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Abstract 

  

Zearalenone (ZEA), a widely distributed oestrogenic fusariotoxin, constitutes a potential risk for 

human and animal health. ZEA is metabolised to the main metabolites identified in vitro and in vivo: 

alpha-zearalenol (�-ZOL) and beta-zearalenol (�-ZOL). The efficiency to produce alpha-reduced 

metabolites appears of particular interest in risk assessment as alpha-reduced metabolites constitute 

activated forms whereas beta-reduced metabolites are less oestrogenic than ZEA. In this study ZEA 

activation was compared in avian food species. ZEA and its reduced metabolites were quantified in 

subcellular fractions of six avian species and rat livers. The �-ZOL/�-ZOL ratio in rats was 19. The 

various avian food species cannot be considered to be equivalent in terms of ZEA reduction 

(P<0.001). Quails represented high “beta reducers”, with �-ZOL/�-ZOL ratio less than two. Weak 

“beta reducers” included on one part ducks and chickens showing �-ZOL/�-ZOL ratio greater than 3 

and up to 5.6 and on a second part geese, showing a lower production of �-ZOL than other poultry. 

Comparisons of enzyme kinetics in ducks and in quails show that these variations can be explained by 

the action of various isoforms of dehydrogenases. These results are relevant to food safety, in the 

context of frequently inevitable contamination of animal feed. 
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Introduction 

Zearalenone (ZEA), one of the most widely distributed fusariotoxin, is common in maize and maize 

products but also in soybeans and various cereals grains, representing a major component of human 

food and animal feed. Crop contamination is often inevitable and constitutes a potential risk for human 

and animal health (EFSA, 2004). Risk assessment of ZEA by the EC Scientific Committee on Food 

concluded on a temporary tolerable daily intake of 0.2 μg/kg body weight whereas the tolerable daily 

intake established by JECFA (FAO/WHO Joint Expert Committee on Food additives) was 0.5 μg/kg 

body weight. Human and animal exposure is mainly due to chronic ingestion of contaminated food, 

essentially via maize and cereals. Limits for ZEA in maize and other cereals have been defined in 

several countries worldwide, ranging from 50 to 1000 μg/kg (EFSA, 2004). Levels of ZEA in cereals 

show very marked variations, notably year-to-year variations of seasonal origin. The levels of 

occurrence are of the order of ten to several hundred μg/kg, but have been described in the range from 

a few μg/kg to 8000 μg/kg (Placinta et al., 1999) and may even exceed this range (Zinedine et al., 

2007). Although the major route of human exposure is direct via cereals and maize, indirect exposure 

can also occur via animal products. No limits have been defined for ZEA in these products, despite 

activation reactions by animals. 

ZEA causes oestrogenic syndromes in animals, resulting in reproductive disorders and decreased 

fertility in a large number of species, with marked variations of sensitivity. Female pigs are considered 

to be the most sensitive animal species, while poultry and ruminants show a lower responsiveness to 

ZEA (Gaumy et al., 2001). Absorption and metabolism are implicated in these interspecies variations 

(Galtier, 1999). Following oral exposure in mammals, ZEA is metabolised in various tissues, 

particularly in the liver, to the main metabolites identified in vitro and in vivo: alpha-zearalenol (�-

ZOL) and beta-zearalenol (�-ZOL) (Mirocha et al., 1981; Olsen and Kiessling, 1983; Ueno and 

Tashiro, 1981; Malekinejad et al., 2005). Further reduced forms have also been identified in mammals 

(Erasmuson et al., 1994; Miles et al., 1996): zearalanone (ZAN), alpha-zearalanol (�-ZAL) and beta- 

zearalanol (�-ZAL). Corresponding to the dietary exposure, increasing concentrations of ZEA and �-

ZOL were detected in livers and muscle tissues of pigs fed with ZEA-contaminated diet: livers 



 

 

 

ACCEPTED MANUSCRIPT 

 
Comparative zearalenone reduction in poultry 

 4 

samples contained predominantly �-ZOL and to a minor extent ZEA and �-ZOL (Doll et al., 2003; 

Zollner et al., 2002). ZEA and �-ZOL were detected in livers of hens fed for 16 weeks a 1580-μg/kg 

ZEA contaminated maize at mean concentrations of 2.1 and 3.7 μg/kg respectively (Danicke et al., 

2002).The rate of conversion and the �-ZOL/�-ZOL ratio show species variations in mammals and 

may account for the species differences in terms of sensitivity to ZEA: for example highly sensitive 

pigs mainly produce �-ZOL whereas less sensitive cattle mainly produce �-ZOL (Danicke et al, 2005; 

Zöllner et al., 2002; Mirocha et al, 1981). The efficiency to produce �-reduced metabolites appears to 

be of particular interest as these metabolites are considered to be activated forms, exerting higher 

oestrogenic effects compared to ZEA according to the sequence: �-ZOL> �-ZAL> ZAN >ZEA> �-

ZAL> �-ZOL (Fitzpatrick et al., 1989; Leffers et al, 2001; Ueno et al., 1983). The presence of �-

reduced metabolites must also be taken into account when assessing the risk for the consumers of 

animal or crop products. Only limited information is available concerning ZEA metabolism in poultry 

species, although exposure is likely to occur via feedstuffs, specially during force-feeding, 

corresponding to a total intake of approximately 10 kg of maize per duck in 12 days (Tardieu et al., 

2004). 

The aim of this study was to determine whether there are any differences in the production of �- and �- 

reduced metabolites between various poultry species. We chose six avian food species: chickens, 

ducks, quails, geese, guinea-fowls and laying hens. An in vitro approach was used to compare the 

production of zearalenone and reduced metabolites by a simple HPLC method.  

 

2. Materials and Methods 

 

1. Chemicals and reagents 

Pure zearalenone (ZEA), NADH and NADPH cofactors, reduced derivatives: �-zearalenol (�-ZOL), 

�-zearalenol (�-ZOL), zearalanone (ZAN), �-zearalanol (�-ZAL) and �-zearalanol (�-ZAL) were 

purchased from Sigma Chemical Co (Saint Quentin Fallavier, France). Stock solutions were prepared 

in acetonitrile (5 mg/ml : ZEA, �- and �-ZOL; 1 mg/ml : ZAN, �- and �-ZAL), before sonication  (15 

minutes) and they were stored in the dark at -20°C. The following chemicals were used for preparation 
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of hepatic fractions: KH2PO4 and K2HPO4 from Prolabo, Trisacetate and buthylhydroxytoluene 

(BHT) from Sigma, KCl, EDTA 2H2O, NaOH, HCL from Merck. Dye reagent concentrate (Biorad) 

and bovine serum albumine (BSA, 100 μg/ml) were used to assay total proteins. 

Distilled deionised water and HPLC grade solvents were used.  

 

2. Sample preparation  

Subcellular fractions 

Two animals from each of six avian food species and two Sprague-Dawley rats (8 weeks old) were 

used for preparation of subcellular fractions: mallard duck (Anas platyrhynchos, 4 weeks old, males); 

quail (Coturnix japonica, 8 weeks old, females); goose (Anser anser, 12 weeks old, female and male); 

guinea-fowl (Numida meleagridis, 4 weeks old, females); label chicken (Gallus gallus, 12 weeks old, 

males), standard chicken (Gallus gallus, 6 weeks old, males); laying hens (Gallus gallus Isa Brown 

strain, 48 weeks old, females). They were euthanised according to ethical recommendations and in 

accordance with European Guidelines for the care and use of animals for research purposes. The livers 

were removed and all subsequent operations were carried out at 0-4°C. 

The subcellular fractions were prepared in duplicate for each animal. The livers were cut into small 

pieces, and 8 g samples were homogenized in 15 ml of ice-cold 0.1M potassium phosphate buffer (pH 

7.4; 0.1M Tris acetate; 0.1M KCl; 1 mM EDTA 0.02 mM BHT) in a glass Potter homogenizer with a 

Teflon pestle. After filtration, the homogenate was centrifuged at 9000×g for 30 min in a TGA-65 

Kontron ultracentrifuge. The supernatant was stored as 1-ml aliquots at -80°C until use (S9 samples).  

The protein concentrations of the subcellular fractions were determined by the method of Bradford, 

using BSA as standard and the Biorad kit (Microassay procedure). 

In vitro metabolism of ZEA and extraction 

Previous experiments were conducted in duck fractions to ensure that activities were measured under 

linear conditions with respect to substrate concentrations. Optimal in vitro metabolism was observed 

by incubating 5 mg of protein with 16 μM of ZEA (1 μg/mg protein) in an excess of cofactors (Kolf-

Clauw et al., 2007). For interspecies comparison assays, 5 mg of protein from the subcellular fractions, 

2.4 mM of NADH and NADPH, and 16 μM of ZEA in acetonitrile (50 μL from 100 μg/ml) were 
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incubated in phosphate buffer for 30 minutes, at 40°C for poultry S9, at 37 °C for rat S9. In order to 

compare the enzymatic kinetics of the formation of �-ZOL and �-ZOL in ducks and in quails,  various 

concentrations of ZEA were used (62.5, 125, 250, 500, 1000, 2000, 4000, 8000 and 16000 ng/mg 

protein  equivalent to 1, 2, 4, 8, 16, 32, 64, 128, 256 μM). Fluorescence detection was used at ZEA 

concentrations �500 ng/mg protein (8 μM). �-ZOL and �-ZOL formations were modelled according to 

the Michaelis-Menten equation, based on the hypothesis of two enzymes involved in the reduction of 

ZEA:   

y= V1max/(1+K1m/[ZEA]) + V2max/(1+K2m/[ZEA]) 

where “y” represents the metabolite �-ZOL or �-ZOL produced at different [ZEA] concentrations 

during an incubation time of 30 minutes. Origin Pro 7.05 SRO version 7.5714 software was used to 

determine the pertinence of the model (R), the affinity constants of the enzymes (K1m and K2m) and 

the limiting velocity of formation of the metabolites (V1max and V2max). 

All samples were extracted twice with 10 ml of extraction solution (diethylether/chloroform, 3:1,v/v) 

for 30 min and centrifuged at 2000 g for 10 min.  The organic phases were collected, evaporated to 

dryness under nitrogen (50°C, 30 min), and residues were dissolved in 100 μL of acetonitile, and 

sonicated. Extraction control samples were prepared for each animal and each analysis (ZEA without 

incubation). This recovery rate was extrapolated to zearalenols, based on previous results in other 

matrices of similar complexity showing similar recovery rates for ZEA and zearalenols 

(Songsermsakul et al., 2006; Zöllner et al., 2000). All the results from extraction control samples were 

used to estimate the mean global rate of ZEA extraction of the assays. 

 

3. HPLC assay of ZEA, ZOLs, ZAN  and ZALs 

The HPLC apparatus consisted of an isocratic pump (model 2200, ICS) and a 20 μL Rheodyne 

injection valve (ICS). The reconstituted extract was injected immediately after sonication. The sample 

was  eluted through a Prontosil column 120-5 C18 H (250x4 mm, particle size: 5 μm; Bischoff) with 

water/acetonitile (55:45, v/v) at a 1ml/mn flow-rate, as previously described (Kolf-Clauw et al., 2007). 

Briefly, the mobile phase was prepared and degassed before each assay. The column was kept at room 

temperature and was connected to a guard column (C18, 5μm, Prontosil). Two detectors were used: an 
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UV detector (Spectra Focus) at 235 nm, and a fluorescence detector (Shimadzu, RF-10AXL) at 

excitation wavelength �exc 274 nm/emission wavelength, �em 440 nm. Chromatograms were integrated 

with ANAPIC3  software. 

The simple HPLC assay allowed the simultaneous determination of ZEA and all of its reduced 

metabolites using a multidetection mode with clearly distinct peaks for ZEA, �-ZOL and �-ZOL on 

one part, and ZAN, �-ZAL, �-ZAL on another part. Under these conditions, zearalenone (ZEA), �-

zearalenol (�-ZOL) and ß-zearalenol (ß-ZOL) showed separate peaks at retention times of 16-18 

minutes, 9-10 minutes, and 6-7 minutes respectively, using UV-detection at 235 nm or fluorescence 

detection. Zearalanone (ZAN), �-zearalanol and �-zearalanol also showed separate peaks using UV-

detection at 218 nm. Elution times were 17-18 minutes, 9-10 minutes, and 6-7 minutes respectively. 

Limits of detection and quantification were defined as a signal-to-noise ratio greater than or equal to 3 

and 10, respectively. The limits of detection using UV were 0.5 to 2 ng/mg proteins and ranged from 

0.04 ng to 4 ng/mg proteins with fluorescence detection for all the six metabolites tested. The highest 

sensitivity was observed for the zearalenols. Fluorescence detection was ten fold more sensitive than 

UV detection for ZEA and �-ZOL  (Kolf-Clauw et al, 2007). A mixture of the standards was injected 

in parallel to the samples as a control. Metabolites were identified by comparison of retention times 

with those of standards and quantified by their peak area ratio with standards. 

 

4. Statistical analysis 

The results are expressed as means ± SD for 4 incubated samples in one species. Mean differences in 

reduced metabolites were considered significant at P<0.05 by mixed effects ANOVA analysis. 

Interspecies variations for each metabolite were studied by ANOVA followed by Tukey-Neuman-

Keul test in the case of a significant global variation, to identify various types of metabolic profiles for 

reduction of zearalenone.  

 

3. Results  

Metabolites identified  
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Zearalenols were identified as major metabolites after incubation of S9 samples with ZEA. Mean 

protein content in S9 samples was 39  ± 3 mg/ml (n=24 measures/species), ranging from 35 mg/ml to 

43 mg/ml : 35 in laying hens, 36 in ducks, 38 in quails, 40 in guinea-fowls, 42 in geese and standard 

chickens, 43 in label chickens. Neither zearalanone nor zearalanols were found in any of the S9 

samples. A mean recovery rate of 87 % ± 9 % for ZEA was observed in all the species tested.  

Interspecies variations in zearalenols formation 

Our results show interspecies variations in the reduction of ZEA, between rat and avian species, and 

between various avian species.  

No species differences were observed for the overall rate of ZEA reduction, expressed as the ratio of 

zearalenols/sum of ZEA recovered and ZOLs, between any of the species tested including rat, except 

of geese. In all poultry species tested except for geese, the rate of ZEA reduction was found in the 

range of 50 % (± 3 %) in ducks to 78 % (± 5%) in quails. This was not significantly different from the 

rate of reduction of 72 % (± 5%) observed in rats (Fig.1). The goose metabolised one-third of 

zearalenone (33 ± 4 %) and can be defined as a weakly metabolising species.  

All species including rats produced �-ZOL as major metabolite and interspecies differences were 

observed for �-ZOL (P<0.001) and �-ZOL (P<0.001). Rats differed from all poultry species by 

producing the highest quantity of �-ZOL from ZEA (P<0.05 to P<0.001). The most striking variations 

were observed between rats and geese (P<0.001) and rats and guinea-fowls (P<0.001). Our study 

shows that avian species also produced �-zearalenol as major metabolite but to a lesser extent than 

rats. Geese differed from all other poultry except guinea-fowls by a lower production of �-ZOL 

(P<0.01). The production of �-ZOL differed significantly between rats and two avian species: quails 

(P<0.001) and hens (P<0.01). Among poultry species, quails produced higher quantities of �-ZOL 

than other avian species except hens (P<0.01 to 0.001). The �-ZOL/�-ZOL ratio in rats was 19, while 

�-zearalenol and �-zearalenol production in avian species allowed to distinguish three groups: high 

“beta reducers” represented by quails, with a �-ZOL/�-ZOL ratio less than two, and weak “beta 

reducers”. This latter group includes on one part ducks and chickens showing �-ZOL/�-ZOL ratio 
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greater than 3 and up to 5.6 and on a second part geese, showing a lower production of �-ZOL and �-

ZOL/�-ZOL ratio of about 2. 

Comparison of in vitro metabolism in quails and ducks  

Enzyme kinetics were studied in the ducks and quails, representing a “weak � reducer” species and a 

“high � reducer” species respectively.  In quails, both isomers, �-ZOL and �-ZOL, were produced in 

parallel: a first linear increase up to a ZEA concentration of 4000 ng/mg followed by a plateau. Both 

isomers were produced to a similar degree in relation to the substrate concentration and the curves 

overlapped (Fig.3). Two different  kinetics for �-ZOL and �-ZOL production were observed in ducks 

(Fig.3A). As in quails, �-ZOL production reached a plateau from a ZEA concentration of 4000 ng/mg 

whereas �-ZOL increased linearly in relation to ZEA concentration without saturation at the maximum 

dose tested (16000 ng/mg protein). These results strongly suggest two different enzymes for the 

production of �-ZOL and �-ZOL in ducks. 

The formation of �-ZOL and �-ZOL was modelled according to a Michaelis-Menten equation based 

on the hypothesis of two enzymes involved in ZEA reduction. With this model, high coefficients of 

correlation were obtained in both species: 0.9811 to 0.9983 (table 1). In quails, Km and Vmax for the 

reduction of ZEA into �-ZOL and �-ZOL showed similar values, suggesting that both reductases 

produce both metabolites. In contrast, in ducks, different Km and Vmax were obtained for �-ZOL and 

�-ZOL. For �-ZOL, the kinetic constants resemble those observed in quails. The kinetic constants for 

�-ZOL production calculated by the model were fairly different and difficult to interpret.  

Altogether, these results strongly suggest that different enzymes are involved in �-ZOL and �-ZOL 

formation in ducks and quails.  
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4. Discussion 

Species-specific variations among poultry in the phase I metabolism of zearalenone (ZEA) were 

demonstrated for the first time between various avian food species. Our findings are consistent with 

those of previous studies in other species and in hens, showing  that hepatic phase I hydroxylations 

result in the formation of �-ZOL and �-ZOL, and demonstrate the absence of zearalanols formation.  

This finding is highly relevant, as it has been suggested that the failure to detect zearalanols in species  

other than sheep can be attributed to the use of HPLC with fluorescence detection since reduction of 

the C11-C12 double bound of ZEA leads to loss of fluorescence (Miles et al., 1996). The main 

metabolite of hepatic biotransformation of ZEA in rat liver subcellular  fractions was identified as �-

ZOL, in agreement with previous studies using S9 and rat liver microsomes (Ueno and Tashiro, 1981; 

Ueno et al., 1983). In our study, poultry mainly produced �-ZOL in vitro, as rat, but at a significantly  

lower rate than rat. These results are in accordance with in vivo results in broilers (Danicke et al, 

2003), laying hens (Danicke et al., 2002), turkey poults (Olsen et al, 1986) and ducks (Danicke et al., 

2004), but contrast with certain in vitro findings in young hens (Malekinejad et al, 2006). These 

authors found higher �-ZOL as compared to �-ZOL in hepatic subcellular fractions of chickens. These 

differences with some in vitro results could be explained by the ZEA concentrations incubated, as it 

has been previously demonstrated in pigs that the �-ZOL/�-ZOL ratio depends on ZEA concentration 

(Malekinejad et al., 2005). The ZEA concentrations used by Malekinejad et al, (2006) were in the 

range 10 to 2000 μM, while a concentration of 16 μM was used in our study for interspecies 

comparison. This concentration was representative of the liver concentrations observed after natural 

exposure to this mycotoxin, as a carryover factor of 0.005 was calculated from the (ZEA + �-

ZOL)/ZEA concentration ratio in the diet of hens  (Danicke et al., 2002). A similar factor can be 

calculated from a previous study in turkeys whith a 800-fold higher dietary ZEA concentration (Olsen 

al., 1986). On the basis of these results, it can be estimated that 1000 μg ZEA /kg of feed would result 

in hepatic concentrations of 5 μg ZEA/kg liver. This estimated exposure shows that our incubation 

conditions of 16 μM (1μg/mg protein), equivalent to 12 μg/kg liver would be realistic. Furthermore, 

the mean �-ZOL/ �-ZOL ratio of four in the bile of Pekin ducks fed with a Fusarium-toxin-
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contaminated wheat (Danicke et al., 2004) was similar to the in vitro �-ZOL/ �-ZOL ratio observed in  

mallard ducks in our study, suggesting that our incubation conditions reflect physiological conditions 

and allow interspecies comparisons.  

The major result of this comparative study concerns the identification of three groups of poultry 

among avian food species based on �-ZOL and �-ZOL production: quails were identified as high beta- 

reducers, guinea-fowls, ducks and  chickens as weak beta-reducers, whereas geese were identified  

weak alpha- and beta-reducers. The species-specific variation in �-ZOL formation has been 

demonstrated in S9 fractions from various mammals and chickens (Malekinejad et al., 2006). 

Although enzyme polymorphism is known to exist in poultry and in mammals, species-specific 

variations of metabolism have rarely been investigated in poultry. In our study, species-specific 

variations were quantitative variations, in accordance with two recent in vitro studies , using 

midazolam in chickens, turkeys, pheasants and bobwhite quails or the mycotoxin aflatoxin B1 in 

chickens, ducks, quails and turkeys (Cortright and Craigmill, 2006; Lozano and Diaz, 2006). 

Our hypothesis to explain the variation of �-ZOL/ �-ZOL formation between various poultry species is 

that at least two types of ZEA reductases are involved, as described in mammals. In mammals, 

previous results have suggested that at least two types of ZEA reductases are involved, differing in 

terms of optimum pH, kinetic parameters, enzyme localization (Ueno et al., 1983, Olsen and 

Kiessling, 1983; Malekinejad et al., 2006). Our hypothesis is supported by enzyme kinetics. Reduction 

of ZEA resembles that of steroid metabolism catalyzed by steroid deshydogenases (HSD) in humans, 

with three types of 3�-HSD catalyzing the formation of 3 �-hydroxysteroids (Matsunaga et al., 2006), 

or 3�-HSD catalyzing the formation of 3 �-hydroxysteroids. This last 3�-HSD occurs in two distinct 

forms, and catalyzes a deshydrogenase activity involving NADH as co-factor (Thomas et al, 2002). 

There are no published reports on these enzymes in animal tissues, but previous investigations have  

shown that the distribution patterns differed between species and were also coenzyme-dependent. 

Hens formed �-ZOL almost entirely in microsomal fraction and �-ZOL only in the cytosolic fraction 

and only with NADPH as coenzyme (Olsen and Kiessling, 1983). Further findings suggest that the 

enzymatic activity of 3 �-HSD and 3�-HSD varies in different subcellular fractions, i.e occurring as 

microsomal and cytosolic forms, and depends on the organ and animal species investigated 
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(Malekinejad, 2005). S9 samples therefore appear to be the most appropriate fractions for in vitro 

interspecies comparison of �-ZOL and �-ZOL production and to demonstrate species-specific 

variations of the �-ZOL/ �-ZOL ratio. 

Species-specific variations of metabolism based on variations of enzyme profiles imply that 

the various avian food species cannot be considered as equivalent in terms of the 

activation/inactivation balance and for risk assessment. Conversion of ZEA to �-ZOL can be regarded 

as a bioactivation, whereas conversion to �-ZOL constitutes an inactivation reaction (Fitzpatrick et al., 

1989; Leffers et al, 2001). Activated metabolites are determinants in xenobiotic toxicity in domestic 

animals (Nebbia, 2001), but are also involved in risk assessment for humans, due to the presence of 

residues. This process is of major concern for a food contaminant such as zearalenone, which exerts a 

limited direct toxicity in poultry, but raises potential problems of residues in livestock. ZEA is not 

usually considered to be a major food safety concern, although it may be involved in human cervical 

cancer (Hsieh, 1989) and in premature thelarche (Saenz de Rodriguez et al., 1984). In Puerto Rico, 

residues of oestrogenic compounds in red meat and poultry remain two of the most likely causes of 

premature thelarche (Saenz de Rodriguez and Toro-Sola, 1982), although the implication of ZEA 

remains controversial. Exposure to ZEA and its metabolites via the food chain following animal feed 

contamination would more probably result in more subtle long-term effects. These estrogenic effects 

through diet should be considered together with those of other environmental sources of endocrine 

disrupters in risk assessment for human health (Harvey and Everett, 2006). These effects include not 

only reproductive development, but immune, neurobehavioural development, and cancer susceptibility 

(Mantovani, 2006). Estimated human dietary exposure to ZEA in various European countries might 

range from 1 ng/kg bw/d to 420 ng/kg bw/d (EFSA, 2004). This last estimation is more than twice the 

SCF t-TDI of 0.2μg/kg bw/d. Although the main sources of human exposure to ZEA are bread and 

cereal products, animal products could be considered to be a source of potential residues in a context 

of high animal feed contamination. There is now overwhelming evidence of worldwide contamination 

of cereals with ZEA, mainly maize in Europe (for review, see Zinedine et al., 2007). Raw maize was 

the highest contaminated food in Europe, with reported contamination rates of 14% of maize (with 

levels> 0.2 mg/kg) with the highest level of 6492 mg/kg (Scoop, 2003). Maize from Africa was found 
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to be contaminated at levels as high as 9.8 to 38.4 mg/kg (El-Maghraby et al., 1995). Because poultry 

are highly resistant to the effects of ZEA compared to other livestock, there is a risk that contaminated 

animal products could be marketed. Residues of ZEA and �-ZOL have been identified in the livers of 

chickens and hens following ZEA exposure (Mirocha et al., 1982; Danicke et al., 2002). European 

regulation does not consider residues from animal products in the assessment of ZEA exposure for 

humans, assuming that “secondary human exposure resulting from meat, milk and eggs is expected to 

be low, contributing only marginally to the daily intake” (EFSA, 2004). However, quantification of 

this secondary exposure should include the most relevant animal species. A weak beta-reducer species 

should be chosen for avian food species and ZEA risk assessment, for example chickens or ducks.  

In conclusion, the present results show that 1) zearalanols are not produced in poultry, 2) avian food 

species cannot be considered to be equivalent in terms of ZEA reduction and �-ZOL/�-ZOL ratio, ie in 

terms of activation/inactivation balance. Interspecies differences of Phase I reactions in  poultry can be 

explained by the involvement of several isoforms of dehydrogenases, with different cosubstrate and 

kinetic parameters, as described in humans and  mammals.  
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TABLE AND FIGURE LEGENDS 

 

Figure 1 

Rate of metabolism of ZEA (zearalenone) by subcellular fractions (S9) of livers from avian food 

species and from rats, after 30 min of incubation  (16 μM and 5 mg S9 proteins): means of 4 

independent measures/species (m ±SD). * significantly different from other species (p<0.05) 

Figure 2 

Interspecies variations in �-ZOL (alpha-zearalenol) and �-ZOL (beta-zearalenol): P<0.001 

respectively (means of 4 independent assays/species: m ±SD). Poultry and rat S9 fractions (5mg 

proteins) were incubated with 16 μM zearalenone for 30 min (40°C for avian food species S9, and 

37°C for rat S9). Species with the same letter are not statistically different. �-ZOL: a>b>c; �-ZOL: 

x>y>z. 

Figure 3 

Enzymatic kinetics in  ducks (A) and quails (B): Incubation for 30 minutes at 40°C, with 2.4 mM of 

NADH and 2.4 mM of NADPH. �: �-ZOL; X : �-ZOL. 

Table 1  

Kinetic constants for conversion of ZEA into �-ZOL and �-ZOL by S9 fractions from ducks and 

quails (30 minutes of incubation at 40°C, with 2.4 mM of NADH and 2.4 mM of NADPH): Michaelis-

Menten equation  model:    y= V1max/(1+K1m/[ZEA]) + V2max/(1+K2m/[ZEA]) 
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Fig.2 
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Fig.3A et 3B  
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Table 1 

 

  

Enzyme 1 

 

Enzyme 2 

 V1max  

(ng/mg /min) 

K1m 

(ng/mg 

protein) 

V2max  

(ng/mg /min) 

K2 m 

(ng/mg 

protein) 

 

 

R 

 

Quail 

�-zearalenol 

�-zearalenol 

 

 

 

2256 

2474 

 

 

28918 

29717 

 

 

2458 

2605 

 

 

28969 

29462 

 

 

0.9811 

0.9909 

 

Duck 

�-zearalenol 

�-zearalenol 

 

 

 

1662 

- 4824 

 

 

20711 

- 6.61.106 

 

 

2060 

17303 

 

 

20683 

298088 

 

 

0.9945 

0.9984 

 


