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Abstract: Impact resistance of different types of composite sandwich beams is evaluated by 

studying vibration response changes (natural frequency and damping ratio). This experimental 

works will help aerospace structural engineer in assess structural integrity using classification 

of impact resistance of various composite sandwich beams (entangled carbon and glass fibers, 

honeycomb and foam cores). Low velocity impacts are done below the barely visible impact 

damage (BVID) limit in order to detect damage by vibration testing that is hardly visible on 

the surface. Experimental tests are done using both burst random and sine dwell testing in 

order to have a better confidence level on the extracted modal parameters.  Results show that 

the entangled sandwich beams have a better resistance against impact as compared to classical 

core materials.  
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1. Introduction 
 

The aim of composite sandwich structures is to increase the stiffness and specific 

strength and to reduce the weight so it is advantageous to employ them in aerospace 

applications where the challenge is to produce structures lighter and lighter. However damage 

in these structures may negate many of the benefits of sandwich construction. Impact can 

induce various types of damage in the structure. The facesheets can be damaged through 

delamination and fibre breakage; the facesheet and core interface region can be debonded and 

the core can be damaged through crushing and shear failure mechanisms. Safe and functional 

effectiveness of stressed sandwich structures can often depend on the retention of integrity of 

each of the different materials used in its manufacture. Therefore lightweight sandwich 
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materials used in next generation of more advanced aircraft, marine craft, road and rail 

vehicles must possess the capability to absorb high impacts. For aeronautical structures, a 

field where this problem has been extensively studied, the components have to undergo low 

energy impacts caused by dropped tools, mishandling during assembly and maintenance, and 

in-service impacts by foreign objects such as stones or birds. In these low energy impacts 

normally, a small indentation is seen on the impact surface. This level of damage is often 

referred to as barely visible impact damage (BVID).  

 

Although not visually apparent, low energy impact damage is found to be quite 

detrimental to the load bearing capacities of sandwich structures, underscoring the need for 

reliable damage detection techniques for composite sandwich structures. In recent years, 

vibration based damage detection has been rapidly expanding and has shown to be a feasible 

approach for detecting and locating damage. A detailed and comprehensive overview on the 

vibration based damage detection methods has been presented in references [1-5]. The basic 

principle of vibration based damage detection can be explained as follows. Any structure can 

be considered as a dynamic system with stiffness, mass and damping. Once some damages 

emerge in the structures, the structural parameters will change, and the frequency response 

functions and modal parameters of the structural system will also change. This change of 

modal parameters can be taken as the signal of initial damage occurrence in the structural 

system. Shift in natural frequency is the most common parameter used in the identification of 

damage. A large variety of works can be found in the scientific literature related to the study 

of structural damage by changes in natural frequencies [6-10]. However, in structures made of 

composite materials there seems to be a tendency to use damping as a damage indicator tool, 

as it tends to be more sensitive to damage than the stiffness variations, mainly when 

delamination is concerned. Therefore damping has been proposed in scientific literature as a 

more sensitive and attractive damage indicator as compared to natural frequencies [11-15].  

 

There has been considerable research on the impact performance and damage 

development in carbon fiber composite materials and sandwich composite materials; see for 

example references [16-19]. A comprehensive review of low-velocity impact responses of 

composite materials is presented by Richardson and Wisheart [20]. Dear et al. [21] studied the 

impact toughness of different lightweight sandwich panels and composite sheet materials. 

They emphasized on the degree of damage inflicted on the contact surface, through-thickness 

and rear surface of the materials when subjected to different impacts. Their aim is to develop 

lightweight stiff materials with enhanced structural integrity that can absorb higher impact 

energy. Vaidya et al [22] studied composite sandwich structures composed of aluminum foam 
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core and found it optimal for resisting low-velocity impacts. They also studied the vibration 

response of composite sandwich plates under a free-free-free-free boundary condition. They 

concluded that relationships can be established between the vibration response of the 

sandwich plate (natural frequency and damping ratio) and energy of impact. Similarly several 

novel sandwiches have been developed in scientific literature with a view to enhance the 

impact toughness [23-28]. 

  

In this paper we have made Low Velocity Impact (LVI) and post impact vibration tests 

to measure the impact resistance. More precisely we evaluated the resistance against impact 

of entangled sandwich materials in comparison with standard sandwiches with honeycomb 

and foam cores, is uniquely based on vibration test results i.e., decrease in natural frequency 

(global parameter of a structure) which signifies loss of rigidity and increase in damping 

which corresponds to friction in damaged zones. The authors want to clarify here, that impact 

toughness is only studied through vibration tests and the classical procedure used for 

determining the impact toughness i.e., Compression After Impact (CAI) has not been 

implemented as it is outside the scope of this work. Characterization of carbon and glass fiber 

entangled sandwich materials has been carried out both statically (compression and bending 

tests) and dynamically (vibration test) by Shahdin et al. [29,30]. Vibration tests verify the 

presence of high damping in the entangled sandwich specimens making them suitable for 

specific applications like the inner paneling of a helicopter cabin, even if the structural 

strength of this material is on the lower side. Shahdin et al. [31] also carried out the 

monitoring of impact damage in two types of carbon entangled sandwich beams (heavy and 

light). The light specimens have 2.5 times less resin than the heavy ones. Results show that 

the specimens with less resin are more sensitive to impact damage, have poorer static strength 

but on the other hand possess good damping capabilities. Unfortunately, little scientific 

literature can be found related to impact testing of entangled sandwich materials. One work 

that can be cited in this regard is that of Dean et al [32]. Their paper documents an 

experimental and numerical study of energy absorption in lightweight sandwich panels with 

entangled stainless steel fiber cores. The results show that the sandwich panel absorbs 40% 

more energy than the two separated face plates with classical core.  

 

As our research concerning entangled sandwich materials is still in the preliminary phase i.e., 

we do not master completely the fabrication process of entangled sandwiches, therefore for 

the instance comparison is only provided with standard sandwiches with honeycomb and 

foam cores. Comparison with enhanced sandwich structures e.g., honeycomb sandwiches with 

viscoelastic layer, etc is not in the scope of this work and shall be duly considered in future.  
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2. Material and Specimen 
 

 Six sandwich beam specimens are studied in this article. The main emphasis of this 

article is on the two entangled sandwich beams with carbon and glass fibers as core materials. 

The honeycomb and foam sandwich beams are only presented for comparison purposes. As 

the entangled sandwich material being a relatively new material is in the phase of extensive 

research at this moment. Therefore comparison with standard sandwich beams is essential in 

order to evaluate the performance of entangled sandwich materials.       

 

 Three of the six sandwich beams have entangled carbon fiber, honeycomb and foam as 

core materials. For the skin, unidirectional carbon-fiber/epoxy prepregs of T700/M21 are used 

[33].  The prepreg sheets are supplied by Hexcel composites. The upper and lower skins 

consist of four plies each with a stacking sequence of [0/90/90/0]. The thickness of each ply is 

0.125 mm. The mechanical properties of the prepreg T700/M21 are given in Table 1.  

 

 The other three sandwich beams have entangled glass fibers, honeycomb and foam as 

core materials. The skins of these three sandwich beams are made of glass woven fabric 

20823 supplied by Hexcel composites as well. The glass woven fabric is impregnated with the 

help of epoxy resin. The epoxy resin SR 8100 and injection hardener SD 8824 are used 

provided by Sicomin. The upper and lower skins consist of two plies each with a total 

thickness of 0.5 mm containing 50 % of resin. The thickness of the skins in case of glass 

woven fabric is kept similar to carbon fiber skins. The sandwich beam specimens are 

fabricated using an autoclave and an aluminum mold. The skin and the core are cured 

simultaneously in order to have an excellent bond. The physical properties of the glass woven 

fabric are set out in Table 2.  

 
 The honeycomb and foam cores can be selected from a wide range of metallic and 

non-metallic honeycomb cores and a variety of non-metallic foams. The honeycomb 

sandwich beams in this article are made of Nomex-aramid honeycomb core (HRH 10) 

supplied by Hexcel composites [34]. The honeycomb core has a nominal cell size of 6.5 mm 

and a core thickness of 10 mm. In case of the foam sandwich beams, the foam core has also a 

thickness of 10 mm and is provided by Rohacell (material 51 A). Mechanical properties of the 

honeycomb and foam cores are listed in Table 3 and Table 4 respectively. 
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 The core in case of the carbon entangled sandwich beam consists of carbon fibers 

(HTS-5631) that are made of a yarn of standard carbon filaments having a diameter of 7 µm. 

The length of the carbon fibers is 10 mm and their elastic modulus is 240 GPa. The fibers are 

provided by the company Toho-Tenax. In case of the glass entangled sandwich beam, the core 

consists of glass fibers made of glass filaments having a diameter of 14 µm. The length of the 

glass fibers is 10 mm with an elastic modulus of 73 GPa. The fibers are provided by the 

company PPG Fiber Glass Europe. For the cross-linking of carbon and glass fibers, epoxy 

resin SR 8100 and injection hardener SD 8824 are used provided by Sicomin as used in case 

of glass woven fabric for the skin material. A better vaporization is achieved if the resin is 

heated up to 35°C before being sprayed on the carbon and glass fibers. This allows the 

mixture of resin and hardener to become less viscous. The properties of the carbon and glass 

fibers used in the core of entangled sandwich beams are presented in Table 5.  

 

 All the test specimens presented in the article are carefully weighed using Mettler 

balance. The weights of the six sandwich beams are presented in Table 6.  
 
 The fabrication of honeycomb and foam sandwich beams shall not be explained as the 

fabrication process is simple and very well known. However, the fabrication of entangled 

sandwich beams is a relatively complex process. The carbon and glass fibers are cut with the 

help of a fiber cutting machine supplied by Matrasur Composites. The fibers are then 

separated by a blow of compressed air. The mixture of resin and hardener is then sprayed on 

the separated glass fibers by a spray paint gun. The fibers vaporized by the resin are then 

placed in the mold between the two skins. To produce good quality sandwich beams reliably, 

cure cycle is adopted as follows: 1 hour from the ambient temperature to 125°C, 1.5 hours at 

125°C and 1 hour from 125°C to the ambient temperature. In case of the glass sandwich 

beam, the core has 26 g of glass fiber and 17 g of epoxy resin approximately. For the carbon 

sandwich beam, the core has 30 g of carbon fiber and 22 g of epoxy resin approximately. The 

same mold, cure cycle and skins are used for the fabrication of honeycomb and foam 

sandwich specimens. An aluminum mold (300 x 65 x 11 mm) is used for the fabrication. A 

fiber core density of approximately 200 kg/m3 is chosen for the entangled sandwich core in 

case of both carbon and glass fibers.  

 

 

The six sandwich test beams are shown in Fig. 1.  
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3. Experimental Methods 
 
3.1. High quality vibration tests 

 
The experimental equipment used for vibration testing is shown in Fig. 2. The 

experimental set-up is that of a free-free beam excited at its center, based on Oberst method 

[35]. The Oberst method states that a free-free beam excited at its center has the same 

dynamical behavior as that of a half length cantilever beam. The test specimen is placed at its 

center on a B&K force sensor (type 8200) which is then assembled on a shaker supplied by 

Prodera (type EX) having a maximum force of 100 N. However the force sensor is not 

capable of measuring reliable response below 5 Hz. A fixation system is used to place the test 

specimens on the force sensor. The fixation is glued to the test specimens with a HBM X60 

rapid adhesive. The response displacements are measured with the help of a non-contact and 

high precision Laser Vibrometer OFV-505 provided by Polytec. The shaker, force sensor and 

the laser vibrometer are manipulated with the help of a data acquisition system supplied by 

LMS Test Lab for burst random testing and Ideas Test (B&K) for sine dwell testing.  

 

The center of the test specimens is excited at Point 14 as shown in Fig. 3. Each 

sandwich specimen is tested with two types of excitations i.e., burst random and sine dwell. 

For both the testing systems (LMS and B&K), the resolution is kept 0.25 Hz to allow a good 

shape of the resonance peaks at low frequency range and to have a reliable comparison of 

modal parameters between the two systems. Response is measured at 27 points that are 

symmetrically spaced in three rows along the length of the beam to have reliable identifiable 

mode shapes. The level of the excitation signal for both the excitations is chosen as 1N which 

is kept fixed during all the vibration tests conducted in this paper. With the help of LMS by 

using burst random excitation, we have the advantage of having in quick time the overall 

dynamic (modal) response of our structure if we are mostly concerned with frequency and 

mode shapes. In addition, this broadband type of testing helps us identify the modes that we 

can use later on for sine-dwell testing. However if we need precise damping measurements 

then sine-dwell testing becomes inevitable but the problem with it is the lengthy acquisition 

times.  

 

Burst random excitation is a broadband type excitation signal. 50% burst percentage is 

used for burst random excitation. Normally burst random excitations are leakage free but the 

first author after trying different window functions found out that by putting Hanning 

windows on both the excitation and response signals, better quality signals FRFs are obtained. 

The signal is averaged 10 times for each measurement point and the frequency band chosen is 
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0-2650Hz. Disadvantages of burst random excitation are that they removes distortion, has a 

medium signal to noise ratio, and are not able to characterize nonlinearity [37]. Jumping 

phenomenon (Sine dwell test with sweeping frequency up and down) is another indication of 

nonlinear vibration due to damage [38].   

 

Sine-dwell excitation is the discrete version of sine sweep. The frequency is not varied 

continuously, but is incremented by discrete amounts at discrete time points. The advantage 

of sine-dwell testing is its capability of detecting non linear structural dynamic behavior 

unlike the broadband excitations i.e., with sine dwell excitation we can differentiate between 

linear and non-linear effects because the excitation is at a single frequency [36]. As sine dwell 

testing requires larger acquisition times, so instead of studying the whole frequency band (0-

2650 Hz), acquisition is carried out only around the first four bending modes previously 

identified by burst random testing by keeping the same resolution.  

 

The modal parameters are extracted with the help of Polymax and Polyreference, 

integrated in the data acquisition systems, for burst random and sine-dwell testing 

respectively. The Polymax estimation method used by LMS acquisition system is a new non-

iterative frequency domain parameter estimation method based on weighted least squares 

approach. This Polymax least-squares complex frequency domain method is implemented in a 

very similar way as the industry standard Polyreference used by B&K system, which is a time 

domain least squares frequency domain method. Both of these methods work in similar 

fashion as follows:  

 

• Firstly we compute the sum of 27 FRFs then compare resonance peaks with MIF 

indicator.  

• We select a reduced band around each resonance separately. For consistent assessment 

of damping, a frequency interval of ± 20 Hz is chosen for each resonance peak for 

both Polymax and Polyreference, because by changing the frequency interval damping 

values can be affected.  

• We also use the polyreference stability diagram to ensure the accuracy of modal 

parameters. Indeed for reliable damping measurement, that value of pole should be 

chosen which displays a stable value for several model orders and if possible for each 

mode the value of poles should be chosen at the same model order to ensure that there 

is minimum uncertainty while comparing the damping values between different 

damage states.  
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One of the specific advantages of these two techniques lies in the very stable 

identification of the system poles and participation factors as a function of the specified 

system order, leading to easy-to-interpret stabilization diagrams. This implies a potential for 

automating the method and to apply it to "difficult" estimation cases such as high-order and/or 

highly damped systems with large modal overlap. As discussed previously, both Polymax and 

Polyreference are based on least-squares complex optimization methods, so both of them 

calculate the optimal pole value (frequency and damping) based on the 27 measurement 

points. We do not have access to the average values, variances or standard deviations for the 

27 FRFs as the estimated modal parameters are the results of an optimized process.                                    

The reference [39] explains these two estimators in detail.  

 

So from the above discussion it can be said that both Polymax and Polyreference 

methods work in similar fashion, so the difference in the resulting modal parameters if it is 

the case, is due to the difference in excitations than due to the different estimation methods. 

 

3.2. Low Velocity Impact tests 

 

The six sandwich beams tested in this article are damaged by drop weight impacts 

below the barely visible impact damage limit (BVID), in order to simulate damage by foreign 

impact objects such as stones or birds. The impact tests are carried out by a drop weight 

system as shown in Fig. 4, and a detailed cut away of the drop assembly is shown in Fig. 5.  
  

The impactor tip has a hemispherical head with a diameter of 12.7 mm. A force sensor 

(type 9051A) provided by Kistler is placed between the impactor tip and the free falling mass 

of 2 kg. The velocity before the impact is measured with the help of an optical velocity sensor 

from which the energy of impact can be verified. The combined weight of the impact head, 

freefalling mass, force sensor and the accelerometer is 2.03 kg. The size of the impact 

window is 80 x 40 mm2 which allows all the impact points to have the same boundary 

conditions and all the four ends are fully clamped. Further details on the impact test 

methodology of this drop tower can be found in the references [3,4]. 

 

A simple case of symmetrical impacts is studied in this article as unfortunately very 

little literature is available regarding impact tests on entangled sandwich materials. If 

satisfactory results are obtained, then asymmetric damage shall be studied in the future. The 

sandwich beams are impacted by taking into account the barely visible impact damage limit 

(BVID). BVID corresponds to the formation of an indentation on the surface of the structure 

that can be detected by detailed visual inspection and can indicate high damage. In the 
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aeronautical domain, BVID means an indentation of 0.3 mm after relaxation, aging etc 

(according to Airbus certifications). In this study, it is decided to take 0.6-0.8 mm of 

penetration depth as detectability criterion just after the impact [3,4] which corresponds to an 

indentation depth of approximately 0.3 mm by taking into account the above mentioned 

factors such as relaxation, aging, humidity etc. The idea behind the impact tests is to damage 

the specimens below the BVID limit, in order to detect by vibration testing the damage that is 

not visible through naked eye.  

However in case of honeycomb sandwich beams, it is difficult to induce the same 

amount of damage at different points in the same specimen, even if it is impacted with the 

same energy i.e., impacting at the honeycomb cell center and at the corner leads to different 

damages. Therefore, it is not possible to have the same density of damage in the honeycomb 

sandwich beams at the two impact points. This phenomenon is explained by taking the 

example of the carbon honeycomb sandwich beam impacted at 4 J shown in Fig. 6. The 

indentation depth at the impact point 1 is 0.1 mm due to impact at the honeycomb cell corner. 

Whereas the indentation depth at the impact point 2 is 0.5 mm because the impactor head has 

induced severe damage due to impact at honeycomb cell center. This phenomenon introduces 

asymmetry in the beams and highlights the difficulty in inducing a global symmetric damage.  

 

The impact energy is chosen in such a way that each sandwich beam has 

approximately the same level of damage i.e., below the BVID limit which is nearly invisible 

on the surface. The impact parameters and the indentation depths measured for the six 

sandwich beams are listed in Table 7. It shall be noticed that the dispersion in damage 

between the two impact points is smaller in case of the entangled and foam sandwich beams 

as compared to the honeycomb sandwich beams due to the phenomenon explained above. 

 

The data obtained during the drop weight impact tests carried out on the six sandwich 

beams is presented in Fig. 7.  

 

Two similar impacts have been performed on each sandwich beam. However, in order 

to clarify these plots, the three glass and three carbon sandwich beams are plotted separately 

and in addition, only one impact test result for each specimen is plotted. All the impact curves 

presented in Fig. 7 are low-pass filtered at 15 kHz to avoid a free frequency of the impactor at 

about 20 kHz. These curves, representative of all performed impact tests, are very classic in 

the literature [3-5]. In Fig. 7 a and 7 b, the impact forces are drawn as a function of time for 

the six sandwich beams. These curves are globally smooth and almost sinusoidal at low 

impact energy. It can also be seen, from the force-displacement plots of both the carbon and 
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glass sandwich beams (Fig. 7 c and 7d), that after the first damage in the classical sandwiches 

with honeycomb and foam cores there is a decrease in the force signal followed by 

oscillations which signifies damage and loss of rigidity in the material. But in case of both 

glass and carbon fiber entangled sandwich beams (Fig. 7 c and 7d), after the appearance of 

first damage the material continues to rigidify which is shown by a progressive increase of 

force signal. If we speak in terms of energy dissipation, it can be observed from the force 

displacement curves of the honeycomb and foam core sandwiches (Fig . 7c and 7 d) that the 

energy dissipation seems mostly due to the rupture mechanism. However in case of entangled 

sandwiches the behavior is different, it is possible that the energy dissipation might be 

predominantly due to damping as no oscillations or force signal loss is observed i.e., no 

apparent damage signs. 

This behavior can also be seen on the stress-strain curves of compression tests which 

are very classical in scientific literature [29,30]. Compression test results in case of standard 

sandwiches with honeycomb and foam cores exhibit that there is a progressive decrease in the 

stress level once the maximum elastic limit is attained. However for the entangled 

sandwiches, normally there is a densification phase after the maximum elastic limit which 

explains the rigid nature of the entangled sandwiches as compared to the honeycomb and 

foam sandwich beams tested in this paper. This rigid nature of entangled sandwich beams is 

also verified further ahead in this article while evaluating the resistance against impact by 

shifts in natural frequency.  

     The sandwich beams tested in this paper have two states. First one is the undamaged state 

(UD) and the second is the damage state due to two impacts (D1). Vibration tests are carried 

out on the six sandwich beams after each of these two states. The effect of impact damage on 

the modal parameters of the three types of sandwich beams is studied in the following 

sections of this paper with the help of frequency and damping changes between the 

undamaged (UD) and the damaged case (D1) with the help of Eq. 1 and Eq. 2.  
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where fUD(k) is the damped natural frequency for the undamaged specimen for the kth 

mode and fD1(k) is the damped natural frequency for the specimen damaged at two impact 

points (D1) for the kth mode. Nomenclature in case of Eq. 2 is the same.  
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3.3. Shift in modal parameters due to damage 

 

Modal parameter estimation is a special case of system identification where the a 

priori model of the system is known to be in the form of modal parameters. The identification 

process consists of estimating the modal parameters from frequency response function (FRF) 

measurements. Modal identification uses numerical techniques to separate the contributions 

of individual modes of vibration in measurements such as frequency response functions. Each 

term of the FRF matrix can be represented in terms of pole location and a mode shape. The 

FRF matrix model is represented mathematically by: 

[ ] [ ] [ ]modes

k 1

R(k ) R(k )*
H( )

(j (k ) p(k )) ( j (k ) p(k )*)=

! "
# = +$ %

# & # &' (
)       (3) 

The numerator R(k) is the residue of the FRF and is a function of the product between 

mode shape components at all points. The denominator gives the modal frequency and modal 

damping (second term in Equation (3) is the complex conjugate term also known as poles). 

The poles p(k), are the roots that satisfy this equation and are related to modal frequency and 

damping as follows: 

p(k ) (k ) j (k )= !" + #               (4) 

The magnitude of each pole is the undamped natural frequency (ωn). The undamped 

natural frequency (ωn) is related to the modal damped frequency (ωd) and the modal damping 

(! ) and also to the mass, stiffness and damping as follows:    
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The effect of physical properties on poles in the complex s-plane is illustrated in Fig. 8.  

 

 From Fig. 8, it can be observed that a change in stiffness affects only the frequency, 

while changes in mass and structural damping affect both modal damped frequency (ωd) and 

modal damping (! ). For this study, the primary interest is to study the decrease in the modal 

damped frequency (ωd) and the increase in modal damping (! ) due to damage in the 

sandwich specimens [40].  
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4. Results and discussions 
 
 
4.1. Effect of impact damage on modal parameters  

 
The effect of impact damage on the three types of sandwich beams is studied with the 

help of modal parameter shifts for the first three bending modes, as they have the largest 

amplitudes for the type of test configuration presented in this article. Frequency and damping 

ratios are the global parameters of the specimen, and are extracted from high quality 

measurements carried out on the 27 measurement points. The modal parameters (natural 

frequency and damping) help in monitoring globally the health of a specimen. For the first 

three bending modes, the variation of damped natural frequency as a function of the 

undamaged (UD) and the damage state (D1) for the six sandwich beams for both burst 

random (BR) and sine-dwell (SD) testing is presented in Fig. 9. 

 

Fig. 9 shows that as a result of impact damage, there is a decrease in the natural 

frequencies for the six sandwich beams as discussed before in section 3.3. It can be noticed 

that this decrease is less prominent in case of both the carbon and glass entangled sandwich 

beams as compared to the honeycomb and foam sandwich beams. It is also evident from Fig. 

9 that in case of natural frequencies, both burst random and sine-dwell testing give similar 

results. But the interesting fact is that for all the sandwich beams, even as the impact damage 

does not produce a visible damage on the surface, the change in frequency between the 

undamaged and the damaged cases is quite noticeable. This proves that there is a notable loss 

of rigidity without any signs of damage on the surface (with the exception of some impact 

points in case of honeycomb sandwich beams as discussed previously). It is particularly in 

these cases that vibration testing becomes a very useful tool for damage detection.  

 

The fact that the change in natural frequency between the damaged and the 

undamaged case is small in the entangled beams as compared to the foam and honeycomb 

beams can be seen in Fig. 10, which presents a comparison between the frequency response 

functions of the undamaged and the damaged cases for the six sandwich beams for the 1st 

bending mode. The frequency response functions presented in Fig. 10 are obtained with the 

help of sine-dwell testing. For the six sandwich beams, it can be concluded that the shift in 

natural frequencies is slight in case of entangled sandwich beams proving that they have a 

loss of rigidity that is less pronounced as compared to the honeycomb and foam sandwich 

beams. Furthermore in case of the three carbon sandwich beams (Fig. 10 a), the frequency 

response functions of the carbon entangled sandwich beam are more acute (smaller in width) 
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as compared to the honeycomb and foam sandwich beams. This phenomenon is less evident 

in case of the glass entangled sandwich beams (Fig. 10 b).      

 

It is noticed that in case of honeycomb sandwich beams, the level of damage is not the 

same on both sides of the beams as it depends on whether the honeycomb cell center or corner 

is impacted as discussed previously and shown in Fig.6. So this asymmetric damage leads to 

distortion of the resonance peaks or the appearance of twin peaks instead of one. This is 

evident in Fig. 11, which shows a comparison of the sum of the frequency response functions 

(FRF), estimated by burst random testing, for the six sandwich beams for the undamaged 

(UD) and the damaged cases (D1) for the 3rd bending mode. The sum of the FRF can be 

compared as for each sandwich beam 27 symmetric measurement points have been chosen 

that are symmetric on both sides of the two major axes of symmetry. 

 

Fig. 11 b and Fig. 11 e show that in case of honeycomb sandwich beams due to 

asymmetric distribution of damage the shape of peaks become distorted. A slight distortion of 

peak is also observed in case of the entangled glass beam in Fig. 11 d. But on the whole for 

the entangled and foam sandwich beams the damage is pretty much symmetric and peaks 

remain intact. Both burst random and sine-dwell testing give similar natural frequency results 

in the presence of damage. We can say that frequency estimation is then reliable and so on we 

are able to detect damages from frequency shifts in the FRF. Estimating damping with 

reliability is more difficult [41]. That’s why we use two Modal Parameter Estimators  

POLYMAX in the frequency domain and POLYREFERENCE in the time domain. Both 

algorithms are based on least-squares optimization on 27 experimental FRFs to fit poles from 

analytical data (complex conjugate poles of Eq 3) with experimental FRFs. Finally damping 

ratios can be wiewed as equivalent linearized damping ratios. However, for the estimation of 

damping ratios for the damage state D1, there is a notable difference between the results of 

burst random and sine dwell testing as shown in Fig. 12, because sine dwell excitation can 

differentiate between the linear and non-linear effects as the excitation is at a unique 

frequency. 

 

 It can be seen in Fig. 12 that in general the damping increases with the increase in 

damage in the sandwich beams. Nonetheless in case of burst random testing, for the carbon 

entangled and the carbon honeycomb sandwich beams (Fig. 12 b) and for the carbon foam 

sandwich beam (Fig. 12 c), the damping decreases with damage. However sine dwell testing 

shows a logical increase of damping for these beams. Furthermore, the estimation of damping 

by sine-dwell testing for the damage state (D1) is always notably higher as compared to burst 
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random testing. It can be said that sine dwell testing is more capable of detecting non linear 

structural dynamic behavior (due to accumulation of damage as in state D1) unlike the 

broadband excitations. Furthermore, the change in damping ratios between the undamaged 

and the damaged case is smaller again in case of entangled sandwich beams. Therefore it can 

be concluded that the entangled sandwich beams show a better resistance to impact as 

compared to the honeycomb and foam sandwich beams, whereas all the beams have more or 

less the same level damage. This trend verifies somewhat the results of the impact tests 

carried out on these sandwich beams in Section 3.2. By taking into consideration these results, 

in terms of application the authors think that the entangled sandwich materials can replace the 

aluminum parts at the wing tips used to resist impact, as these aluminum parts are not load 

carriers. Hence the entangled materials can be used in these types of specific applications 

where static strength is not required but the main objective is the resistance to impact.  

 

 The effect of impact damage on the natural frequencies and damping ratios can be 

further elaborated by studying the frequency and the damping change ratios presented in 

Tables 8 and 9 between the undamaged (UD) and the damaged case (D1) for the six sandwich 

beams based on Eq. 1 and Eq. 2.  

 

Tables 8 and 9 show that the shift in modal parameters is less in case of the entangled 

sandwich beams which signifies that they possess better impact toughness as compared to the 

standard sandwich beams with honeycomb and foam as core materials. It can also be noticed 

that the change in damping ratios is greater in case of sine dwell testing, because the damping 

ratio estimated by sine-dwell testing is always higher in case of the damaged state (D1) as 

compared to the burst random testing. Furthermore, the results in Tables 8 and 9 underline the 

fact that the damping change ratios are more prominent than the frequency change ratios. The 

maximum damping change ratio is 310 % whereas the maximum frequency change ratio is 25 

%. It can be concluded from the above results that damping seems more sensitive to damage 

than the natural frequency variations in case of honeycomb sandwich beams. So it is 

reasonable to assume that damping may be used instead of natural frequency as a damage 

indicator tool for structural health monitoring purposes. However, the fact that damping is a 

parameter that is relatively difficult to estimate as compared to natural frequency has to be 

taken into account.  

   

5. Conclusion 
 

The aim of the article is to evaluate the resistance against impact of entangled sandwich 

beams by the pole shift which signifies loss of rigidity (decrease in natural frequency) and 
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increase in friction in damaged zone (increase in damping ratio).  A simple case of 

symmetrical impacts is studied and Low Velocity Impacts are done below the BVID limit in 

order to detect damage by vibration testing that is hardly visible on the surface. From the 

results it can be concluded that both carbon and glass fiber entangled sandwich beams show a 

better resistance to impact (based only on decrease in natural frequency) as compared to the 

honeycomb and foam sandwich beams, whereas all the beams have more or less the same 

level damage.  
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Nomenclature 
 

BR = Burst random testing 

SD = Sine-dwell testing 

UD = undamaged state 

D1 = damaged state at 2 points 

FRF = Frequency Response Function 

H(ω) = Frequency Response Function matrix  

j = Imaginary axis in the complex plane 

* = Complex conjugate 

ω(k) = Modal damped frequency for kth mode (rad/s) 

p(k) = Pole location for the kth mode 

R(k) = Residue magnitude (FRF/s) 

! (k) = Modal damping for kth mode 

ωn = Undamped natural frequency (rad/s) 

ωd = Damped natural frequency (rad/s) 

C = Structural damping matrix (force/velocity) 

K = Stiffness matrix (force/displacement) 

M = Mass matrix  

fk = Resonance frequency (Hz) for the kth mode 

! k = Damping ratio (%) for the kth mode 
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Table 1 

Physical properties of carbon/epoxy prepreg T700/M21 used as skin material in carbon 

sandwich beams 

Homogenized elastic modulus in the longitudinal direction (Ex) 67000 MPa 

Homogenized elastic modulus in the transverse direction (Ey) 67000 MPa 

Shear Modulus (G12) 5000 MPa 

Poisson Ratio (υ12) 0.4 

Volume density (ρ) 1550 kg/m3 
 
 
 

 

Table 2 

Properties of glass woven fabric used as skin in glass sandwich beams 

Elastic modulus in the longitudinal direction (Ex) 23000 MPa  

Elastic modulus in the transverse direction (Ey) 23000 MPa 

Shear modulus (G)  2900 MPa 

Poisson ratio (υ) 0.098 
 
 
 

Table 3 

Properties of Honeycomb core (Hexcel-aramid) 

Cell size 6.5 mm 

Density  31 kg/m3 

Compressive strength 0.89 MPa 

Compressive modulus 75.8 MPa 

Shear strength in longitudinal direction ( xz! )  0.65 MPa 

Shear modulus in longitudinal direction (Gxz) 29 MPa 

Shear strength in width direction ( yz! )  0.31 MPa 

Shear modulus in width direction (Gyz) 13.8 MPa 
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Table 4 

Properties of Foam core (Rohacell 51A) 

Density  52 kg/m3 

Tensile strength 1.9 MPa 

Compressive strength 0.9 MPa 

Elastic modulus (traction) 70 MPa 

Shear strength   0.8 MPa 

Shear modulus 19 MPa 

Elongation at break 3.0 % 
 
 
Table 5 

Properties of carbon and glass fibers used in the core of entangled sandwich beams 

Type of carbon fiber HTS-5631 

Length of glass fiber 10 mm 

Diameter of carbon fiber 7 µm 

Elastic modulus of carbon fiber 240 GPa 

Type of glass fiber Type E 

Length of glass fiber 10 mm 

Diameter of glass fiber 14 µm 

Elastic modulus of glass fiber 73 GPa 
 
 

Table 6  

Types and weight of the six sandwich beams tested in this article 

Type of Sandwich Beam Weight of  Sandwich Beam (g) 

Entangled Carbon 63 

Honeycomb Carbon 29 

Foam Carbon 27 

Entangled Glass 52 

Honeycomb Glass 24 

Foam Glass 29 
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Table 7 

Impact test parameters of the sandwich beams  

Indentation just after 

impact (mm) 

Type of Specimen 

 

Energy of Impact 

Measured (J) 

Point 1 Point 2 

Velocity of impact  

Measured (m/s) 

Entangled Carbon 4.9 0.1 0.15 2.21 

Honeycomb Carbon 3.9 0.1 0.5 1.98 

Foam Carbon 3.8 0.1 0.2 1.98 

Entangled Glass 6.2 0.2 0.15 2.49 

Honeycomb Glass 3.8 0.2 0.4 1.98 

Foam Glass 3.8 0.15 0.25 1.98 
 
 

 

 

Table 8  

Frequency change ratios (%) between the undamaged (UD) and the two damaged states (D1 

and D2) for the carbon and glass sandwich beams for both burst random (BR) and sine dwell 

(SD) testing  

Type of Specimens Between 

States 

Mode 1 Mode 2 Mode 3 

 BR SD BR SD BR SD 

Foam Glass (4J) UD and D1 14.2 14.2 21.4 21.6 18.0 18.2 

Honeycomb Glass (4J) UD and D1 10.4 9.7 8.0 7.9 9.7 9.4 

Entangled Glass (6J) UD and D1 5.8 5.5 7.2 7.1 8.2 7.6 

Foam Carbon (4J) UD and D1 25.2 25.6 15.3 15.5 22.6 22.7 

Honeycomb Carbon (4J) UD and D1 14.4 14.9 7.2 8.6 12.8 12.4 

Entangled Carbon (5J) UD and D1 2.2 2.2 2.1 2.2 2.8 2.9 
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Table 9  

Damping change ratios (%) between the undamaged (UD) and the two damaged states (D1 

and D2) for the carbon and glass sandwich beams for both burst random (BR) and sine dwell 

(SD) testing  

Type of Specimens Between 

States 

Mode 1 Mode 2 Mode 3 

 BR SD BR SD BR SD 

Foam Glass (4J) UD and D1 57.7 106.0 140.7 216.1 260.3 308.7 
Honeycomb Glass (4J) UD and D1 18.1 32.7 22.0 32.9 64.1 72.6 
Entangled Glass (6J) UD and D1 11.4 44.4 19.1 29.1 4.5 16.1 
Foam Carbon (4J) UD and D1 119.3 204.3 26.3 21.5 -55.9 70.8 
Honeycomb Carbon (4J) UD and D1 35.7 156.2 -49.4 2.01 32.3 37.5 
Entangled Carbon (5J) UD and D1 38.5 79.3 -3.5 19.1 4.1 31.1 
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Fig. 1. The six sandwich beams tested in this article with (a) carbon prepregs and (b) glass 

woven fabric as skin materials  
 

 
 

Fig. 2.  Diagram of the experimental set-up 
 

 
 

Fig.3.  Sandwich test beams with location of the two impact points, 27 measurement points 

and one excitation point (Point 14)  
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Fig. 4. Arrangement of the test equipment for the impact test  

 

 

 Fig. 5. Detailed cutaway of the drop assembly, the guidance tube and the blocking system  
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Fig. 6. Dispersion of damage between the two impact points in case of honeycomb carbon 

beam, impacted at 4 J 
 

  

  

 

Fig. 7. Impact test data (a,b) force-time  (c,d) force-displacement for each sandwich beams 

type: carbon (a,c) and glass (b,d)  
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Fig. 8. Movement of pole due to mass stiffness and damping effect 
 
 

  

  

  
 

Fig. 9. Variation of damped natural frequencies with damage states for (a) 1st bending mode, 

(b) 2nd bending mode and (c) 3rd bending mode for the carbon sandwich beams and (d) 1st 

bending mode, (e) 2nd bending mode and (f) 3rd bending mode for the glass sandwich beams: 

UD is undamaged state, D1 is damaged at 2 impact points for both burst random (BR) and 

sine-dwell (SD) testing 
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Fig. 10 Comparison of the frequency response functions estimated by sine-dwell testing for 

the undamaged case (UD) and damaged at 2 points (D1) for the 1st bending mode for (a) Point 

11 for the three carbon sandwich beams and for (b) Point 21 for the three glass sandwich 

beams 
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Fig. 11 Comparison of the sum of the frequency response functions estimated by burst 

random testing for the undamaged case (UD) and damaged case (D1) for the 3rd bending 

mode for (a) entangled carbon (b) honeycomb carbon (c) foam carbon (d) entangled glass (e) 

honeycomb glass (f) foam glass sandwich beams 
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Fig. 12. Variation of damping ratio with damage states (a) 1st bending mode, (b) 2nd bending 

mode and (c) 3rd bending mode for the carbon sandwich beams and (d) 1st bending mode, (e) 

2nd bending mode and (f) 3rd bending mode for the glass sandwich beams: UD is undamaged 

state, D1 is damaged at 2 impact points for both burst random (BR) and sine-dwell (SD) 

testing 
 
 


