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Abstract 10 

Grain protein concentration of durum wheat is often too low, particularly in low-N-input systems. The aim of our study was to 11 

test whether a durum wheat - winter pea intercrop can improve relative yield and durum wheat grain protein concentration in low-12 

N-input systems. A 2-year field experiment was carried out in SW France with different fertilizer-N levels to compare wheat 13 

(Triticum turgidum L., cv. Nefer) and pea (winter pea, Pisum sativum L., cv. Lucy) grown as sole crops or intercrops in a row-14 

substitutive design. Without N fertilization or when N was applied late (N available until pea flowering less than about 120 kg N 15 

ha-1), intercrops were up to 19% more efficient than sole crops for yield and up to 32% for accumulated N, but were less efficient 16 

with large fertilizer N applications. Wheat grain protein concentration was significantly higher in intercrops than in sole crops 17 

(14% on average) because more N was remobilized into wheat grain due to: i) fewer ears per square metre in intercrops and ii) a 18 

similar amount of available soil N as in sole crops due to the high pea N2 fixation rate in intercrops (88% compared to 58% in 19 

sole crops). 20 
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Complementary resource use, grain protein concentration, land equivalent ratio (LER), nitrogen acquisition, nitrogen fixation, 22 
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Introduction 24 

The intensification of agriculture during the last 50 years has contributed, in some areas, to the appearance of problems such as 25 

soil erosion, environmental contamination by fertilizer and pesticides and also selection of diseases, pests, and weeds resistant to 26 

chemical treatments (Jackson and Piper 1989; Vandermeer et al. 1998; Griffon 2006). Consequently, the efficiency of agricultural 27 

systems needs to be improved and diversification of agro-systems has been proposed as one of several solutions for future 28 

agriculture (Altieri 1999; Griffon 2006). Intercropping (IC) - the simultaneous growing of two or more species in the same field 29 

for a significant period but without necessarily being sown and harvested at the same time (Willey 1979a) - could be one way to 30 

increase the number of species cultivated (Vandermeer et al. 1998; Malézieux et al. 2008). Grass-legume intercrops are common 31 

in natural ecosystems, but they are now rarely used in European countries, except in a few cropping systems for animal feeds 32 

(Anil et al. 1998). For these reasons there has been a renewed interest in intercropping (Anil et al. 1998; Malézieux et al. 2008) 33 

and particularly grain legume-cereal intercrops, which use available resources more efficiently than the corresponding sole crops 34 

(Willey 1979ab; Ofori and Stern 1987; Vandermeer 1989; Willey 1990; Fukai and Trenbath 1993). The advantage of such 35 

systems can be explained by the fact that the two intercropped species do not compete for exactly the same resource niche and 36 

thereby tend to use resources in a complementary way (Snaydon and Satorre 1989; Hauggaard-Nielsen et al. 2001ab). Cereals in 37 

particular seem to be more competitive for soil inorganic N (Jensen 1996) compared to grain legumes such as peas, due to faster 38 

and deeper root growth and the higher N demand of the cereal (Fujita et al. 1992; Corre-Hellou 2005; Hauggaard-Nielsen et al. 39 

2003; Corre-Hellou and Crozat 2005). Consequently, the grain legume increases its reliance on symbiotic N2 fixation (Li et al. 40 

2008). Furthermore, growing a grain legume-cereal intercrop at various N levels shows that the grain legume has a higher 41 

interspecific competitive ability at lower soil N levels, whereas that of the cereal is lower (Hauggaard-Nielsen and Jensen 2001; 42 

Ghaley et al. 2005). The complementary use of N sources between species could be of particular interest in low-N-input cropping 43 

systems and organic farming, particularly for cereals with high N requirements such as durum wheat. 44 

In 2007, in southern France durum wheat represented 19% of the cereal area and peas 76% of the legume area (AGRESTE 2008). 45 

Fulfilling the N demand of durum wheat is crucial to obtaining maximum yield and grain protein concentration (Garrido-Lestache 46 

et al. 2004). Consequently, durum wheat is generally fertilized with high levels of N in conventional cropping systems, which can 47 

lead to nitrate leaching during the following winter when drainage normally occurs (Abad et al. 2004). In low-N-input systems 48 

and organic farming, where N is often a limiting resource, it is difficult to reach the grain protein concentration threshold needed 49 

to avoid kernel vitreousness (Garrido-Lestache et al. 2004), which makes it unsuitable for high-quality pasta (semolina) 50 

production (Samaan et al. 2006) and hence for human consumption. 51 
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The advantages of legume-cereal intercrops are often assumed to arise from the complementary use of N sources by the 52 

components of the intercrop (Ofori and Stern 1987; Jensen 1996). Thus, when intercropped, the cereal should have access to a 53 

greater proportion of soil inorganic N because of greater interspecific competitive ability explained by a faster and deeper root 54 

growth and higher N demand of the cereal (Corre-Hellou and Crozat 2005), whereas the intercropped legume should increase its 55 

symbiotic N2 fixation to satisfy its N requirements (Crozat et al. 1994; Voisin et al. 2002) as compared with sole cropping 56 

conditions. 57 

In Europe, many studies on spring barley-pea intercrops have shown that relative yield and grain protein concentration of 58 

intercropped barley are higher than in sole crops (e.g. Hauggaard-Nielsen et al. 2003) and that the yield advantage depends 59 

greatly on N fertilization. In particular, Hauggaard-Nielsen and Jensen (2001) showed that spring barley-pea intercrop advantage 60 

for yield was maximum without N fertilization and significantly reduced when N was applied, mostly due to pea yield decrease 61 

with N supply. Similar results were found for spring wheat-pea intercrops (Ghaley et al. 2005). However, no information on 62 

winter wheat-grain legume intercrops is available, despite the fact that winter crops are more suited to southern European 63 

conditions in order to avoid water stress. 64 

The aim of our study was to evaluate the effects of N availability as modified by fertilization (quantity and splitting of doses) on a 65 

durum wheat-winter pea intercrop compared with sole crops by analyzing: i) N resource use, ii) crop production, iii) potential 66 

advantages for total yield, dry weight and grain protein concentration and iv) functional relationships between N acquisition and 67 

intercropping performances for yield and cereal grain protein concentration in order to better understand species 68 

complementarities for N use. 69 

70 
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Materials and methods 70 

Site and Soil 71 

The experiment was carried out on two experimental fields of the Institut National de la Recherche Agronomique station in 72 

Auzeville (SW France, 43°31’N, 1°30’E) in 2005-2006 (Exp. I) and 2006-2007 (Exp. II). The 25-year mean annual rainfall in 73 

Auzeville is 650 mm and the mean annual air temperature is 13.7 °C with a mean maximum daily air temperature of 21.9 °C in 74 

August and a mean minimum of 6.0 °C in January. The rainfall during the growing seasons was 361 mm and 468 mm for Exp. I 75 

and II, respectively, while the 25-year mean was 489 mm for the same period (November-July). Exp. I was characterized by a 76 

cold winter and a dry, warm spring, whereas the winter was warm and dry and spring particularly wet during Exp. II. In Exp. I, 77 

soil water content was lower during the growing season and water stress higher in spring. 78 

Exp. I was carried out on a plot with loamy soil (23% clay, 29% silt and 46% sand) with an available water capacity of 223 mm 79 

(0-150 cm). Soil pH in water was 8.0, indicating a calcareous soil as illustrated by the CaCO3 content (20 g kg-1) mainly in the 90-80 

120 cm layer (65 g kg-1). The topsoil (0-30 cm) contained 9.4 g kg-1 total C, 0.93 to 1.09 g kg-1 total N, a satisfactory phosphorus 81 

and potassium content and a cation exchange capacity (CEC) of 16.0 cmol+ kg-1. Exp. II was conducted on another plot with clay 82 

loam soil (26% clay, 34% silt and 28% sand) with an available water capacity of 207 mm (0-150 cm). Soil pH in water was 8.3 83 

with a large amount of CaCO3 (87 g kg-1), mainly in the 60-120 cm layer (165 g kg-1). The topsoil (0-30 cm) contained 9.9 g kg-1 84 

total C, 1.07 g kg-1 total N, adequate contents of phosphorus and potassium and a CEC of 21.3 cmol+ kg-1. For both experiments, 85 

phosphorus, potassium and CEC values were assumed to be non-limiting. The four previous crops on the experimental sites were 86 

durum wheat (Triticum turgidum), sunflower (Helianthus annuus), durum wheat and sorghum (Sorghum bicolor) for Exp. I and 87 

sunflower, durum wheat, sorghum and sunflower for Exp. II. In Exp. I, 7 t ha-1 sorghum residues with a C:N of 63 were 88 

incorporated on September 26, 2005 by tillage (20-25 cm depth). In Exp. II, 4 to 7 t ha-1 of sunflower residues - with a C:N 89 

varying between 31 to 55 according to the previous sunflower experiment - were incorporated on September 25, 2006 by tillage 90 

(20-25 cm depth) (see details in Table 1). 91 

Experimental design 92 

Durum wheat (W) (Triticum turgidum L, cv. Nefer, authority Eurodur) and winter pea (P) (Pisum sativum L., cv. Lucy, authority 93 

GAE recherche) were grown as sole crops (SC) and as a mixed crop (IC) in a row-replacement design. Three main treatments 94 

were compared: i) durum wheat (cv. Nefer) sole crops sown at the recommended density (336 grains m-2), ii) winter pea (cv. 95 

Lucy) sole crops sown at the recommended density (72 grains m-2) and iii) durum wheat-winter pea intercrops, each species sown 96 

at half of the sole crops densities in alternate rows. In Exp. I, final plant densities were 51 for sole cropped pea, 27 for 97 
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intercropped pea, 226 for sole cropped wheat and 112 plants m-2 for intercropped wheat. In Exp. II, plant densities were 56 for 98 

sole cropped pea, 27 for intercropped pea, 202 for sole cropped wheat and 101 plants m-2 for intercropped wheat. 99 

Wheat stages were identified according to the Zadoks scale (Zadoks et al. 1974). 100 

In both experiments, different fertilizer N sub-treatments were evaluated on intercrops and wheat sole crops while pea sole crops 101 

were grown only without any N application. In Exp. I we compared: i) no fertilizer-N (N0), ii) low N fertilization (N100) split 102 

into two applications of 50 kg N ha-1 at ‘1 cm ear’ (E1cm, Zadoks 30) and ‘flag leaf visible’ (FLV, Zadoks 37) and iii) moderate 103 

N fertilization (N180) split into 3 applications of 30 kg N ha-1 at wheat tillering (Zadoks 23), 100 kg N ha-1 at Zadoks 30 and 50 104 

kg N ha-1 at Zadoks 37. In Exp. II, four treatments were evaluated: i) no fertilizer-N (N0), ii) one application of 60 kg N ha-1 105 

(N60) at Zadoks 37 aimed at increasing grain protein, iii) one application of 80 kg N ha-1 (N80) at Zadoks 30 to increase yield and 106 

iv) a moderate N fertilization (N140) split into two applications of 80 kg N ha-1 at Zadoks 30 and 60 kg N ha-1 at Zadoks 37. In 107 

Exp. II, the previous crop was rainfed sunflower grown with four levels of fertilizer N: 50, 150, 0 and 100 kg N ha-1 for N0, N60, 108 

N80 and N140, respectively, which led to contrasting dynamics of N availability. As a consequence, the N60 treatment was more 109 

than the simple effect of a late N supply due to the previous treatment with sunflower, so we chose to name it N60+ in order to 110 

underline this point. The two experiments (I and II), combined with various N treatments, aimed to cover a wide range of N 111 

availabilities, which can be considered as low-N-input systems for durum wheat, a very N-demanding crop (up to 300 kg N ha-1 112 

for a 8 t ha-1 grain target). 113 

The experimental layout for both experiments was a randomized split-plot design with N application as main plots and crops as 114 

subplots, with five replicates (4 for wheat sole crops in N0 and intercrops in N180) in Exp. I and three replicates (5 for pea sole 115 

crops) in Exp. II. N treatments and replicates were separated by a barley (Hordeum vulgare) strip (6 and 12 m wide in Exp. I and 116 

II, respectively) in order to avoid border effects due to N fertilization. Each subplot (5 m x 1.84 m) consisted of 11 rows spaced 117 

14.5 cm apart. Seeds were sown using a 6-row pneumatic precision experimental prototype drill with 29 cm row separation. 118 

Sowing was done in two passes by moving to the right (14.5 cm) for the second pass and by blocking one row of the drill. The 119 

intercrop treatment consisted of 6 rows of wheat and 5 rows of pea spaced 14.5 cm apart, with alternate wheat and pea rows. 120 

Fungicide-treated seeds were sown on November 8, 2005 (Exp. I) and on November 9, 2006 (Exp. II). In Exp. II, 20 mm of 121 

irrigation water was applied after sowing because of the low water content in the topsoil. Weeds were controlled with a mixture 122 

of trifluraline (900 g ha-1) and linuron (450 g ha-1) before emergence. Diseases and green aphids were controlled as much as 123 

possible with appropriate pesticides. 124 

Measurements and analysis  125 

The number of seedlings in four rows of 1 m length was counted 1 month after emergence. 126 



  6

Crop samples taken from 0.5 m² (7 rows, 1.015 m total width, 0.5 m long) were harvested by cutting plants just above the soil 127 

surface at: i) the beginning of pea flowering (BPF) (1104 °C d-1 after wheat emergence (AWE) in Exp. I and 1281 °C d-1 AWE in 128 

Exp. II), coinciding with ‘flag leaf visible’ stage of wheat (Zadoks 37) and ii) at wheat flowering (WF; Zadoks 69) coinciding 129 

with the end of pea flowering (1401 °C d-1 AWE in Exp. I and 1746 °C d-1 AWE in Exp. II). At maturity, plots were mechanically 130 

harvested to determine total grain yield. pea sole crops were harvested at pea physiological maturity (1938 °C d-1 AWE in Exp. I 131 

and 2143 °C d-1 AWE in Exp. II) while wheat sole crops and intercrops were harvested at wheat physiological maturity (Zadoks 132 

92; 2429 °C d-1 AWE in Exp. I and 2824 °C d-1 AWE in Exp. II). Outside rows (2 rows on each side of the plot) were not 133 

harvested in order to avoid border effects. 134 

Samples were divided into pea and wheat and into grain and straw and dried at 80 °C for 48 h. At crop maturity, DW, yield, N 135 

and 15N excess of straw and grain were determined on 150 wheat straws (ears) and 20 pea plants, allowing the calculation of 136 

harvest index, N harvest index and grain protein concentration. 15N excess and total-N accumulated in shoots were also measured 137 

at the BPF and at WF. Total N and C were analyzed in sub-samples of finely ground plant material using the Dumas combustion 138 

method with a Leco-2000 analyser (LECO Corporation, St. Joseph, USA). 15N concentration was determined using an elemental 139 

analyzer (Euro-EA, Eurovector, Milan, Italy) coupled to a mass spectrometer (Delta advantage, Thermo-Electron, Bremen, 140 

Germany). 141 

Soil samples (0-120 cm depth) were collected with a hydraulic coring device with a 15-mm diameter auger (MCL3, Geonor, 142 

Oslo, Norway) a few days after sowing on November 14, 2005 (Exp. I) and on November 15, 2006 (Exp. II) and shortly after 143 

harvest on July 8, 2006 (Exp. I) and July 19, 2007 (Exp. II). Soil cores were divided into four layers: 0 to 30, 30 to 60, 60 to 90, 144 

and 90 to 120 cm. For each sample, five soil cores were taken at a distance of 1 m from each other to take into account soil 145 

variability. The five corresponding cores were then pooled before determining water content and mineral-N analysis. Soil mineral 146 

N content was determined after KCl (1 M) extraction by colorimetric reactions (Griess and Berthelot reactions for nitrate and 147 

ammonium, respectively) in a continuous flow autoanalyzer (Skalar 5100, Skalar Analytic, Erkelenz, Germany). 148 

Calculations 149 

The data used to calculate N balances are shown in Table 1. Mineralization of N residues, humus N mineralization and N leaching 150 

over the growing period were estimated using the STICS soil-crop model (Brisson et al. 2008) and parameter values recently 151 

proposed by Justes et al. (2009) for mineralization of N residues. Mineral N available (Navailable) was estimated for the two 152 

experiments as follows: 153 

FUENNleachingneralizatiominNminInitialNNavailable ×+−+=  154 

with FUE (apparent Fertilizer-N Use Efficiency) calculated as follows: 155 
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( )
N

NleachingneralizatiominNminInitialNNacNac
FUE NNNNNNNSCWNSCW 000)0()( −−−−− ∆−∆−∆−−

=  156 

where NacW-SC(N) is the N accumulated by the wheat sole crop with N fertilization and NacW-SC(N0) without N fertilization; ∆ is the 157 

difference between fertilizer-N and N0 treatments for: i) initial mineral N in soil (∆InitialNminN-N0), ii) net N mineralization from 158 

humus plus residues - which could lead to N immobilization - (∆NmineralizationN-N0) and iii) nitrate leaching below 120 cm 159 

depth (∆NleachingN-N0). 160 

The percentage of plant N derived from N2 fixation (%Ndfa) was determined using the 15N natural abundance method for un-161 

fertilized treatments (Amarger et al. 1979; Unkovich et al. 2008). In N-fertilized intercrops treatments a similar approach was 162 

used with some adaptation, i.e. taking into account as a reference crop the durum wheat in the intercrops fertilized at the same 163 

rate, making the rather dubious assumption that pea can take up the same mineral N in soil as durum wheat by exploring the same 164 

soil volume. The %Ndfa in sole cropped and intercropped pea was calculated using the natural variation in 15N abundance 165 

expressed in terms of δ units, which are the parts per thousand (‰) deviation relative to the nominated international standard of 166 

atmospheric N2 (0.3663% of 15N), for pea (δ15Npea) and for a reference crop (δ15Nref). The correction factor β reflecting the δ15N of 167 

legume shoots that are fully dependent upon N2 fixation was assumed equal to be -1‰ for pea according to Voisin et al. (2002). 168 

In this way it is possible to determine the degree of isotopic discrimination between the stable isotopes 14N and 15N to calculate 169 

the %Ndfa according to the equation provided by Shearer and Kohl (1986): 170 















−
−

×=
βδ

δδ

ref

pearef

N

NN
Ndfa

15

1515
100%  171 

The calculation assumes that the δ
15Nref provides a suitable measurement of the δ

15N of soil mineral N available for pea (Peoples 172 

et al. 2001; Unkovich et al. 2008). At wheat flowering and pea physiological maturity, the %Ndfa was calculated using as 173 

reference the average value between intercropped wheat harvested at wheat flowering and that harvested one month later at wheat 174 

physiological maturity. For the unfertilized treatments we also used a non-fixing mutant of pea (P2 cv. Frisson) as reference crop. 175 

We considered each N treatment separately in order to take into account the effect of N fertilizer on the δ15N of soil mineral N. To 176 

eliminate variations due to soil heterogeneity over short distances we took as δ15Nref the average of all the replicates of the 177 

intercropped wheat harvested at wheat flowering and of all the replicates of the intercropped wheat harvested at wheat 178 

physiological maturity and only one value for pea Frisson which did not grow very well (and with a developmental shift in 179 

comparison with cv. Lucy). 180 

Finally, N accumulated from air (QNdfa) was calculated as the product of accumulated shoot N and %Ndfa. 181 
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The land equivalent ratio (LER) is defined as the relative land area required when growing sole crops to produce the dry weight 182 

or yield achieved in intercrop (Willey 1979a). Dry weight LER for a wheat-pea intercrop is the sum of the partial LER values for 183 

wheat (LERDW-W) and pea (LERDW-P), in accordance with De Wit and Van Den Bergh (1965): 184 

SCW

ICW
WDW DW

DW
LER

−

−
− =  185 

SCP

ICP
PDW DW

DW
LER

−

−
− =  186 

PDWWDWDW LERLERLER −− +=  187 

where DWW-IC and DWP-IC are the intercrops (IC) dry weight per unit area for wheat and pea, respectively; DWW-SC and DWP-SC 188 

the dry weight per unit area achieved in sole crops (SC) for wheat and pea, respectively. LERDW was calculated separately for 189 

each IC replicate using the replicate values of DW for the numerators and the mean sole crops values across all replicates for the 190 

denominators to eliminate the variation in the ratio attributed to sole crop DW variability. Moreover, for LERDW-W we considered 191 

the same N treatment for the intercrops and the sole crops while LERDW-P was calculated with the unfertilized pea sole crop as 192 

reference because we hypothesized that N is not a limiting resource for legumes and did not affect pea DW. A value of LERDW 193 

higher than 1 indicates an advantage to intercrop in terms of improved use of environmental resources (light, carbon, water and 194 

N) for plant DW growth. Conversely, when LERDW is lower than 1, it indicates that resources are used more efficiently by sole 195 

crops than by intercrops. Moreover, partial LERDW values for wheat and pea can be compared with 0.5 because in intercrop each 196 

species is sown at half of the sole crops densities. As a consequence, a partial LERDW above 0.5 indicates that a mixed crop 197 

produces more than a sole crop (on a row or plant basis), and vice versa when partial LERDW is below 0.5. By analogy, we 198 

calculated the LER by considering the grain yield (Y) and, in order to evaluate the complementary N use between the crops, the 199 

accumulated N. We then chose to name them LERY and LERN, respectively. 200 

Statistics 201 

Analysis of variance was carried out using the AOV procedure of the 2.7.1 version of R software (R development Core Team 202 

2007) for each year, considering N treatments as the main factor, crops as a sub-factor and interaction between N treatments and 203 

crops. All data were tested for normal distribution using the Shapiro–Wilk test and pairwise comparisons were performed using a 204 

two-tailed t-test (P=0.05 or P=0.10) to compare N treatments within crops and crops within N treatments. According to Sheskin 205 

(2004), the significance of differences between treatments can be estimated using simple planned comparisons when comparisons 206 

have been planned beforehand, regardless of whether or not the omnibus F value is significant. Correlation coefficients calculated 207 

from linear regressions were statistically analysed using the table proposed by Fisher and Yates (1938). Finally, confidence 208 
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intervals for the means of LER values and partial LER values were calculated from replicates assuming normal distribution 209 

according to Sheskin (2004) in order to compare the means of LER with 1 and partial LER values with 0.5. 210 

211 
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Results 211 

N availability according to treatments 212 

Apparent N available depended greatly on the preceding crops and the differences in their N treatments, experimental N 213 

fertilization, N fertilizer efficiency, soil N mineralization (soil + crop residues), initial N mineral content and weather conditions. 214 

In Exp. I, soil N mineral content at sowing was 37 kg N ha-1 on average for all N treatments, while in Exp. II it was ca. 30 kg N 215 

ha-1 for N0 and N80 and ca. 50 kg N ha-1 for N60+ and N140 (Table 1). Considering the whole growing period, apparent N 216 

fertilizer-use efficiency (FUE) was ca. 63% for N100 and N180 in Exp. I and 11%, 58% and 56% for N60+, N80 and N140 in 217 

Exp. II, respectively. 218 

The mineralization simulated using STICS soil-crop model indicated that ca. 50% of residues and humus net N mineralization 219 

would have occurred between sowing and BPF and the other 50% between BPF and harvest due to increasing soil temperature. 220 

Throughout the growing period, residues and humus net N mineralization calculated in Exp. I were lower in N0 than in N-221 

fertilized treatments, due to a lower soil organic N content. In Exp. II, net N mineralization calculated was lowest for N0 and 222 

N80, highest for N60+ and intermediate for N140. 223 

Finally, apparent N available over the whole growing period was lowest for N0 for both experiments (ca. 92 kg N ha-1), highest 224 

for N180 (223 kg N ha-1) and intermediate for N60+ and N80 (ca. 147 kg N ha-1) and for N100 and N140 (ca. 170 kg N ha-1). N 225 

treatments differed also in the N availability dynamics; indeed, apparent N available calculated from sowing to BPF represented 226 

46% of apparent N available over the growing period for N100, 58% for N180, 65% for N0 and N60+ and 90% for N80 and 227 

N140. 228 

Finally, residual soil mineral N content measured at harvest on 120 cm depth was different between treatments (Table 1). Without 229 

N fertilizer, pea sole crop soil mineral N at harvest was significantly higher than that of the intercrop itself higher than that of the 230 

wheat sole crop. No difference was found between intercrop and wheat sole crop for N60+ and N80 while mineral N content at 231 

harvest was higher by 10 kg N ha-1 on average in intercrop than in wheat sole crop for N100 and N180 (Exp. I) and for N140 232 

(Exp. II). 233 

N complementarities in intercrop 234 

N acquisition and N accumulation in shoots 235 

As expected, sole cropped wheat N uptake and then N accumulation in shoots was positively correlated with N fertilization in 236 

both experiments (Fig. 1). Similar results were obtained for the intercropped wheat in Exp. I, while in Exp. II the maximum N 237 
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uptake was obtained with N60+ and the minimum with N0. Without N fertilizer, sole cropped pea always accumulated 238 

significantly (p<0.10) more N than the sole cropped wheat and than the whole intercrop. In N-fertilized plots, the whole intercrop 239 

accumulated more N than the sole cropped pea in Exp. I, but less or a similar amount in Exp. II, due to the decrease in the 240 

intercropped pea’s apparent accumulated N. The intercrop as a whole always acquired more N than the sole cropped wheat and 241 

the difference was reduced and became non-significant with the increase in N availability (N140 and N180). The intercropped 242 

wheat accumulated more than 50% as much N as the sole cropped wheat (70% and 78% on average for Exp. I and II, 243 

respectively). The higher the N availability, the larger was the difference between intercropped and sole cropped wheat. Finally, 244 

intercropped pea N acquisition was reduced with N fertilization compared to N0 except in Exp. I where the maximum was in 245 

N100. Moreover, in Exp. II no difference was found between N treatments for pea N accumulated. On average, for all N 246 

treatments, crops and years, N harvest index was 0.58 for wheat and 0.76 for pea. In Exp. I, wheat N harvest index was 0.75 for 247 

both sole crop and intercrop while in Exp. II it was 0.66 for sole cropped wheat and only 0.58 for intercropped wheat. N harvest 248 

index of the intercropped pea was ca. 0.78 whatever the N treatment and experiment while sole cropped pea N harvest index was 249 

0.73 and 0.64 for Exp. I and II, respectively. 250 

N2 fixation of pea 251 

We clearly observed that in our experiments, soil heterogeneity and N-fertilization affected δ15Nref more than the choice of crop 252 

reference or stage of sampling (Table 2). Indeed, we found that the non-fixing pea Frisson δ
15N was similar to that of the 253 

intercropped wheat in N0. No difference was found between intercropped wheat δ15N at flowering and at maturity (Table 2). 254 

Moreover, intercropped wheat δ15N was reduced with N fertilization compared with N0, except for N60+ in Exp. II, while no 255 

significant difference was found in N-fertilized treatments. The values of sole cropped pea δ
15N were slightly lower in Exp. II 256 

than in Exp. I and no difference was found between the two sampling dates for both experiments. 257 

The calculated percentage of total above-ground N acquisition derived from N2 fixation (%Ndfa) of the intercropped pea 258 

calculated was higher than that of the sole cropped pea for all N treatments (on average 85% and 64%, respectively in Exp. I and 259 

75% and 52%, respectively in Exp. II). In Exp. I, the %Ndfa of the intercropped pea was almost the same in N-fertilized plots and 260 

in N0 while in Exp. II, there was a large difference between the N treatments. A key point is that in Exp. II, N fertilization applied 261 

at the ‘visible flag leaf’ wheat stage (N60+), corresponding to the beginning of pea grain filling, seems not to have affected the 262 

legume %Ndfa compared with the unfertilized treatment (85 and 84%, respectively). Conversely, N fertilization (80 kg N ha-1) 263 

applied earlier at the beginning of wheat stem elongation (N80 and N140 in Exp. II) seems to have reduced the %Ndfa compared 264 

with N0 (60% for N80 and 70% for N140)[0]. 265 

Finally, the quantity of above-ground N accumulated derived from air (QNdfa) was maximum for the sole cropped pea and 266 

greater in Exp. I than in Exp. II (Table 1). In Exp. I, the QNdfa of the intercropped pea was greater in N100 than in N0 and N180. 267 
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On the other hand, in Exp. II, the QNdfa of the intercropped pea was the highest for N0, intermediate for N60+ and the lowest for 268 

N80 and N140. 269 

Land equivalent ratio for N accumulated in shoots (LERN) 270 

LER values calculated from shoot N accumulation (LERN) were always greater than 1, i.e. 1.15 on average for all N treatments 271 

and experiments, indicating an advantage of intercrops compared with sole crops for N accumulation (Fig. 2a). However, LERN 272 

were lower when a large amount of N fertilizer was applied (1.08 for N140 in Exp. I, 1.06 for N80 and 0.88 for N140 in Exp. II) 273 

compared with N0 (1.32 and 1.16 in Exp. I and II, respectively). Wheat partial LERN values were always greater than 0.5, i.e. 274 

0.73 and 0.78 on average for Exp. I and II, respectively. On the other hand, pea partial LERN values were close to or less than 0.5 275 

(0.48 and 0.31 on average for Exp. I and II, respectively). Wheat partial LERN values were the highest for N0 in Exp. I and for 276 

N60+ in Exp. II and lowest in Exp. I for N100 and N180 and for N0 and N140 in Exp. II. Finally, pea partial LERN values were 277 

slightly affected by N fertilization in Exp. I compared with N0 while values were significantly reduced with N fertilization in 278 

Exp. II (0.26) compared to N0 (0.46). 279 

Intercropping dry weights and yields and wheat grain quality 280 

Dry weight (DW) and yield (Y) 281 

Our results indicate that intercrops shoot biomass dry weight (DW) and yield depended on N availability (Fig. 3). On average, for 282 

all N treatments and crops, harvest index was 0.43 for wheat and 0.52 for pea. For both sole cropped and intercropped wheat, 283 

harvest index was 0.45 and 0.41 for Exp. I and II, respectively. Sole cropped pea harvest index was 0.49 and 0.47 in Exp. I and II, 284 

respectively, while intercropped pea harvest index was 0.52 and 0.54 in Exp. I and II, respectively and on average for all N 285 

treatments. 286 

The sole cropped and intercropped wheat DW and yield were significantly (p<0.10) increased by fertilizer N in Exp. I (Fig. 3). In 287 

Exp. II, sole cropped wheat DW and yield were significantly increased (p<0.10) from N0 to N80, while intercropped wheat DW 288 

and yield were highest in N60+ and clearly lowest in N0. For both experiments, intercropped pea DW and yield were 289 

significantly reduced with N fertilization (p<0.10), mostly when large amounts were applied (N180 in Exp. I and N140 in Exp. 290 

II). Thus, in Exp. I, total intercrop DW and yield were increased when fertilizer N was applied. In Exp. II, total intercrop DW and 291 

yield were the highest in N60+ and, surprisingly, the lowest in N140. Finally, wheat and pea sole crops DW and yield were 292 

always significantly higher (p<0.10) than their corresponding intercrop DW and yield, but seemed lower than the total intercrop 293 

DW and yield for treatments with little or no N fertilizer (N0, N60+ and N100). Conversely, increasing the amount of fertilizer N 294 
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(N180 in Exp. I, N80 and N140 in Exp. II), the sole cropped wheat produced significantly more DW and yield than the whole 295 

intercrop (p<0.10). 296 

Dry weight and yield land equivalent ratios (LERDW and LERY) 297 

LER values calculated from shoot biomass dry weight (DW) produced at harvest (LERDW) were approximately 1 or more in all 298 

treatments (p<0.05) except for N180 where it was significantly (p<0.05) less than 1 (Fig. 2b). This indicates that resources were 299 

used for DW production up to 17% more efficiently in intercrops than in sole crops in low-N conditions. On the whole, LERDW 300 

values were reduced with increasing N fertilization, particularly for treatments N180 (Exp. I) and N140 (Exp. II). For all N 301 

treatments, wheat partial LERDW values (LERDW-W) were always above 0.5 (p<0.05) and not significantly different from 0.5 302 

(p>0.10) for N0 and N140 in Exp. II. On the other hand, LERDW-P values were always equal to or significantly below 0.5 303 

(p<0.05). 304 

LERY were 1.19, 1.17 and 1.01 for N0, N100 and N180, respectively in Exp. I and 1.19, 1.11, 0.92 and 0.75 for N0, N60+, N80 305 

and N140, respectively in Exp. II (Fig. 2c), indicating that resources were finally used more efficiently in intercrops for yield 306 

when little or no N fertilizer was applied. Partial LERY-P were 0.49 and 0.64 in N0 in Exp. I and II, respectively and only 0.36 and 307 

0.23 for N180 and N140, respectively while partial LERY-W were always about 0.5 or more (p<0.05). 308 

The advantage of intercrops over sole crops was greater for N accumulation than for yield or DW, as already mentioned. Indeed, 309 

considering all the N treatments and experiments, LER values were 1.15 on average for LERN, but only 1.02 and 1.05 for LERDW 310 

and LERY, respectively. On average, wheat partial LER values were higher for N than for DW or yield (0.76, 0.63 and 0.62, 311 

respectively), while pea partial LER values were higher for yield (0.43) than for N (0.38) or DW (0.39). 312 

Intercropping advantage for wheat grain protein concentration 313 

Wheat grain protein concentration was on average 13% (Exp. I) and 15% (Exp. II) higher (p<0.05) in intercrops than in sole crops 314 

(Fig. 4) except for N180 (Exp. I). On average for both experiments, the linear regression (Fig. 4) indicates that the lower the sole 315 

crop grain protein concentration in N0, the greater was the increase in intercrop wheat grain protein concentration. Both sole 316 

cropped and intercropped wheat grain protein concentration were higher in N-fertilized plots compared with N0. The late split of 317 

N (N60+) in Exp. II resulted in a large increase in wheat grain protein concentration compared with N0 (28% in sole crop and 318 

24% in intercrop) and a similar result was found for N140 in Exp. II (49% in sole crop and 37% in intercrop). On the other hand, 319 

the single early split of N (N80) in Exp. II had a small effect on wheat grain protein concentration compared with N0 (10% and 320 

16% for sole cropped and intercropped wheat, respectively). In Exp. I, the increase in wheat grain protein concentration compared 321 

with N0 was about 64% and 27% for sole cropped and intercropped wheat, respectively on average for N100 and N180.  322 
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Functional relationships 323 

LER values of intercrops for yield (LERY) were strongly negatively correlated (p<0.01) with N accumulated by the whole 324 

intercrop at the beginning of pea flowering (Fig. 5a). This was mainly due to the significant reduction of partial LERY values of 325 

pea (LERY-P) with N accumulated by the intercrop (p<0.01), while partial LERY values of wheat (LERW-P) remained stable 326 

whatever the N accumulated by the whole intercrop (p>0.10). Similar results were found when plotting LERY and partial LERY 327 

values with mineral N available until BPF (Fig. 5b). As an interesting result, the two regressions obtained in Figs 5a and 5b 328 

indicate that LER exceeded 1 when the N accumulated in intercrop or the early mineral-N available was less than 120 kg N ha-1. 329 

On the other hand, LERY was slightly positively correlated (p<0.05) with the percentage of plant N derived from N2 fixation of 330 

the legume (Fig. 5c) while LERY-W and LERY-P were not correlated with the %Ndfa (p>0.10). When considering the amount of 331 

atmospheric N acquired by pea (Fig. 5d) a significant positive correlation was observed with LERY and LERY-P (p<0.05), but not 332 

for LERY-W (p>0.10). 333 

Finally, for both experiments and all N treatments, there was a negative correlation between wheat yield and wheat grain protein 334 

concentration for a given N level (Fig. 6). In Exp. I, correlations were highly significant for N0 (p<0.05) (Fig. 6a), but not for the 335 

N-fertilized treatments (p>0.10). In Exp. II, correlations were significant for N0 (p<0.01), N80 (p<0.01) and N140 (p<0.05) (Fig. 336 

6b) and seemed to become weaker as N availability increased. 337 

338 
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Discussion 338 

N complementarity in intercrop (IC) 339 

As expected, sole cropped wheat N accumulation was positively correlated with N availability (amount of soil mineral N and 340 

fertilizer N) and the intercropped wheat accumulated more than 50% more N than the sole cropped wheat. This confirms that the 341 

cereal had access to a greater proportion of soil inorganic N when intercropped as compared with the sole cropping situation, 342 

supported by the increase in the percentage of plant N derived from N2 fixation (%Ndfa) of pea which agrees with several other 343 

studies (e.g. Corre-Hellou 2005; Hauggaard-Nielsen et al. 2003; Corre-Hellou and Crozat 2005). Hence, due to the 344 

complementary use of N sources by intercrop components, N accumulated by the whole intercrop was only slightly affected by N 345 

fertilization. 346 

The calculations of %Ndfa and the choice of reference crop must be analysed carefully (Shearer and Kohl 1986). In order to 347 

evaluate the quality of %Ndfa estimation, a sensitivity analysis of the calculation was carried out using i) a non-fixing pea, 348 

characterized by very low DW production and early physiological maturity, or ii) the intercropped wheat and iii) two stages of 349 

plant sampling. This analysis indicated that the δ
15N difference remained the same between intercropped and sole cropped pea 350 

and between stages. Thus the %Ndfa of the intercropped pea can be assumed to be always higher than that of the sole cropped pea 351 

even if absolute values of calculated %Ndfa are debateable. Indeed, we observed that the variability of δ15N values within a crop 352 

stage was similar to that between stages for both wheat and pea in sole crops or intercrops due to i) soil heterogeneity over short 353 

distances, ii) crop dynamics and iii) variability in chemical analysis due to sampling. We can assume that the mean of the δ15N 354 

values measured at the two stages (wheat flowering and wheat maturity for wheat and WF and pea maturity for pea) was a better 355 

estimate of the real value of crop δ15N than when considering stages separately due to spatial heterogeneity and plant sampling 356 

bias, as recommended by some authors (e.g. Peoples et al. 2001). 357 

A second critical point concerns the calculations of the pea %Ndfa in N-fertilized treatments considering intercropped wheat for 358 

the same treatment as the reference plant. This assumption means that wheat and pea used the same proportion of fertilizer-N and 359 

soil mineral N. This hypothesis is certainly debatable because of: i) the localization and dynamics of the fertilizer-N in the soil, ii) 360 

the interaction between soil mineral N content and symbiotic fixation, iii) soil heterogeneity and iv) differences in crop dynamics. 361 

Moreover, δ15N of the N fertilizer is very important; it was -0.4 ± 0.1‰ in Exp. II which agrees with the decrease observed in the 362 

δ
15N values of wheat in N-fertilized treatments (N applied early) compared with N0. The δ15N of the N fertilizer was not 363 

measured in Exp. I, but it must have been negative judging by the decrease in wheat δ
15N value in N-fertilized plots; an analysis 364 

of the same type of fertilizer in the following year indicated a δ15N value of -0.9 ± 0.1‰. This confirms that the 15N natural 365 

abundance method is not very suitable when N fertilizer is applied, even though in our experiment the differences in calculated 366 
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%Ndfa were in good agreement with the total N content of plants. A multi-enrichment technique using labelled 15N application 367 

must therefore be carried out in these situations for obtaining a more precise estimate of legume %Ndfa (Salon C, pers. comm.). 368 

Durum wheat-winter pea intercrops seems to be more efficient than sole crops to improve N use, particularly in low-N systems 369 

(Hauggaard-Nielsen et al. 2006), although some other results only showed a small benefit from intercrops (Jensen 1996; 370 

Andersen et al. 2004). In particular, intercrops seems more stable over the years than sole crops for N accumulation. Indeed, 371 

whatever the N treatments and experiments, N accumulated by the whole intercrop was less variable than by sole crops. 372 

Moreover, intercrops appeared more efficient than sole crops for the use of N sources due to the complementary use of soil 373 

mineral N and the increase in the %Ndfa of the intercropped pea when the soil mineral N content was low (<30 kg N ha-1 for 0-30 374 

cm depth, in agreement with sole cropped pea results obtained by Voisin et al. (2002)) during early intercrop growth (until the 375 

booting stage of wheat). Indeed, N fertilization (80 kg N ha-1) applied at the beginning of wheat stem elongation clearly lead to a 376 

decrease in %Ndfa. However, when N fertilizer was applied later, at the ‘visible flag leaf’ wheat stage, corresponding to the 377 

beginning of pea grain filling, no reduction was observed in the %Ndfa. This is in keeping with: i) the strong decrease in N2 378 

fixation activity after the beginning of pea pod filling (Vocanson et al. 2005), ii) the slower N accumulation in later stages of 379 

growth (Vocanson et al. 2005) and iii) the increase in weevil damage on nodules observed in Exp. I, also noted by other authors 380 

(Corre-Hellou and Crozat 2004). 381 

The complementary use of N sources by intercrop components was particularly efficient for the unfertilized treatment indicating 382 

that intercropping is well adapted to low-N-input systems. Moreover, the soil mineral N content at harvest was similar for the sole 383 

cropped wheat and the intercrops, confirming that intercropping is as efficient as wheat in using soil mineral N. Finally, 384 

intercropping could reduce i) nitrate leaching compared to sole cropped pea due to its lower soil mineral N content at harvest and 385 

ii) gaseous N losses, by reducing the use of fertilizer N. 386 

Intercropping production 387 

The LER can be considered as an indicator of crops resource use for plant growth all over the growing season. In our 388 

experiments, resources (light, CO2, water, nutrients and N) were used up to 17% more efficiently in intercrops than in sole crops 389 

for DW production in low-N conditions. Our results show that wheat took advantage of intercropping by using available 390 

resources more efficiently than pea, regardless of N availability. Moreover, wheat benefited from N fertilization indirectly by the 391 

increased growth of the wheat improving light and water captures ability and then suppressing pea growth (Ghaley et al. 2005). 392 

The yield of wheat depends heavily on N supply as already observed for many cereals (e.g. Gate 1995; Jeuffroy and Bouchard 393 

1999; Le Bail and Meynard 2003), and consequently N fertilization increased total grain yield of intercrops due to its strong effect 394 

on wheat yield, which exceeded the reduction in pea yield. Hence the yield of the whole intercrop was always at least to the same 395 
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as that of the sole crops, except when a large amount of N was applied. LER values calculated from yield (LERY) indicates that 396 

resources were used up to 20% more efficiently for yield production in intercrops compared with sole crops when little or no N 397 

fertilizer was applied. The negative effect of N fertilization was mainly due to the reduction of pea shoot biomass and yield 398 

corresponding to a reduction in N2 fixation. This confirms that intercropping efficiency depends mostly on the complementary 399 

use of N between crops and the capacity of the legume to increase the rate of N2 fixation (%Ndfa) for its N nutrition which is 400 

enhanced by the fact that the advantage of intercrops compared with sole crops was greater for N accumulation than for yield. 401 

Functional relationships 402 

The intercrop efficiency for grain production was estimated by LERY and partial LERY values. LERY and LERY-P were negatively 403 

correlated with N accumulated by the intercrop at the beginning of pea flowering. This indicates that, in our experiments, the final 404 

efficiency for yield of the whole intercrop and of the intercropped pea were already determined at the beginning of pea flowering 405 

even when N was applied later on and whatever the weather conditions from the beginning of pea flowering to harvest. This 406 

suggests that is possible to predict the final efficiency of the whole intercrop and of the intercropped pea at this stage. However, 407 

in order to manage the intercrops, it would be interesting to determine the final efficiency earlier than at the beginning of pea 408 

flowering. We hypothesized that N accumulated by the whole intercrop at beginning of pea flowering depends on mineral N 409 

available at beginning of pea flowering. This was confirmed by the similar relation observed when plotting LERY and partial 410 

LERY against early available N. However, this calculation assumes that apparent N-fertilizer-use efficiency was similar for the 411 

sole cropped and the intercropped wheat which seems reasonable since N-fertilizer-use efficiency depended mostly on the 412 

weather conditions when N fertilizer was applied which can lead to N losses by volatilization. It is well known that N-fertilizer-413 

use efficiency also depends on crop N demand in relation to physiological stage and varies according to the crop growth rate 414 

(Limaux et al. 1999). However, we can assume that N demand of the whole intercrop and of the intercropped wheat were fairly 415 

similar in early stages due to row intercropping where plant competition would be almost the same within the row in sole crops 416 

and intercrops until stem elongation. Hence, our results confirm that early available N strongly determines the performance of the 417 

intercropped pea and of the whole intercrop in comparison with sole cropping situation, but does not significantly modify the 418 

growth of intercropped wheat. These results are in keeping with the fact that intercropping efficiency, estimated for total grain 419 

production (LERY), was increased when the %Ndfa of pea increased and more specifically when the amount of N derived from 420 

air was increased. As a first estimate, in our conditions, early mineral N available or N accumulated in intercrops at beginning of 421 

pea flowering must be lower than 120 kg N ha-1 to observe an advantage for yield. 422 

It is well known that wheat grain protein concentration depends not only on the amount of N fertilizer but also on N splitting (e.g. 423 

Gate 1995), partly due to smaller N losses (Limaux et al. 1999). This was confirmed by the late split of N (N60+ treatment) in 424 
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Exp. II which resulted in a large increase in wheat grain protein concentration for both sole crops and intercrops. It has been 425 

demonstrated by many authors over the last two decades that for sole wheat crops, yield and grain protein concentration are 426 

negatively linearly correlated (e.g. Gate 1995). This was confirmed by the negative correlation between wheat yield and wheat 427 

grain protein concentration for a given N level, in particular for low N supplies. This result was also observed for the intercropped 428 

wheat. Moreover, as N availability increased the correlation became weaker, indicating that N was not a very limiting resource 429 

when a large amount of N was applied. As a consequence, it is likely that the higher grain protein concentration in intercropped 430 

wheat than in sole cropped wheat can be mainly explained by the reduction in intercropped wheat yield, which was about 40% 431 

lower than that of wheat sole crop. However, it must be assumed that wheat grain protein concentration depends on the 432 

interaction with N availability. Indeed, only 15% of the N absorbed by the intercropped pea is unavailable for the intercropped 433 

wheat which in our conditions represented only ca. 10 kg N ha-1 on average for both experiments and all N treatments. It seems 434 

also that the N dynamics were altered in intercrops because of the changes in the timing of N2 fixation of the legume. Moreover, 435 

intercrop allowed a better synchrony of wheat N demand and supply due to the changes in wheat growth as a consequence of 436 

inter- and intraspecific competition, leading to a reduced number of ears per square metre for the intercropped wheat. Finally, the 437 

wheat grain protein concentration was significantly higher in intercrops than in sole crops, because a larger amount of N was 438 

remobilized by each plant and ear due to: i) fewer wheat plants, ears and grains per unit area, but ii) with only slightly less 439 

available soil N per square metre than for sole crops, so that more N was available for each grain of wheat. 440 

441 
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Concluding remarks 441 

Our results confirm that intercropping is more suited to low-N-input systems than to conventional highly fertilized systems. When 442 

N fertilizer is applied, the intercropped legume growth and yield were significantly reduced, while wheat was only slightly 443 

affected. On the other hand, when there was a shortage of N during early growth, e.g. when little or no fertilizer was applied late 444 

to preceding crops, leaving low residual mineral N, there was a marked complementarity between species, in particular for N 445 

acquisition. Intercropping efficiency for N use was greatest with low N availability, due to greater N uptake by wheat. This 446 

clearly allowed better wheat grain filling due to: i) the high pea N2 fixation rate in intercrop, making available for the 447 

intercropped wheat almost as much soil mineral N per square meter as in the sole crop, ii) fewer wheat plants, ears and grains per 448 

unit area in intercrops compared with sole crops and hence iii) a higher efficiency of the cereal to recover N. Our results show 449 

that N fertilization of intercrops must be carried out after the end of pea flowering to prevent an adverse effect on N2 fixation. 450 

Moreover when the N fertilization occurs after the end of wheat stem elongation (at the booting stage), the N taken up will be 451 

largely remobilized to the grain, causing a significant increase in grain protein concentration. 452 

Our results must also be related to the species complementarity due to differences in their phenology and physiology. It can be 453 

postulated that if there are significant complementarities between the crops for the use of natural resources, particularly N, the 454 

optimum N fertilization level for the intercrops is probably lower than that of the average of the individual sole crop. This implies 455 

that intercropping may be advantageous when little or no N fertilizer is applied due to a high degree of complementary N use 456 

between the two species. Such results have been reported for several cereal-legume intercrops grown in arid, semi-arid, tropical 457 

and temperate climates (Fujita et al. 1992; Ofori and Stern 1987; Jensen 1996). 458 

Finally, our results confirm that intercropping is a good way to improve the efficiency of N use in agroecosystems, particularly 459 

those with a low N availability, because of i) the increase in wheat grain quality, ii) the increase of free atmospheric N input 460 

through N2 fixation and iii) the potential reduction of N leaching after legumes. We believe that it is important to investigate the 461 

interspecies dynamics that shape the final outcome of intercropping and more precisely inter- and intraspecific competition 462 

throughout the whole growing period. This may reveal dynamics in competition, which is critical to determine when the 463 

advantage of intercrop begins. Later on, this will be helpful to optimize these innovative agroecosystems, in particular for the 464 

choice of durum wheat and pea cultivar traits suited to intercropping, the ideal proportions of species and N fertilization 465 

management. 466 

467 
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Tables 559 

Table 1. Detailed data used for N-balance calculation of the different N treatments (Nx where ‘x’ represents N applied in kg N 560 

ha-1) for various periods: from sowing (S) to the beginning of pea flowering (BPF), or BPF to harvest (H) or S to H. Data are: i) 561 

characteristics of incorporated residues, ii) topsoil organic N content, iii) 0-120 soil N mineral content at sowing, iv) apparent N-562 

fertilizer-use efficiency, v) apparent N fertilizer available and corresponding N fertilizer applied, vi) simulated N mineralization 563 

(humus and residues) using the STICS soil-crop model, vii) simulated N leaching using STICS model, viii) calculated apparent 564 

available N and ix) soil N mineral content at 0-120 cm depth at harvest for the intercrops (IC) and the sole crops of wheat (W SC) 565 

and pea (P SC). 566 

 567 

568 
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Table 2. Data of δ15N values for the different N treatments (Nx where ‘x’ represents N applied in kg N ha-1): i) 15N excess (δ15N) 568 

for a non-fixing pea (Frisson) sole crop (SC), intercropped (IC) wheat, IC pea and SC pea at wheat flowering (WF), wheat harvest 569 

(WH) and pea harvest (PH), ii) fraction of plant N derived from air (%Ndfa) of SC and IC pea calculated as the mean of WF and 570 

PH using δ15N average value of wheat at WF and WH and iii) amount of N derived from air (QNdfa) of SC and IC pea at pea 571 

harvest. Values are the mean (n=3 to 5) ± standard error. 572 

573 
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Figures 574 

Figure 1. N accumulated (kg N ha-1) in sole crops (SC) and intercrops (IC) of pea (P) and wheat (W) in straw and grain for the 575 

different N treatments (Nx where ‘x’ represents N applied in kg N ha-1). Values are means (n=3 to 5) ± standard error for crops N 576 

accumulated in straw and grain. 577 

 578 

579 
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Figure 2. Partial land equivalent ratio (LER) for wheat and pea calculated from (a) N accumulated (LERN), (b) dry weight 579 

(LERDW), (c) grain yield (LERY) for the two experiments and N treatments (Nx where ‘x’ represents N applied in kg N ha-1). 580 

Values are the mean (n=3 to 5) ± standard error. Single plus (+) and single asterisks (*) above the bars indicate that LER is 581 

significantly different from 1, at P<0.10 and P<0.05, respectively. Single plus (+) and single asterisks (*) inside the bars indicate 582 

that partial LER (either for wheat or pea) is significantly different from 0.5, at P<0.10 and P<0.05, respectively; ‘ns’ indicates 583 

non-significant (P>0.10). 584 

 585 

586 
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Figure 3. Dry weight (t ha-1) of sole crops (SC) and intercrops (IC) of pea (P) and wheat (W) for straw and grain for the different 586 

N treatments (Nx where ‘x’ represents N applied in kg N ha-1). Values are means (n=3 to 5) ± standard error for grain and for the 587 

whole dry weight. 588 

 589 

590 
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Figure 4. Relationship between grain protein concentration (% of dry weight) of the intercropped (IC) wheat and sole cropped 590 

(SC) wheat for the different N treatments (Nx where ‘x’ represents N applied in kg N ha-1) of Exp. I and II. A linear regression 591 

was fitted including all N treatments and experiments. Double asterisk (**) indicate that linear regression is significant at P=0.01. 592 

Values are means (n=3 to 5) ± standard error. The first bisector y=x and the regression y=1.2x are indicated in order to illustrate 593 

the increased range of grain protein concentration in IC compared with SC. 594 
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Figure 5. Land equivalent ratio calculated from yield (LERY) of the total intercrop (Total IC) and partial LERY values of 596 

intercropped wheat (Wheat IC) and intercropped pea (Pea IC) as a function of (a) N accumulated by the whole intercrop at the 597 

beginning of pea flowering (BPF); (b) mineral N available until BPF (mineral N at sowing + N fertilization applied before BPF + 598 

N mineralized from humus and residues until BPF – N leaching until BPF); (c) the percentage of pea N derived from air at 599 

physiological maturity and (d) the amount of pea N accumulated from air at physiological maturity (QNdfa). Linear regressions 600 

were carried out for LERY, LERY-W and LERY-P. Values are the mean (n=3 to 5) ± standard error. Single plus (+), single asterisk 601 

(*) and double asterisk (**) indicate that linear regression is significant at P=0.10, P=0.05 and P=0.01, respectively. 602 
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Figure 6. Grain protein concentration of wheat (% of dry weight) as a function of the dry grain yield (t ha-1) for sole cropped (SC) 604 

wheat (solid symbols) and intercropped (IC) wheat (open symbols) for the different N treatments (Nx where ‘x’ represents N 605 

applied in kg N ha-1) for Exp. I (a) and Exp. II (b). Linear regressions were carried out for each N treatment, including both sole 606 

and intercropped treatments. Single plus (+), single asterisk (*) and double asterisk (**) indicate that linear regression is 607 

significant at P=0.10, P=0.05 and P=0.01, respectively. 608 
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