-standard method for
mixtures analysis.

This method compensates some of the deficiencies of existing
methods used to determine reference intervals. Bhattacharya and
Baadenhuijsen's methods assume specific shapes, mainly Gaussian
and log-Gaussian, for the distributions of healthy and diseased. These
methods are not flexible enough to adapt to other distribution shapes,
unlike the proposed method. With these methods the computation of
reference intervals relies mainly on a graphical analysis that requires a
subjective choice of aligned points in a scatter plot. This choice
strongly influences the results obtained and the confidence intervals
for the provided estimates cannot be computed. Actually, these

600 -

5001 Q%

8

Number of patients
W
=

relatively “old” methods were well adapted to a time when
computations were not performed with computers.

When the actual distributions have a shape close to the assumed
one, the method that we propose provides, for large n, the maximum
likelihood estimation of the reference interval, i.e. the most precise
unbiased estimate that can be computed.

We also propose a method that allows rapid (and visual) checking
of whether or not these assumptions about shapes of distributions are
reasonable.

Although this method is an improvement on existing ones, it has
some weaknesses that restrict its use. First of all, it requires the
distributions to be Gaussian up to a Box-Cox transformation. This
assumption is essential for the method to give unbiased results.

Secondly, the method is designed to identify two subpopulations
and it succeeds in doing this even if the subpopulations are not the
ones which were expected. As an example, we used this method on
another dataset and it separated young versus old individuals instead
of healthy versus diseased ones.

Thirdly, this method correctly separates healthy individuals, but as
previously stated, the limits thus obtained are “rough estimates at
best”™ [1]. Even when this new method which minimizes the
imprecision of such estimates was used, the s.e. of the upper limit
was within the range of 5 to 10% in the simulations and in the
examples studied, which means, that the 90% confidence interval of
this limit was in the range of [140.0; 171.6] for n= 1000.

Fourthly, this method cannot be used to analyse serial measure-
ments in the same individual. As the method assumes that the random
variables are mutually independent, these data should be discarded
from the analysis. In practice, omitting repeated measurements often
reduces the number of available data.

Finally, this method estimates the distribution of the “minor” ie.
less represented subpopulation, with greater imprecision than that of
the major. This algorithm converges (ie. stabilizes after some
iterations) only when the distributions of healthy and diseased
individuals are different enough with regards to the sample size n.
Even very close distributions can be distinguished when n is very
large. On the contrary, this algorithm may fail to estimate quite
different distributions when only a small sample size is available. This
problem is connected with the general problem of identifiability of
mixtures [17].

A large number of refinements and extensions can be considered. [t
is likely that the skewness we assumed (Gaussian after a Box-Cox
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Fig. 5. Histogram of the plasma creatinine concentrations in dogs obtained from [17]. The dotted, thin and thick curves represent the creatinine distribution obtained for diseased
animals, for healthy animals and for the entire population respectively, using the proposed method.



transformation) for the distributions cannot cover all the situations
encountered in practice. However, following exactly the same EM
steps, other distributions can be used, such as the exponential family
(e.g. gamma, Weibull,....). An interesting study would be to try
distributions with different shapes and to use the graphical diagnostic
plot proposed in the paper to identify the shapes that are compatible
with the data.

Examples composed of 2 subpopulations (healthy versus diseased
individuals) are simplistic. Actual populations are more complex, e.g.
subpopulations of individuals affected by a different disease than the
one for which the analyte has been measured. Thus, a natural
extension of this work will be to build an algorithm that can deal with
an unknown number of subpopulations.

Finally, demographic variables such as age, gender, weight could be
used as covariates as in [ 18]. Even if these variables are not known for
each individual, they would help identify the populations separated,
thus minimizing the risk of wrongly “labelling” the identified
subpopulations as healthy or diseased.
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