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a b s t r a c t

Satellite transmissions classically use constant amplitude linear modulation schemes,

such as M-state phase shift keying (M-PSK), because of their high robustness to

amplifier non-linearities. However, other modulation formats are interesting in a

satellite transmission context. For instance, non-linear modulations such as Gaussian

minimum shift keying (GMSK) present a higher spectral efficiency and appear in new

standards for telemetry/telecommand satellite links. Another example is offset-QPSK

(OQPSK) modulation that allows one to decrease the out-of-band interference due to

band limiting and the non-linearity of the amplifier. To get a compromise between the

robustness to amplifier non-linearities provided by MPSK modulation and the spectral

efficiency given by QAM modulation, the recent broadcasting satellite standard

(DVB-S2) proposes new modulation schemes called APSK. Obviously, all satellite

systems that use various modulation schemes will have to co-exist. In this context,

modulation recognition using the received communication signal is essential. In that

context, this paper studies two Bayesian classifiers to recognize linear and non-linear

modulations. These classifiers estimate the posterior probabilities of the received signal,

given each possible modulation, and plug them into the optimal Bayes decision rule.

Two algorithms are used for that purpose. The first one generates samples distributed

according to the posterior distributions of the possible modulations using Markov chain

Monte Carlo (MCMC) methods. The second algorithm estimates the posterior

distribution of the possible modulations using the Baum–Welch (BW) algorithm. The

performance of the resulting classifiers is assessed through several simulation results.

1. Introduction

Satellite transmissions classically use constant

amplitude modulation schemes because of their high

robustness to amplifier non-linearities. Linear phase

modulation, or M-state phase shift keying (M-PSK), are

the most widely used. However, some non-linear modula-

tion formats appear in new standards for satellite commu-

nications. For example, Gaussian minimum shift keying

(GMSK) is a new modulation standard for telemetry/

telecommand satellite links. This class of modulation is

very interesting for satellite transmissions. It is actually

very robust to amplifier non-linearities. With proper choice

of parameters, it also allows one to obtain higher spectral

efficiency than that obtained with the traditional M-PSK

schemes. Particularly, the choice of a pre-modulation

Gaussian filter, associated to a modulation index h¼ 1
2,
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leads to a modulation with a very interesting compact

power spectral density. Two different GMSK schemes,

characterized by two different normalized bandwidths BT,

have been adopted by the consultative committee for space

data system (CCSDS) for future space missions [1]. More

precisely, for the packet telemetry for space-to-earth links,

the CCSDS recommends the GMSK modulation with

BT=0.25 (denoted GMSK25) for spacecrafts orbiting at the

altitude below 2 �106km and the GMSK modulation with

BT=0.5 (denoted GMSK50) at the altitude above 2

�106km. Another interesting modulation for satellite

transmissions is the offset-QPSK or OQPSK. This modula-

tion is a linear phase modulation similar to QPSK, except

that some phase changes are not allowed between two

consecutive symbols. This property leads to OQPSK

modulated signals that are less sensitive to spectral

sidelobe spreading than QPSK signals.

Thus the out-of-band interfering due to band limiting

and the non-linearity of the amplifier is decreased.

Quadrature amplitude modulations (QAM) are very inter-

esting compared to PSKs because of their higher spectral

efficiency. However, they are not use in a satellite context

because of their sensitivity to amplifier non-linearities.

The new satellite standard for broadcasting referred to as

DVB-S2 defines a kind of compromise between PSK and

QAM modulations called APSK. APSK are amplitude and

phase modulations defined by a reduced set of possible

amplitude values compared to QAM. As all satellite

systems using various modulation formats will have to

co-exist, it is important to be able to recognize the

modulation associated to the received communication

signal. In particular, identifying the modulation is im-

portant for spectrum monitoring to check whether the

user is authorized to send this modulation. The modula-

tion classification problem is also interesting in non-

cooperative scenarios where there is an emerging need for

intelligent modem capable of quickly discriminated signal

types [2]. The application considered in this paper is

spectrum monitoring. Our objective is to identify the

constellation of a received communication signal assum-

ing this constellation belongs to a known dictionary.

Various strategies have been proposed in the literature for

the classification of linear modulations. The most popular

modulation classifier (often referred to as optimal classi-

fier) is probably the Bayes classifier that minimizes the

average probability of error (or an appropriate average

cost function). However, the Bayes classifier is difficult to

implement due to its high computational complexity.

Moreover, it is not robust to model mismatch due to

transmission impairments, such as synchronization errors

or residual channel. To overcome the difficulties inherent

to the Bayesian classifier, several suboptimal likelihood-

based classifiers have been proposed in the signal

processing and communication literature (see for example

[3–6]). An alternative to likelihood based classifiers is to

extract interesting features from the observations and to

use these features for classification. In this case, the key

point is to find the ‘‘appropriate’’ set of features depend-

ing on the considered communication system. Many

features have been proposed in the literature, including

statistical moments [7] or higher-order statistics [2].

This paper studies new strategies to classify linear and

non-linear modulations. The first strategy is based on a

practical suboptimal Bayes classifier using a ‘‘plug-in’’ rule

initially proposed in [8]. It can be applied to recognize M-

PSK classical schemes, as well as M-QAM (M states QAM)

or M-APSK (M states APSK) modulations. The main idea is

to estimate the unknown model parameters by Bayesian

estimation combined with Markov chain Monte Carlo

(MCMC) methods. The estimated parameters are then

plugged into the posterior probabilities of the received

modulated signal (conditionally to each class). The

classical maximum a posteriori (MAP) classification rule

is finally implemented with these estimated probabilities.

Unfortunately, the complexity of this MCMC classifier

may be prohibitive for some practical applications. To

overcome this difficulty, we consider a new digital

modulation classifier based on hidden Markov models

(HMMs) to classify linear modulations transmitted

through an unknown finite memory channel and cor-

rupted by additive white Gaussian noise (AWGN). This

classifier is based on a state trellis representation,

allowing one to use a modified version of the Baum–

Welch (BW) algorithm (proposed in [9] for speech

recognition) to estimate the posterior probabilities of

the possible modulations. These posterior probabilities

are then plugged into the optimal Bayes decision rule.

This BW classifier, initially introduced in [10], is interest-

ing since it can be used to recognize OQPSK modulation

from other linear phase modulations. Indeed, since some

transitions are not allowed in case of OQPSK, a distinct

state trellis representation from QPSK can be defined. The

BW classifier then exploits this state trellis representation

for modulation classification.

Classifying non-linear modulations has received less

attention in the literature. Several methods for classifying

full response binary CPMs with rectangular pulse shape

and different modulation indexes have been studied in

[11,12]. A classifier based on an approximate likelihood

function for a multiple M-ary frequency shift keying

(MFSK) signal propagating through a Rayleigh fading

channel has been developed in [13]. However, classifica-

tion problems involving GMSKmodulations have not been

considered in the literature (to the best of our knowl-

edge). Exploiting the fact that GMSK modulation is a

modulation with memory, the BW classifier can be used

for classifying the two non-linear GMSK modulations

recommended by CCSDS. Finally, we show that linear

modulations used in satellite systems (BPSK, QPSK, 8PSK,

OQPSK), as well as the non-linear standardized GMSK

modulation schemes, can be identified using the same

recognition process (the problem was initially introduced

in [14]). By associating a first order HMM to the received

baseband communication signal, the BW classifier can be

used to estimate the posterior distribution of the received

GMSK communication signals. The BW method for HMM

can also provide as a by-product the sequence of

estimated transmitted symbols using the MAP criterion.

This paper is organized as follows: Section 2 gives

some useful information regarding the linear and non-

linear modulations considered in this study. Section 3

presents a model of the received baseband communication



signal, including some practical channel impairments.

Section 4 recalls the classical MAP classification rule.

Sections 5 and 6 present the MCMC classifier and the BW

classifier. Simulation results and conclusions are reported

in Sections 7 and 8.

2. Linear and non-linear modulations

The emitted signal s(t) can be written as

sðtÞ ¼ Re½~sðtÞejoct�,

where ~sðtÞ ¼ Isðt,aÞþ jQ sðt,aÞ is the complex envelope

(or equivalent low-pass signal) associated to s(t),

a={ak,k=1,y} is the independent identically distributed

(i.i.d.) complex symbol sequence to be transmitted and

oc ¼ 2pfc , where fc is the carrier frequency. Note also that

Re(z) denotes the real part of the complex number z. The

modulation is called linear when ~sðtÞ linearly depends on

a, and non-linear in the other cases.

2.1. Linear modulations

The baseband complex envelope of a linearly modu-

lated signal can be written as

~sðtÞ ¼
X

k

akhðtÿkTÞ,

where h(t) is the pulse shape filter impulse response and T

is the symbol duration. The i.i.d. complex symbol

sequence a to be transmitted takes its values into a set

of Mj complex numbers fS0,S1, . . . ,SMj
g called constellation

representing a particular modulation.

2.1.1. Linear M-PSK modulations

classical M-PSK modulations are defined for MZ4 by

Sm ¼ exp j 2p
m

M
þ p

M

� �h i

, m¼ 0, . . . ,Mÿ1,

whereas BPSK modulation (M=2) is defined by

Sm ¼ expðjmpÞ,m¼ 0, . . . ,Mÿ1. For instance, BPSK (M=2),

QPSK (M=4) and 8-PSK (M=8) constellations that will be

considered in this paper are displayed in Fig. 1.

2.1.2. OQPSK modulation

Another important linear phase modulation is the

offset-QPSK or OQPSK. OQPSK is similar to QPSK except

that the I- and Q-channel pulses are offset in time by T/2 s

avoiding a simultaneous change at the symbol bound-

aries. Unlike QPSK signal whose phase changes at the

symbol boundaries can be 01, 7901, and 1801, the phase

changes at the symbol boundaries of OQPSK signal can

only be 01 and 7901. The consequence is to obtain an

OQPSK signal that is less sensitive to spectral sidelobe

spreading than a QPSK signal. Thus the out-of-band

interfering due to band limiting and the non-linearity of

the amplifier is decreased. As an example, Fig. 2 compares

the possible transitions from the state S2 ¼ expðjp=2Þ for
QPSK and OQPSK modulations. OQPSK is a particular case

of phase modulation in the sense that it is a modulation

with memory.

2.1.3. Linear M-QAM modulation

Quadrature amplitude modulations with M possible

symbols (M-QAM) are defined by Sm = Im + jQm, where

Im and Qm are independent and take their values in

f71,73, . . . ,7 ð
ffiffiffiffiffi

M
p

ÿ1Þg. This paper will consider 16QAM

(M=16) constellation that was considered in [2] in a
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Fig. 1. Classical linear modulation constellations.



context of digital modulation classification. This constel-

lation is illustrated in Fig. 1.

2.1.4. APSK modulation

Amplitude and phase shift keying modulations with M

possible symbols (M-APSK) are defined by

Sm ¼ Riexp j 2p
m

ni

þyi

� �� �

, m¼ 0, . . . ,niÿ1, i¼ 0, . . . ,Rÿ1,

where ni is the number of symbols having the same

amplitude value Ri (they are differentiated thanks to the

phase 2pm=niþyi) and R is the number of possible

amplitude values for the given APSK constellation. The

standard DVB-S2 uses 16-APSK (or 4-12-APSK, with R=2,

n0=4 and n1=12) and 32-APSK (or 4-12-16-APSK, with

R=3, n0=4, n1=12 and n2=16) constellations that are

illustrated in Fig. 3.

2.2. Non-linear GMSK modulations

This section recalls the principles of GMSK modula-

tions (the reader is invited to consult [15,16] for more

details). The GMSK signal is a partial response CPM signal

with modulation index 1
2 and a smooth shape frequency

pulse g(t) of length LT, where L 2 N. The function g(t) is

the global impulse response of two consecutive filters.

The first filter is rectangular of length T whereas the

second one is Gaussian with a normalized 3 dB band-

width BT. The global impulse response of the two filters

can be written:

gðtÞ ¼ 1

2T
Q 2pBT

tÿT

2
T
ffiffiffiffiffiffiffiffi

ln2
p

0

B

@

1

C

A
ÿQ 2pBT

tþT

2
T
ffiffiffiffiffiffiffiffi

ln2
p

0

B

@

1

C

A

8

>

<

>

:

9

>

=

>

;

,

where Q ðtÞ ¼
R1
t ð1=

ffiffiffiffiffiffi

2p
p

Þ expðÿðt2=2ÞÞdt.
The complex envelope of the GMSK signal can be

written as ~sðtÞ ¼ ejFðt,aÞ, where the transmitted i.i.d.

symbol sequence a taken from {71, 73,y,7(Mÿ1)} is

embedded in the time-varying phase

Fðt,aÞ ¼ p
X

k

akqðtÿkTÞ,

and where qðtÞ ¼
R t
ÿ1 gðtÞdt. For t 2 ½kT,ðkþ1ÞT�, the

time-varying phase can be written

Fðt,aÞ ¼ ykðt,aÞþfk,

where

� ykðt,aÞ ¼ p
Pk

i ¼ kÿLþ1 aiqðtÿiTÞ represents the changing

part of the time-varying phase in [kT, (k+1)T] and

� fk ¼ ½ðp=2Þ
PkÿL

i ¼ ÿ1 ai�mod ð2pÞ is the cumulative

phase (where [x]mod ð2pÞ denotes the angle of x

modulo 2p). The phase fk represents the constant

part of the time-varying phase in [kT, (k+1)T] that can

be recursively computed as fkþ1 ¼fkþpakÿLþ1.

A state of the GMSK signal is classically defined at t=kT as

sk ¼ ffk,akÿ1,akÿ2, . . . ,akÿLþ1g. The state sk corresponds to

a specific value of the time-varying phase FðkT ,aÞ. The
number of states of a GMSK signal is N=4MLÿ1 and the

different states will be denoted as s(1),s(2),y,s(N). Fig. 4

displays an example of the state trellis representing a

GMSK modulation with parameters BT=0.5, L=2 and M=2,

i.e., the transitions from time instant kT to time instant

(k+1)T (the number of states is N=8 for this example). The

set of possible states provides a set of possible values for

the complex envelop of the GMSK modulated signal taken

at t=kT. This set can be assimilated to a kind of

constellation, as shown in Fig. 5 for the two standardized

GMSK modulations corresponding to BT=0.5 and 0.25.
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3. Model of the received signal

3.1. AWGN transmission channel

The AWGN channel assumes that the emitted signal

s(t) is corrupted by a white Gaussian noise w(t) with

power spectral density N0/2. The associated complex

baseband Gaussian noise process will be denoted as
~wðtÞ. The received signal r(t) is first down-converted by

the receiver to recover its complex envelope ~rðtÞ. Fig. 6
recalls the structure of the standard down-convertor used

in this study [16]. After down-conversion, the received

baseband signal ~rðtÞ can be written

~rðtÞ ¼ Irðt,aÞþ jQ rðt,aÞ ¼ ~sðtÞ � f ðtÞþzðtÞ, t 2 R,

where f(t) is the impulse response of the two low-pass

(LP) filters, zðtÞ ¼ ~wðtÞ � f ðtÞ is a normalized complex-

valued additive Gaussian noise with variance s2
z and �

denotes convolution.

Assuming a perfect synchronization between the

emitter and the receiver, the complex envelope of the

received modulated signal, sampled at one sample per

symbol (t=kT), can be written

~rðkÞ ¼ ~sðkÞ � f ðkÞþzðkÞ, k¼ 1, . . . ,Ns, ð1Þ

where Ns is the number of symbols in the observation

interval. In absence of noise, the received constellations

for linear modulations are exactly the same as the emitted

ones when the Nyquist criterion is satisfied. The situation

is different when the emitted signals are GMSK modu-

lated. Fig. 7 shows emitted and received constellations

associated to the two standardized GMSK modulations,

when square root raised cosine LP filters are used in the

down conversion process. Note that these constellations

have been obtained in absence of noise, with a

roll-off factor a¼ 0:35 and a cutoff frequency adapted to

symbol duration. Fig. 7 indicates that the received signals

corresponding to GMSK modulations and QPSK

modulations are very similar in the presence of additive

noise. However, the classification rule proposed in this

paper will allow us to distinguish these modulations.

The baseband complex envelope of the received

modulated signal in (1) can be rewritten as

~rðkÞ ¼ dðkÞþzðkÞ, k¼ 1, . . . ,Ns ð2Þ

where dðkÞ ¼ ~sðkÞ � f ðkÞ. In the case of a linearly modulated

signal, when the transmitter and receiver filters are

matched, d(k) is an i.i.d. symbol sequence taking its values

in the set of the jth emitted constellation points fS1,S2, . . . ,
SMj

g. For a GMSK modulated signal, d(k) takes its values in a

different set (with 4MLÿ1 points) depicted in Fig. 7.

3.2. Channel impairments

In some scenarios, the received signal may suffer from

various impairments leading to more complex classifica-

tion problems. As an example, the noisy received com-

munication signal may be affected by carrier frequency

and phase errors and a residual channel due to imperfect

equalization. In that case, the baseband complex envelope

of the received signal sampled at one sample per symbol

at the output of a matched filter (linear modulation case)

can be written as in [2]

~rðkÞ ¼ ejðpðk=NsÞfr þfÞ
X

q

l ¼ 0

hldðkÿlÞþzðkÞ, k¼ 1, . . . ,Ns, ð3Þ
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where

� fr ¼ 2Nsðfcÿf̂ cÞ 2 ½ÿ 1
2 ,

1
2� is a carrier frequency offset (fc

is the carrier frequency of the received signal and f̂ c is

the frequency of the local oscillator in the receiver).

Note that these notations imply that fr is the

constellation rotation whose maximum value is p=2
for k=Ns,

� h=[1,h1,y,hq] is the residual channel coefficient

vector, and

� f is the carrier phase offset.

4. MAP classifier

For linear modulations and an AWGN channel, the

maximum likelihood (ML) classifier developed byWei and

Mendel [17] minimizes the probability of classification

error. Thus this classifier achieves the optimum perfor-

mance. However, the performance of the ML classifier is

significantly reduced in presence of channel impairments.

This section briefly recalls the principle of the Bayesian

classifier that will be considered in this paper.

Given the samples ~r ¼ ½~rð1Þ, . . . , ~rðNsÞ�, Bayes theory

provides a minimum error-rate classifier from the max-

imum a posteriori probabilities Pðljj~rÞ, j¼ 1, . . . ,c, where

l1, . . . ,lc denote the possible constellations (c is the

number of constellations to be classified). More precisely,

the Bayesian classifier is defined by the following rule:

assign ~r to li if Rðlij~rÞrRðljj~rÞ 8j¼ 1, . . . ,c, ð4Þ

where Rðlij~rÞ ¼
Pc

j ¼ 1 ci,jPðljj~rÞ is the cost function of

constellation li and ci,j is the cost of deciding li given that
~r 2 lj. The MAP classifier is obtained in the special case of

0ÿ1 cost functions

ci,j ¼
0 if i¼ j,

1 if iaj:

(

In that case, the Bayes decision rule (4) can be expressed

as

assign ~r to li if Pðlij~rÞZPðljj~rÞ 8j: ð5Þ

If all modulations are equally likely

PðljÞ ¼
1

c
8j,

the MAP classifier reduces to the ML classifier defined as

assign ~r to li if pð~rjliÞZpð~rjljÞ 8j: ð6Þ

The ML classifier selects the modulation of the samples ~r

as the one that maximizes the probability density

function (pdf) pð~rjljÞ using the I and Q samples as

sufficient statistics (where ~rðkÞ ¼ IðkÞþ jQ ðkÞ).

5. Markov chain Monte Carlo (MCMC) classifier

In absence of channel impairment, the ML classifier (6)

can be rewritten as follows:

assign ~r to li if lð~rjliÞZ lð~rjljÞ 8j, ð7Þ

where lð~rjljÞ is obtained by computing the logarithm of

the likelihood associated to class lj (whose constellation

consists of Mj symbols S1, . . . ,SMj
) and by removing

additive and multiplicative constants. Straightforward

computations allow us to express lð~rjljÞ as follows

lð~rjljÞ ¼
X

Ns

k ¼ 1

ln
1

Mj

X

Mj

i ¼ 1

exp ÿ 1

s2
z

J~rðkÞÿSiJ
2

� �

( )

: ð8Þ

The ML classifier (7) achieves the optimal solution for the

AWGN channel since it minimizes the average classifica-

tion error. It provides an upper bound of the expected

performance for a digital linear modulation classifier.

Note that criterion (8) can be viewed as a kind of distance

measure between the received symbols contained in ~r and

the symbol constellation S1, . . . ,SMj
.

In the presence of transmission impairments, a

practical solution consists of estimating the likelihoods

of the different classes and plugging the resulting

estimation in (7). This paper concentrates on the model

(3) defined by the unknown parameter vector h¼ ðfr ,f,hÞ.
Eq. (3) can be rewritten as follows:

F
ÿ1½eÿjðpðk=NsÞfr þfÞ ~rðkÞ� ¼ dðkÞþF

ÿ1½eÿjðpðk=NsÞfr þfÞzðkÞ�, ð9Þ

where Fÿ1 represents the inverse filter associated to the

residual channel.

5.1. Approximate likelihood

The first term of the right hand side of (9) is the kth

transmitted symbol, whereas the second term is a colored

noise whose distribution depends on the parameter

vector h. Neglecting the noise correlations, we propose

to approximated the log-likelihood lð~rjljÞ as follows:

lð~rjljÞC
X

Ns

k ¼ 1

ln
1

Mj

X

Mj

i ¼ 1

exp ÿ 1

s2
z

J~r�ðkÞÿSiJ
2

� �

( )

, ð10Þ

where

~r�ðkÞ ¼F
ÿ1½eÿjðpðk=NsÞfr þfÞ ~rðkÞ�: ð11Þ

This approximation considerably reduces the computa-

tional complexity of the log-likelihood. Indeed, an exact

computation of lð~rjljÞ would require to evaluate all

possible values of
Pq

l ¼ 0
hldðkÿlÞ which is clearly too

expensive for large values of q (there are Mq+1 possible

values of
Pq

l ¼ 0
hldðkÿlÞ). Of course the determination of

the approximate likelihood in (10) requires to know

h¼ ðfr ,f,hÞ. The estimation of h is addressed in the next

section.

5.2. Parameter estimation

Estimating the parameter vector h can be made by

using the method of moments as in [18]. However, ML or

Bayesian estimators are often preferred because of their

nice asymptotic properties. We propose to estimate the

unknown parameter vector h¼ ðfr ,f,hÞ, associated to

impairments described in Section 3, using the minimum

mean square error (MMSE) principle. The MMSE estimator

of h minimizing the quadratic cost function E½ðĥÿhÞ2� is
defined as the mean of the posterior distribution pðhj~rÞ

ĥMMSE ¼ E½hj~r�: ð12Þ



The determination of pðhj~rÞ relies on the Bayes rule

pðhj~rÞ ¼ pð~rjhÞpðhÞ
pð~rÞ , ð13Þ

where pðhÞ is the prior distribution of h. The priors

considered in this paper for the unknown parameters fr, f

and h are summarized below.

� Uninformative independent uniform priors are chosen

for the frequency and phase offsets, i.e., pðfr ,fÞ ¼
pðfrÞpðfÞ with p(fr)= I[ÿ1/2,1/2](fr) and

pðfÞ ¼

M

2p
I½ÿp=M,p=M�ðfÞ for an Mÿ PSK modulation,

2

p
I½ÿp=4,p=4�ðfÞ for other modulations,

8

>

>

<

>

>

:

ð14Þ

where I is the indicator function.

� Independent normal prior distribution N ð0,s2
hÞ are

selected for the residual channel FIR filter taps. A

suitable choice of parameter s2
h allows us to incorpo-

rate vague prior information about the parameter hl
(s2

h ¼ 0:01 will be chosen for the simulations con-

ducted in this paper).

A closed form expression for ĥMMSE using the approx-

imate likelihood defined by (10) and the priors defined

above cannot be obtained easily. Instead, we propose to

generate Ny samples h
i
,i¼ 1, . . . ,Ny distributed according

to the posterior pðhj~rÞ and to estimate h as follows

ĥMMSE ¼
Z

hpðhj~rÞdhC 1

Ny

X

Ny

i ¼ 1

h
i: ð15Þ

The generation of ðy1, . . . ,yNy Þ distributed according to

pðhj~rÞ can be achieved by many different simulation

methods. This paper proposes to use the Metropolis–

Hastings (MH) algorithm whose main principles are

recalled in the next section (the reader is invited to

consult [19] for more details).

5.3. The Metropolis–Hastings algorithm

The MH algorithm is one of the most popular MCMC

methods. It allows one to draw samples distributed

according to pðhj~rÞ by running an ergodic Markov chain

whose stationary distribution is the target distribution

pðhj~rÞ. The Markov chain state space and current state are

denoted by O and yn ¼ ðf nr ,f
n
,h

nÞ 2 O, respectively. At

each iteration, a candidate z is drawn according to an

instrumental distribution qðzjynÞ. This candidate is ac-

cepted with the following acceptance probability:

aðyn,zÞ ¼min 1,
pðzj~rÞqðynjzÞ
pðynj~rÞqðzjynÞ

� �

: ð16Þ

A fundamental property of the MH algorithm is that any

instrumental distribution qðzjynÞ can be chosen, provided

that the support of pðzj~rÞ is contained in the support of

qðzjynÞ [19]. This paper proposes to draw z from a local

perturbation of the previous sample, i.e., z¼ ynþe, leading
to the well-known random-walk MH algorithm. In this

case, the instrumental distribution is of the form

qðzjynÞ ¼ gðzÿynÞ. Interestingly, the choice of a symmetric

distribution for g leads to an acceptance probability which

is independent on q. The first generated samples h
i are

usually not considered for the estimation of ĥMMSE. These

first samples belong to the so called burn in phase.

Instead of updating the whole of h en bloc, it is often

more convenient and computationally efficient to divide h

into k blocks and to update each block one-at-a-time. This

procedure has been suggested by many authors (see [20]

for more details) and has been shown to improve the

mixing property of the sampler. Thus, we propose here to

update h one component at-a-time. This strategy has

shown good performance for the classification of modula-

tions.

5.4. Plug-in classification rule

The classification rule resulting from the previous

generation of samples can be summarized as follows:

assign ~r to li if l̂ð~rjliÞZ l̂ð~rjljÞ 8j, ð17Þ

where l̂ð~rjljÞ is given by

l̂ð~rjljÞ ¼
X

Ns

k ¼ 1

ln
1

Mj

X

Mj

i ¼ 1

exp ÿ 1

s2
z

J~r�ðkÞÿSiJ
2

� �

( )

, ð18Þ

and where ~r�ðkÞ ¼ F̂
ÿ1½~rðkÞeÿjðpðk=NsÞf̂ r þ f̂Þ�. Note that the

classification rule explicitly depends on the parameter

estimates f̂ r , f̂ and ĥ (f̂ r is the estimate of the carrier

frequency, f̂ is the estimate of the carrier phase and F̂
ÿ1

represents the inversion of the residual channel using ĥ).

6. The Baum–Welch (BW) classifier

The BW classifier is based on a state trellis representa-

tion allowing one to estimate the posterior probabilities of

the received modulated signal conditionally to each class.

These posterior probabilities are then plugged into the

optimal Bayes decision rule. An interesting property of the

BW algorithm is that unknown parameter estimates, such

as the noise variance, can also be obtained as side results.

For modulation recognition purpose, the BW algorithm

requires to associate a first order HMM to the received

baseband communication signal. Section 6.1 describes

this model, while Subsection 6.2 recalls the main steps of

the BW algorithm.

6.1. Hidden Markov model

The received baseband signal ~rðkÞ in (2) can be

modeled as a probabilistic function of an hidden state at

time k which is represented by a first order HMM whose

characteristics are summarized below.

� The state of the HMM at time instant k is sk=ak for

MPSK and OQPSK modulated signals, whereas

sk ¼ ðfk,akÿ1,akÿ2, . . . ,akÿLþ1Þ for GMSK modulated sig-

nals. The state vector sk takes its values in a finite

alphabet denoted as {sk(1),sk(2),y,sk(N)} (sk(j) is the jth

possible value of sk). The size of this alphabet is N=M



for linear MPSK and OQPSK modulations and N=4MLÿ1

for GMSK signals.

� The state transition probability is defined by

dij ¼ P½skþ1 ¼ skþ1ðjÞjsk ¼ skðiÞ�,

and equals 1/M when all symbols are equally likely for

MPSK and GMSK modulated signals, whereas it equals

1/3 for OQPSK modulated signals.

� The initial state distribution vector p¼ ðp1, . . . ,pNÞT is

defined by

pi ¼ P½s1 ¼ s1ðiÞ� ¼ 1=N for i¼ 1, . . . ,N:

� Based on (2), the pdf of the observation ~rðkÞ condi-

tioned on state i, denoted as pi½~rðkÞ�9p½~rðkÞjskðiÞ� can be

written

pi½~rðkÞ� ¼
1

ps2
z

exp ÿ j~rðkÞÿmij2
s2
z

� �

,

wheremi denotes the ith constellation point. In the case

of an AWGN channel, mi=Si for MPSKs and OQPSK

modulations andmi is approximated by the ith value of

ejFðkT,aÞ for GMSK signals, for i=1,y,N. In the presence

of a residual channel, mi can be written as mi=h
TSi,

where Si is a q� 1 vector containing q possible values

of the constellation points.

6.2. The standard BW algorithm

The BW algorithm proposed in [9] for speech recognition

can be used to determine the posterior probability of the

observation sequence Pðlj~r,m,s2
z Þ, given a model l 2

fl1, . . . ,lcg (representing a modulation among the set of

all c possible modulations), where m denotes the vector

containing all possible constellation points (m¼ ½m1, . . . ,

mN �T in the case of an AWGN channel, while m¼ ½m1, . . . ,

mMq �T in the presence of a residual channel). The probability

of the observation sequence pð~rjm,s2
z ,lÞ for a given

modulation is classically defined as a summation covering

all possible state sequences. However, the direct computa-

tion of this summation requires high computational cost.

The main idea of the BW algorithm is to use a forward-

backward procedure which ensures a very efficient

computation. The forward-backward procedure repeats the

following three steps until convergence.

� Step 0: Initialization.

The noise variance s2
z and the constellation point

vector m are randomly generated according to their

prior distributions. In the presence of a residual

channel, the channel coefficients are initialized using

a fourth order cumulant based estimation [21]

ĥðkÞ ¼ ĉ4, ~r ðq,0,kÞ
ĉ4, ~r ðq,0,0Þ

, k¼ 0, . . . ,q, ð19Þ

where ĉ4, ~r ðt1,t2,t3Þ is an estimate of

c4, ~r ðt1,t2,t3Þ ¼ cumð~r�ðtÞ, ~rðtþt1Þ, ~rðtþt2Þ, ~r�ðtþt3ÞÞ

with

cumðw,x,y,zÞ ¼ EðwxyzÞÿEðwxÞEðyzÞÿEðwyÞEðxzÞÿEðwzÞEðxyÞ:

� Step 1: Compute the normalized forward variable

aiðkÞ.
Initialization

aið1Þ ¼ pipið~rð1ÞÞ, 1r irN,

cð1Þ ¼
X

N

i ¼ 1

aið1Þ
 !ÿ1

:

Induction for k=1,y,Nsÿ1, j=1,y,N

ajðkþ1Þ ¼ cðkÞpj½~rðkþ1Þ�
X

N

i ¼ 1

aiðkÞdij,

cðkþ1Þ ¼
X

N

i ¼ 1

aiðkþ1Þ
 !ÿ1

:

� Step 2: Compute the normalized backward variable

biðkÞ.
Initialization biðNsÞ ¼ cðNsÞ, 1r irN,

Induction for k=Nsÿ1,y,1, i=1,y,N,

biðkÞ ¼ cðkÞ
X

N

j ¼ 1

dijpj½~rðkþ1Þ�bjðkþ1Þ:

� Step 3: Estimate the model parameters.

m̂ i ¼
PNs

k ¼ 1 giðkÞ~rðkÞ
PNs

k ¼ 1 giðkÞ
,

ŝ2
z ¼

1

Ns

X

Ns

k ¼ 1

X

N

i ¼ 1

giðkÞjmiÿ~rðkÞj2,

where giðkÞ ¼ aiðkÞbiðkÞ.

In a batch mode implementation, steps 1–3 are carried

out iteratively with updated values of pj½~rðkÞ� until

convergence. The posterior probability of the observation

sequence given the model is then estimated as follows:

P̂ðlj~r,m,s2
z Þ ¼

PN
i ¼ 1 aiðNsÞ
PNs

i ¼ 1 cðiÞ
, ð20Þ

and will be used in the plug-in classification rule (see

Section 6.4).

Different modifications have been applied to the

standard BW algorithm to improve its performance or

reduce its computation complexity. One of these mod-

ifications presented in Section 6.3 is the adaptive BW

algorithm.

6.3. The adaptive BW algorithm

An adaptive version of the BW algorithm was proposed

in [22] to improve performance in terms of memory and

computation speed. This LMS-type update algorithm is

based on the following recursions:

m̂ iðkÞ ¼ m̂ iðkÿ1ÞþmmgiðkÞeiðkÞ,

ŝ2
z ðkÞ ¼ ð1ÿmsÞŝ

2
z ðkÿ1Þþms

X

N

i ¼ 1

giðkÞjeiðkÞj2
 !

,



where eiðkÞ ¼ ~rðkÞÿm̂iðkÿ1Þ for i=1,y,N. The initialization

and time-induction steps for the forward variable can be

computed as in the standard BW algorithm. The calcula-

tion of the backward variable can be obtained by using the

fixed-lag or sawtooth-lag schemes [23]. In this paper, we

have used the fixed-lag scheme.

6.4. Plug-in classification rule

Once the posterior probabilities of the observation

sequence given each possible model have been estimated

from (20), they are plugged into the optimal Bayes

decision rule yielding

assign ~r to li if P̂ðlij~rÞZ P̂ðljj~rÞ 8j¼ 1, . . . ,c, ð21Þ

where P̂ðlij~rÞ9P̂ðlij~r,m,s2
z Þ is obtained from (20). This

strategy, consisting of replacing the class posterior

probabilities in the optimal Bayesian classifier by their

estimates, is sometimes referred to as plug-in MAP rule

[24].

Note that the whole sequence of length Ns is required

to estimate the posterior probabilities of the different

modulations even if the on-line LMS-type update algo-

rithm has been used for the computation of m̂ iðkÞ and

ŝ2
z ðkÞ. Note also that the observation length Ns required to

properly identify the different modulations should be

greater than the maximum number of HMM states in the

class dictionary to ensure that any possible state can

be reached by the algorithm. Note also that this paper has

assumed that the different modulation formats are

equally likely, i.e., PðliÞ ¼ 1=c for i=1,y,c (where c is the

number of possible constellation, i.e., the number of

classes).

7. Simulation results

Many simulations have been carried out to evaluate

the performance of the proposed plug-in MAP classifiers.

All constellations have been normalized to unit energy.

The signal to noise ratio per bit is defined as Eb/N0 and the

signal to noise ratio per symbol as Es/N0, where Eb is the

energy per bit and Es is the energy per symbol at the input

of the receiver. The classification performance is the

average probability of correct classification defined as

Pcc ¼
1

c

X

c

i ¼ 1

P½assigning ~r to lij~r 2 li�:

The receiver is supposed to be dedicated to a specific

transmission system with a known particular set of

possible constellations. We have considered different

scenarios for our simulations. The first set of modulations

l¼ fBPSK,QPSK,8PSK,16QAMg has been considered for

comparison purposes with other methods available in

the literature. The second set of modulations l¼ fQPSK,
8PSK,16APSK,32APSKg is appropriate to DVB-S2 (the

proposed paper considers satellite transmission systems).

OQPSK modulation format has been added in the third set

of modulations because it is an interesting modulation for

satellite transmissions. The other sets of constellations

have been considered to show that the proposed classifier

can be applied to various communication systems. Note

finally that all described modulation formats (BPSK,

QPSK, OQPSK, 8PSK, 16QAM, 16APSK, 32APSK, GMSK25,

GMSK50) could be considered in the same set of

constellations. However, we have not considered this case

since all these constellations cannot currently appear in

the same transmission system.

7.1. Classification of linear modulations

This section studies the performance of the two

proposed classifiers to recognize linear modulations. The

MCMC classifier is able to cope with channel impairments

including noise, carrier phase, carrier frequency offset and

residual channel due to imperfect equalization. However,

it is not able to distinguish between OQPSK and QPSK

modulations. Indeed, the MCMC classifier is based on the

log-likelihood (8) which assumes that ~rðiÞ and ~rðjÞ are

independent for iaj. Thus it cannot be applied to OQPSK

modulations where successive symbols are correlated.

Conversely, the BW classifier allows one to estimate the

probabilities of moving from the different states of the

trellis. Thus, it can be used for constellations with

correlated symbols. However, the BW classifier is only

able to cope with some channel impairments (noise,

carrier phase offset and residual channel due to imperfect

equalization) and does not take into account carrier

frequency offset. Thus, it requires to use a preprocessing

step that compensates the carrier frequency offset.

7.1.1. MCMC classifier

This section first considers a classical problem intro-

duced in [2] for which

l¼ fBPSK,QPSK,8PSK,16QAMg:

The transmission impairments described in Section 5

include a carrier frequency offset fr, a three-tap residual

channel whose channel coefficient vector is h=[1,h1,h2]

and a carrier phase offset f. All simulations have been

obtained with 1000 trials belonging to each class li (i.e., a

total of 4000 trials). The number of symbols in each

observation interval is Ns=250. The MCMC sampler has

the following characteristics:

� number of burn-in iterations: Nbi=500,

� number of iterations: Ny ¼ 1500, and

� Instrumental distributions: qðzjyni Þ �N ðyni ,s2Þ where

s¼ 0:03.

The simulations compare the performance of the follow-

ing classifiers:

� the ML classifier (labeled ML) has been derived

assuming fr ¼f¼ 0 and h=[1,0,0],

� the MCMC classifier (labeled MCMC), Step

� the classifier derived in [2] (labeled HOS since it is

based on higher-order statistics).

The robustness of the MCMC plug in classifier to the

carrier frequency offset is illustrated in Fig. 8 without any



residual channel, i.e., with h=[1,0,0] (for Es/N0=5dB and

f¼ 0) and in Fig. 9 in the presence of a three-tap FIR

channel h=[1,0.25,0.15] (for Es/N0=5dB and f¼ 0). Fig. 10

studies the performance of the classifiers as a function of

the norm of the residual channels
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h21þh22

q

(for Es/

N0=5dB, fr=0 and f¼ 0). The effect of the phase offset,

keeping other parameters constant, is not presented here

because the HOS and MCMC classifiers are insensitive to

the phase offset. Moreover, the estimation of frequency

offset is in general more difficult than that of phase offset.

The MCMC classifier is clearly more robust to frequency

offset and residual channel than the ML and HOS

classifiers, at the price of an higher computational cost.

The second set of simulation considers modulations

related to the DVB-S2 standard, i.e.,

l¼ fQPSK,8PSK,16APSK,32APSKg:

Fig. 11 studies the performance of the MCMC plug in

classifier as a function of Es/N0, in the presence of a

residual channel defined by h=[1, 0.25+0.15j]. The

number of observed symbols is Ns=1024, f¼ 0 and fr=0.

The classification performance is satisfactory for this

example, i. e., for the operating points of DVB-S2 systems.

7.1.2. BW classifier

This section studies a three-class problem

l¼ fBPSK,QPSK,OQPSKg:

Since some particular transitions are not allowed for

OQPSK (see Section 2) the BW classifier can discriminate

OQPSK and QPSK signals even though they have the same

constellations. This simulation considers that BPSK, QPSK,

and OQPSK signals have a common baud-time (defined as

the minimum time between data transition). The same
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observation interval is simulated as it is more realistic.

The number of symbols of BPSK and QPSK signals is twice

the number of symbols of OQPSK signals. It is required to

adjust the value of the LMS step-size parameter mm for

each constellation. The values of mm used in this work

have been obtained by minimizing the average MSE of the

estimated parameters. The following results have been

obtained: mm ¼ 0:3 for BPSK, mm ¼ 0:6 for QPSK and

OQPSK. Fig. 12 shows a performance comparison

between the proposed BW strategy and the method of

Chugg and Polydoros [5]. The authors proposed a qLLR

classifier to identify BPSK/QPSK/OQPSK modulation types.

Due to difficulty in setting thresholds resulting from the

approximation of ALRT, the classifier works in two stages.

First, it distinguishes between {OQPSK} and {BPSK, QPSK}.

If the received signal is not OQPSK type, then it classifies

between BPSK and QPSK formats. Note that there is no

phase offset in this simulation. The threshold of the qLLR

classifier in Fig. 12 is an ideal threshold obtained by

maximizing Pcc over a large number of data and noise

realizations. Although this threshold setting is not

practical, it gives the best performance for the qLLR

classifier. It is obviously seen that the BW classifier

outperforms the qLLR classifier (even if the latter has

been used with the best threshold setting). The effect of a

phase offset to the BW classifier is also investigated. The

phase offset represents a synchronization error of the

local oscillator at the receiver and is obtained by rotating

the constellation with an angle f. The classification

performance for different Eb/N0 versus f is illustrated in

Fig. 13. Two values of the number of observed symbols

have been tested: Ns=100 and 500. Note that the same

methodology can be directly extended to discriminate

between p=4ÿQPSK and 8PSK signals and, of course, to

classify QPSK/OQPSK/p=4ÿQPSK=8PSK signals.

7.1.3. MCMC/BW classifier comparison

Fig. 14 compares the performance of MCMC and BW

classifiers in the presence of a residual channel defined by

h=[1,0.35+0.33j]. The set of considered modulations is

related to the DVB-S2 standard

l¼ fQPSK,8PSK,16APSKg:

The 32-APSK was not considered here since the

corresponding computational cost was prohibitive for

the BW algorithm. The number of observed symbols is

Ns=500, f¼ 0, fr=0. The classification performance is

similar for both classifiers.

Table 1 compares MCMC and BW classifiers in terms of

computation time using Matlab 7.4.0.287 (R 2007a). The

set of considered modulations is related to the DVB-S2

standard

l¼ fQPSK,8PSK,16APSK,32APSKg:

A QPSK constellation has been emitted and Es/N0 has been

set to 10dB. The needed time to test each possible

constellation of the dictionary has been measured and is
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given in seconds. The number of observed symbols is

Ns=500. It can be noted that the computational cost of the

BW classifier increases rapidly with the modulation order.

This is due to the increasing number of states in the

state trellis representation. When compared to the MCMC

classifier, BW classifier allows to reduce the computational

cost for small constellations but is more expensive when

higher order modulations are considered in the dictionary.

7.2. Classification of linear and non-linear modulation

This section adresses the problem of classifying

GMSK25, GMSK50, BPSK, QPSK and 8PSK modulations

with the BW algorithm. Actually as it can be observed in

Fig. 5, the constellations of GMSK25 and GMSK50 are very

similar (even without noise) and also very close to a QPSK

constellation. As a consequence, the MCMC classifier

would not be able to distinguish these two modulations.

Tables 2–4 present the confusion matrices of the

classifiers for different values of Eb/N0 (note that fr = 0,

f¼ 0 and that no residual channel has been considered).

The number of symbols in each observation interval is

Ns=500. It can be observed that the two GMSK signals as

well as the MPSK signals can be distinguished even at very

low values of Eb/N0. However, to distinguish among linear

modulations, the required operating Eb/N0 has to be much

higher especially when 8PSK modulations are present in

the dictionary.

Fig. 15 displays the classification performance as a

function of Eb/N0, for different values of the number of

symbols in the observation interval Ns (with fr = 0, f¼ 0

and no residual channel). A good classification

performance can be observed especially for small

values of Eb/N0 that are typical for satellite space

communications.

Classical linear receivers implement low-pass filters

that are square root raised cosine filters. These filters

depend on the same parameter called roll-off factor

(matched filtering for linear modulations). Obviously, in

the case of modulation recognition the emitted roll-off

factor is unknown. In this context, it is interesting to study

the effect of a roll-off mismatch on classification perfor-

mance. Fig. 16 displays the classification performance for

several values of the roll-off factors a of the square root

raised cosine filters used in the transmitter and the

receiver (aT and aR denote the transmitter and receiver

roll-off factors, respectively). The number of symbols in

each observation interval is Ns=500 and fr=0, f¼ 0,

h=[1,0,0]. The proposed classifier seems to perform

similarly for the different roll-off factor combinations.

The last simulations study the effect of a phase offset

obtained by rotating the constellation with an angle f

(this phase offset is due to synchronization errors at the

receiver) and fr = 0, h=[1,0,0]. The number of symbols in

each observation interval is Ns=500. Fig. 17 shows that

the classification performance seems to be robust to

moderate values of phase offset.

Table 1

Computation time comparison between BW and MCMC classifiers—Es/

N0=10dB.

Tested constellation QPSK (s) 8-PSK (s) 16-APSK (s) 32-APSK (s)

BW classifier 1.47 4.9 20.88 111.9

MCMC classifier 10.6 14.4 23.46 50.18

Table 2

BW classifier—confusion matrix for Eb/N0=0dB.

In/Out GMSK25 GMSK50 BPSK QPSK 8PSK

GMSK25 449 51 0 0 0

GMSK50 13 487 0 0 0

BPSK 0 0 500 0 0

QPSK 0 0 0 498 2

8PSK 0 0 0 0 500

Table 3

BW classifier—confusion matrix for Eb/N0=ÿ2dB.

In/Out GMSK25 GMSK50 BPSK QPSK 8PSK

GMSK25 406 94 0 0 0

GMSK50 46 454 0 0 0

BPSK 0 0 500 0 0

QPSK 0 0 0 457 43

8PSK 0 0 0 5 495

Table 4

BW classifier—confusion matrix for Eb/N0=ÿ6dB.

In/Out GMSK25 GMSK50 BPSK QPSK 8PSK

GMSK25 334 164 1 0 1

GMSK50 123 375 0 1 1

BPSK 0 0 488 4 8

QPSK 0 0 0 313 187

8PSK 0 0 0 81 419
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8. Conclusions

This paper addressed the problem of classifying linear

and non-linear modulations in the presence of noise and

of different channel impairments including carrier fre-

quency errors, carrier phase errors and residual channel

due to imperfect equalization. Two Bayesian classifiers,

referred to as MCMC classifier and BW classifier, were

studied. These classifiers estimated the posterior prob-

abilities of the possible modulations, and plugged them

into the optimal Bayes decision rule. The MCMC classifier

generated samples distributed according to the posterior

using Markov chain Monte Carlo (MCMC) methods. These

generated samples were used to estimate the unknown

model parameters that were plugged into the optimal

Bayesian classification rule. The second classifier esti-

mated the posterior distribution of the received commu-

nication signal using the Baum–Welch (BW) algorithm.

Several simulations showed the good performance of the

proposed classifiers. The MCMC classifier appeared to be

robust to channel impairments like noise, carrier phase

and frequency offset or a residual channel. However, it is

not able to recognize between QPSK and OQPSK modula-

tions and cannot handle non-linear GMSK modulations.

The BW algorithm was able to recognize classical linear

modulations but also OQPSKs and GMSKs. However,

carrier frequency errors have to be corrected in a

preprocessing step. Future works include the classifica-

tion of modulations appearing in new satellite commu-

nication standards. These modulations include orthogonal

frequency division multiplexing (OFDM) modulation for

mobile digital video broadcasting on handled receivers

(DVB-SH standard).
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