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a b s t r a c t

We consider the problem of estimating the gains and phases of the RF channels of a

M-element transmitting array, based on a calibration procedure where M orthogonal

signals are sent through M orthogonal beams and received on a single antenna. The

received data vector obeys a linear model of the type y ¼ AFg þ n where A is an

unknown complex scalar accounting for propagation loss and g is the vector of

unknown complex gains. In order to improve the performance of the least-squares (LS)

estimator at low signal to noise ratio (SNR), we propose to exploit knowledge of the

nominal value of g, viz g . Towards this end, two approaches are presented. First, a

Bayesian approach is advocated where A and g are considered as random variables, with

a non-informative prior distribution for A and a Gaussian prior distribution for g. The

posterior distributions of the unknown random variables are derived and a Gibbs

sampling strategy is presented that enables one to generate samples distributed

according to these posterior distributions, leading to the minimum mean-square error

(MMSE) estimator. A second approach consists in solving a constrained least-squares

problem in which h ¼ Ag is constrained to be close to a scaled version of g . This second

approach yields a closed-form solution, which amounts to a linear combination of g and

the LS estimator. Numerical simulations show that the two new estimators significantly

outperform the conventional LS estimator, especially at low SNR.

1. Introduction

In many array processing applications, it is desired to

design and maintain a specified array beampattern,

obtained by properly weighting the signals received at

or transmitted from the various antennas, in order to

achieve spatially selective filtering. This is especially so in

multibeam satellite communications systems [1] where

the area to be covered is divided into several ‘‘spots’’

wherein a minimal gain should be guaranteed for all users

inside the spot while ensuring a sufficient isolation

between spots, so as to minimize inter-beam interference.

However, due for instance to severe temperature condi-

tions, it is hardly feasible to maintain the same gains and

phases for all RF channels of the array and, unavoidably,

disparities between the channels appear leading to

degradation of the array beampattern (deformation of

the mainlobe and increase of sidelobe levels). Therefore, it

is necessary to regularly re-calibrate the array in order for

the nominal mainlobe–sidelobes specifications to be

fulfilled constantly over time. This task usually requires

as a pre-requisite estimation of all RF complex gains

followed by proper modification of the weights to be

applied to each channel.

While the literature about calibration of a receiving

array is abundant, see e.g. [2–10], the case of a transmit-

ting array, which is the one of primary interest in the

present paper, has received much less attention.
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In [11], calibration of a spaceborne phased-array is studied

based on transmission of time-multiplexed signals over

orthogonal beams. The PN-Gating method is presented

and studied in [12,13] to calibrate internally each

transmit/receive module of an active phased array

antenna. The technique relies on scrambling the signal

of each operating module with a pseudo-noise sequence.

Refs. [14,15] present a very general framework for

calibration of a transmitting array. The principle is to

transmit M signals—with M the number of array

elements—orthogonal in the time domain over M ortho-

gonal beams, so as to benefit from both time and space

diversities. The signal is then received on a single antenna

and the complex gains of each antenna are estimated

using a linear least-squares approach, since the received

data obeys a linear model. The method is simple and

performs well, at least at high signal to noise ratio (SNR).

However, it does not perform well at low SNR. In order to

remedy this problem, we propose to exploit knowledge of

the nominal value of g in the calibrated case, viz g . More

precisely, we wish to take advantage of the fact that h is

‘‘close’’ to Ag but, at the same time, one should take into

account the fact that A is unknown. In order to use the

former a priori knowledge while alleviating the latter

problem, two approaches are proposed. First, we consider

g as a random variable with a Gaussian distribution

centered around g . Since no information is assumed to be

available for A, the latter is assumed to be random with a

non-informative prior distribution. Within this Bayesian

framework, the minimum mean-square error (MMSE)

estimates of A and g are obtained using a Markov-chain

Monte-Carlo (MCMC) approach. An alternative frequentist

approach is also considered where h is obtained from a

constrained least-squares (CLS) problem.

The paper is organized as follows. In Section 2, the

model of [14,15] is briefly reviewed. In Section 3, we

derive the minimum mean-square error estimates of the

parameters of interest. In Section 4, we present the CLS

problem and derive a closed-form solution for it. Numer-

ical simulations study the performance as well as the

robustness of the estimators in Section 5.

2. Data model

The principle of the method proposed in [14,15] is to

transmit M orthogonal waveforms ckðtÞ, k ¼ 1; . . . ;M over

M orthogonal beams, each of them corresponding to a

weight vector wk, see Fig. 1 for a pictorial representation

of this scheme. The complex envelope of the signal sðtÞ ¼

½s1ðtÞ s2ðtÞ � � � sMðtÞ�
T transmitted at time t by the array is

given by

sðtÞ ¼
XM

k¼1

w�
kckðtÞ ¼W�cðtÞ ð1Þ

where cðtÞ ¼ ½c1ðtÞ c2ðtÞ � � � cMðtÞ�
T and W ¼ ½w1 w2 � � �

wM �. Without loss of generality the weight vectorswk are

assumed to have unit norm, i.e. �wk� ¼ 1. Let g ¼

½g1 g2 � � � gM �
T denote the vector of the unknown

complex gains of the array, and Dg ¼ diagðgÞ. Let the

receiver consist of a single antenna, with known location,

and let ar denote the (known) array steering vector for the

receiver. We assume herein that its elements have a

constant modulus (which is set to 1). The received signal

can thus be written as

yðtÞ ¼ AaTrDgW
�cðtÞ þ nðtÞ ¼ AcT ðtÞWHDrg þ nðtÞ ð2Þ

where Dr ¼ diagðarÞ, nðtÞ stands for the additive noise, and

A is an unknown complex scalar which accounts for the

propagation loss between the array and the receiver, and

the receiver antenna gain. We assume that N samples are

collected at the receiver and stacked in a vector

y ¼ ½yð1Þ yð2Þ � � � yðNÞ�T . Let

C ¼

c1ð1Þ c2ð1Þ � � � cMð1Þ

c1ð2Þ c2ð2Þ � � � cMð2Þ

� � �

c1ðNÞ c2ðNÞ � � � cMðNÞ

2

6
6
6
6
4

3

7
7
7
7
5

¼ ½c1 c2 � � � cM � ð3Þ

be the N �M signal matrix, whose m th column

corresponds to the signals sent on antenna number m.

Then, using (2) it follows that

y ¼ ACWHDrg þ n ¼ AFg þ n ð4Þ

where n ¼ ½nð1Þ . . . nðNÞ�T stands for the noise vector and

F�CWHDr . Through the paper, we assume that n is a zero-

mean complex Gaussian vector, whose covariance matrix

is s2I. We also assume that the waveforms are ortho-

gonal, i.e.

cHk c‘ ¼
XN

t¼1

c�kðtÞc‘ðtÞ ¼ NPcdk;‘

where Pc stands for their (common) power, and that the

beams are orthogonal, i.e. wH
kw‘ ¼ dk;‘ . In such a case,

FHF ¼ NPcD
H
r Dr ¼ NPcI ¼ gI.

The model in (4) forms the basis of our study. A first

observation regarding this model is that, if A and g are

considered as unknown deterministic parameters, they

cannot be identified unambiguously since there exists a

scaling ambiguity between them, namely h ¼ Ag ¼

ðZAÞðZ�1gÞ. For calibration purposes, this may not be a

problem as, usually, the beamformer weights w are first

properly scaled to compensate for gain and phase errors,
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and then normalized to meet an external constraint, for

example on power consumption by transmitters, desired

radiated power levels, or dynamic range. In [14,15], it is

proposed to estimate h in a least-squares sense as

ĥls ¼ argmin
h

�y � Fh�2 ¼ ðFHFÞ�1FHy ¼ g�1FHy: ð5Þ

This estimator is simple and performs rather well, at least

at high signal to noise ratio. Moreover, it is known that its

variance is minimal when FHF is proportional to the

identity matrix [16], which validates the use of time and

space orthogonal signals. However, its performance

degrades at low SNR and our goal is to improve over (5)

in this regime. Towards this end, a natural means is to

make use of the a priori knowledge available. In our case,

the nominal value g of the complex gain vector g is

usually known, and this information should be taken in

advantage in order to improve estimation performance.

Although g is known to be close to g , we only know that h

is close to Ag but A is otherwise unknown. In other words,

one does not have access to a known vector h that would

be close to h and could be used to estimate directly h.

Therefore, our problem consists of estimating g given

knowledge of g , or estimating h knowing that h should be

close to a scaled version of g . In order to solve this

problem, we first investigate a Bayesian approach in

which g is random, with a Gaussian distribution around g .

Then, we consider a constrained leats-squares approach

where h is constrained to be close, up to a scaling factor,

to g .

3. Bayesian approach

As indicated above, our first approach consists in

assuming that A and g are random variables with some

prior distributions. More precisely, we assume here that g

is a complex Gaussian vector, with mean g and covariance

matrix s2g I, i.e. g�CN ðg ;s2g IÞ, so that the prior distribution
of g is

fgðgÞ ¼ p�Ms�2M
g e�s

�2
g �g�g�2 : ð6Þ

Regarding Awe wish not to make any assumption about it

(i.e. not use any knowledge) and therefore we consider a

non-informative prior for A, namely Jeffreys prior [17].

This approach is robust as no statistical model for A is

invoked. In Appendix A, we show that Jeffreys prior for A is

given by

faðAÞp
ð1þ gs�2s2g ½1þ 2Ms2gkgk

�2�jAj2Þ1=2

ð1þ gs�2s2g jAj
2Þ3=2

: ð7Þ

As expected, this prior distribution only depends on g and

s2g . In order to estimate g, a natural approach is to look for

its MMSE estimate which, as a pre-requisite, necessitates

deriving the posterior distribution of g, conditionally to y.

Since the joint posterior distribution of A and g is given by

f ðA; gjyÞpf ðyjA; gÞfgðgÞfaðAÞpe�s
�2

�y�AFg�2e�s
�2
g �g�g�2 faðAÞ

ð8Þ

it follows that the posterior distribution of g, conditionally

to y, is

f ðgjyÞ ¼

Z

f ðA; gjyÞdA

pe�s
�2
g �g�g�2 �

Z

e�s
�2

�y�AFg�2 faðAÞdA

pe�s
�2
g �g�g�2eC

�1
A

jmAj
2

�

Z

e�C�1
A

jA�mA j
2

faðAÞdA ð9Þ

where

CA ¼ s2g ðg
HFHFgÞ�1 ð10aÞ

mA ¼ s�2CAg
HFHy: ð10bÞ

The MMSE estimator of g corresponds to the mean of

f ðgjyÞ. Unfortunately, it seems intractable to obtain a

closed-form expression for the integral in (9) and there-

fore deriving f ðgjyÞ appears to be impossible. As a

consequence, obtaining
R
gf ðgjyÞdg or even generating

samples distributed according to f ðgjyÞ is not feasible. In

order to solve this problem, a convenient alternative is to

resort to a Gibbs-sampling strategy that only requires the

conditional posterior distributions f ðgjA; yÞ and f ðAjg; yÞ.

Indeed, the principle of the Gibbs sampler is to generate

iteratively samples drawn from f ðAjg; yÞ and samples

drawn from f ðgjA; yÞ, which is easier to do, as shown

now. From the assumptions made, we have

f ðgjA; yÞpe�s
�2�y�AFg�2�s�2

g �g�g�2
pe�ðg�lg Þ

HC�1
g ðg�lg Þ ð11Þ

with

Cg ¼ ðs�2jAj2FHF þ s�2
g IÞ�1 ð12aÞ

lg ¼ Cgðs
�2A�FHy þ s�2

g g Þ ð12bÞ

and therefore

gjA; y�CN ðlg ;CgÞ: ð13Þ

Consequently, g, conditionally to A and y, is Gaussian

distributed and therefore, it is relatively simple to

generate samples from this distribution. Let us turn now

to f ðAjg; yÞ. From (8), we have that

f ðAjg; yÞpe�s
�2

�y�AFg�2 faðAÞ

pe�C�1
A

jA�mAj
2

�
ð1þ gs�2s2g ½1þ 2Ms2gkgk

�2�jAj2Þ1=2

ð1þ gs�2s2g jAj
2Þ3=2

:

ð14Þ

It turns out that f ðAjg; yÞ does not belong to a familiar class

of distributions and hence generating samples drawn

according to f ðAjg; yÞ appears problematic. In order to get

round this difficulty, we propose to use an hybrid

Metropolis-within-Gibbs sampling strategy [18,19]. Briefly

stated, the principle is the following. Since it is not

possible to draw samples from f ðAjg; yÞ, the idea is to draw

samples from a proposal distribution and to accept or

reject this candidate with a given probability. The

proposal distribution should, as much as possible, be

close to the target distribution. Looking at the different

terms in (14), we observed that the first term is the most

influent: the second term does not vary much and hence

f ðAjg; yÞ can be fairly well approximated by its first term.
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Therefore, we advocate as a proposal distribution a

Gaussian distribution with mean mA and variance CA, i.e.

fpðAjg; yÞpe�s
�2gHFHFgjA�gHFHy=ðgHFHFgÞj2 : ð15Þ

The additional interest of this choice is that it is easy to

generate samples drawn from (15). The estimation

procedure, referred to as a Metropolis-within-Gibbs

sampler, is detailed in Table 1. Note that the numerator

[resp. denominator] of r in line 5 of Table 1 is the last term

of Eq. (14) evaluated at Ac [resp. A
ðn�1Þ].

In Table 1, Nbi stands for the number of burn-in

iterations and Nr is the number of samples which are

effectively averaged. Note that there exist statistically

sound criteria, such as the potential scale reduction factor

[19,20], to select the values of Nbi and Nr that ensure

convergence of the Gibbs sampler, see also [21,22] for an

application to array processing. The above Metropolis-

within-Gibbs sampler is known to generate random

variables which are asymptotically distributed according

to the posterior distributions f ðgjyÞ and f ðAjyÞ, and there-

fore a natural way to approximate the MMSE estimator is

to average the Nr last values generated by the sampler, i.e.

Âmmse ¼ N�1
r

XNbiþNr

n¼Nbiþ1

AðnÞ ð16aÞ

ĝmmse ¼ N�1
r

XNbiþNr

n¼Nbiþ1

gðnÞ: ð16bÞ

Once Âmmse and ĝmmse are available, an estimate of h can

be obtained as Âmmse � ĝmmse.

4. Constrained least-squares estimation

The second approach proposed in this paper considers

the unknown variables as deterministic and amounts to

constraining the solution h to be close to its nominal value

Ag . More precisely, we propose to estimate h (and A) by

solving the following minimization problem:

min
A;h

�h� Ag�2 subject to �y � Fh�2re2: ð17Þ

The criterion to be minimized guarantees that h will not

be far from a scaled version of g while the constraint

imposes that the residual LS error be lower than a desired

value. In (17), e2 is a user-defined parameter that yields a

solution which lies in between a scaled version of g and

the LS solution ĥls. In fact, in order for (17) to have a

solution, it is necessary that

e2Zmin
h

�y � Fh�2 ¼ yHP?
F y�e

2
min ð18Þ

where P?
F stands for the orthogonal projector onto the

subspace orthogonal to the range space RfFg of F.

Accordingly, in order to avoid a solution aligned with g ,

one must enforce that

e2�min
A

�y � AFg�2 ¼ yHP?
Fg y�e

2
max ð19Þ

with P?
Fg the orthogonal projector onto the subspace

orthogonal toRfFgg. Choosing e2 2 ½e2min; e
2
max½ enables one

to balance between a solution aligned with g and the

conventional LS estimate ĥls. Indeed, when e
2 ¼ e2min there

is only one vector that satisfies the constraint, namely ĥls,

and therefore the latter is necessarily the solution to (17).

On the other hand, when e2 ¼ e2max there exists a vector

aligned with g , which drives the criterion down to 0 while

satisfying the constraint: therefore, it is the solution. From

these considerations, it is convenient to select e2 as

e2 ¼ ð1� aÞe2min þ ae2max ð20Þ

where a 2 ½0;1½ is a user-defined parameter that sets how

much confidence we place on the a priori information and

on the information brought by the data. For a close to 1,

the a priori information is deemed trustable while, when

a approaches 0, it is discarded and only the data are used.

The solution to the optimization problem in (17) is given

in the next proposition.

Proposition 1. The solution to (17) is given by

ĥcls ¼ Pg ĥls þ
gl0

1þ gl0
P?
g ĥls ð21Þ

where

1þ l0g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2max � e2

min

e2 � e2
min

s

: ð22Þ

Proof. see Appendix B.

It should be noted that the so-obtained estimator is

given in closed-form and is thus very simple from a

computational point of view. As expected, ĥcls is a linear

combination of the a priori information through g and of

the information brought by the data y through ĥls.

The above result suggests looking for an optimal linear

combiner (OLC) of Pg ĥls and P?
g ĥls of the form

ĥolc ¼ Pg ĥls þ bP?
g ĥls�Tĥls: ð23Þ

It is straightforward to show that

E fðĥolc � hÞðĥolc � hÞHg

¼ E fðTĥls � hÞðTĥls � hÞHg

¼ TEfĥlsĥ
H

lsgT
H � Thh

H
� hh

H
T þ hh

H

¼ T hh
H
þ
s2

g
I

� �

TH � Thh
H
� hh

H
T þ hh

H

¼
s2

g
TTH þ ðI � TÞhh

H
ðI � TÞ: ð24Þ
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Table 1

Metropolis-within-Gibbs sampler.

Input: y

1: generate initial value Að0Þ

2: for n ¼ 1; . . . ;Nbi þ Nr do

3: generate gðnÞ according to f ðgjAðn�1Þ; yÞ in (11)

4: generate Ac according to fpðAjg
ðnÞ; yÞ in (15)

5: compute r ¼
f ðAc jg

ðnÞ ;yÞ�fp ðA
ðn�1Þ jgðnÞ ;yÞ

f ðAðn�1Þ jgðnÞ ;yÞ�fp ðAc jgðnÞ ;yÞ

6:
Set AðnÞ ¼

Ac with probability minðr;1Þ

Aðn�1Þ otherwise

�

7: end for

Output: sequence of random variables AðnÞ and gðnÞ
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Therefore, the mean-square error of ĥolc is given by

MSEðĥolcÞ ¼
s2

g
trfTTHg þ h

H
ðI � TÞðI � TÞh

¼
s2

g
½1þ ðM � 1Þb2� þ ð1� bÞ2�P?

g h�
2: ð25Þ

Minimizing the MSE in (25) yields the optimal value of b

b ¼
�P?

g h�
2

�P?
g h�

2 þ
ðM � 1Þs2

g

: ð26Þ

Of course, this optimal value depends on h which is

unknown and therefore ĥolc is only an hypothetical

estimator. However, it can serve as a reference and, in

particular, it is of interest to compare ĥcls to ĥolc.

5. Numerical examples

In this section, we compare the performances of the

estimators derived previously, namely the LS estimator in

(5), the CLS estimator in (21), the Bayesian estimator of

Algorithm 1 and the OLC estimator in (23). We

consider a uniform linear array with M ¼ 20 elements

spaced a half-wavelength apart. The steering vector

for a receiver localized at angle y is thus aðyÞ ¼

½1 eipsiny � � � eipðM�1Þsiny�T . The receiver is placed at the

broadside of the array so that ar ¼ að0�Þ. The nominal

antennas gain is g ¼ ½1 1 � � � 1�T . Both the signals and

the beams are orthogonal. The beams are in fact Fourier

beams evenly spaced in spatial frequency. The signal to

noise ratio is defined as

SNR ¼
�g�2jAj2Pc

s2
: ð27Þ

The estimators are evaluated in terms of their (normal-

ized) mean-square error (MSE) defined as

MSE ¼
1

M
E f�ĥ � h�2g ð28Þ

and the MSE is estimated from 500 independent Monte-

Carlo trials. At each trial, g is randomly drawn as gk ¼

gk
~gke

i ~fk where the random variables ~gk and ~fk are

independent. 10 log10 ~gk is drawn from a Gaussian distri-

bution with standard deviation sg�dB while the phases
~fk

are uniformly distributed over ½��f;�f�. Observe that as

sg�dB or �f increases, the true vector g may differ

significantly from g , and hence the a priori knowledge is

less accurate. This will of course impact the performance

of all estimators, as illustrated below. We would like also

to emphasize that, in this case, g is not Gaussian

distributed and therefore the assumption in (6) does not

hold. This enables one to test, in addition to its

performance, the robustness of our Bayesian approach as

the latter is fed with data that does not fulfill the

assumptions on which it is based. Therefore, the Bayesian

estimator derived previously does not correspond to

the MMSE estimator and we will refer to it as MCMC in

the figures. The Metropolis-within-Gibbs sampler of

Algorithm 1 is used with Nbi ¼ 20 and Nr ¼ 100. As for

the CLS approach, a value of a ¼ 0:8 is chosen to obtain e2

in (20). Finally, the OLC is implemented with b of (26)

calculated from the exact value of h.

We study the influence of the SNR, and the influence of

sg�dB and �f. The number of samples is set to N ¼ 32.

Figs. 2–4 deal with the case of small amplitude errors on g

[sg�dB ¼ 1dB] and various phase errors, namely �f ¼

15�;30�;45� while the array is more significantly

uncalibrated in Figs. 5–7 where sg�dB ¼ 3dB. Inspecting

these figures, one can make the following observations:

(a) The MCMC approach provides the lowest MSE over all

SNRs and orders of magnitude of the errors, among all

estimators that can be implemented (i.e. omitting the

OLC estimator). In particular, it achieves the desired

�RTICLE IN PRESS
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Fig. 2. MSE for estimation of h versus signal to noise ratio. N ¼ 32,

sg�dB ¼ 1dB and �f ¼ 15�.
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Fig. 3. MSE for estimation of h versus signal to noise ratio. N ¼ 32,

sg�dB ¼ 1dB and �f ¼ 30�.
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goal of significantly decreasing the LS estimator MSE

at low SNR.

(b) The CLS estimator outperforms the conventional LS

estimator at low signal to noise ratio, which was the

main objective towards deriving new estimators.

However, at high SNR the conventional LS estimator

is seen to perform better than the CLS estimator. In

fact, there exists a SNR threshold from which the MSE

of the CLS estimator tends to be approximately

constant and larger than that of the LS estimator. This

threshold is smaller as the errors in g grow. This is

logical since, with the rather high value of a ¼ 0:8

chosen, the CLS estimator grants too much impor-

tance to the a priori knowledge [and the latter is less

and less reliable as sg�dB or �f increases] at medium

to high SNR, and not enough to the data. Fig. 8

illustrates this phenomenon. There, we plot the MSE

of the CLS estimator versus SNR for different values of

a. It is clear from this figure that there does not exist a

value of a that provides uniformly best performance,

but that the choice of a is dictated by the SNR and the

errors in g. This fact is further investigated in Fig. 9. In

fact, comparing (23) to (21), it is clear that the optimal

value of b in (26) corresponds to an optimal value of

l0 in (22), which itself amounts to an optimal value of

e2 and hence of a in (20). Fig. 9 displays this optimal

value of a [averaged over multiple random realiza-

tions of g] versus SNR and sg�dB, �f. As expected, the

more reliable the a priori knowledge the larger a.
Accordingly, a should decrease when SNR increases.
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Therefore, the CLS estimator can perform well if one

has a good idea of the operating SNR and of the

accuracy of g . In fact, if we knew h� which is

unfortunately impossible—a simple linear combina-

tion of Pg ĥls and P
?
g ĥls could result in a quasi optimal

solution, as the OLC estimator achieves the same

performance as the MCMC for all SNRs and all values

of sg�dB and �f.

To summarize this section, the Bayesian approach yields

the lowest MSE whatever SNR or sg�dB and �f. The CLS

estimator has the advantage of being very simple, more

accurate than the LS estimator at low SNR but selecting

the value of a is a delicate issue.

6. Conclusions

In this paper, we considered the problem of estimating

the gains and phases of a transmitting array from the

observation of signals received on a single antenna. New

solutions, which are based on exploiting knowledge of the

gains in the calibrated case, were proposed to improve over

the conventional least-squares estimator, especially at low

signal to noise ratio. Two different approaches were

presented. A Bayesian approach was first investigated where

the gain vector g is considered as a random variable. The

MMSE estimator was derived and implemented through a

Metropolis-within-Gibbs sampler. Its performance was

shown to be very good, at the price of some computational

complexity. A very different approach based on constrained

least-squares was also presented, which results in a simple

estimator. It consists of a weighted linear combination of the

a priori knowledge and the information brought by the data.

The method performs well as low SNR but degrades at high

SNR, mainly because the choice of the weights is delicate.

Both methods enable however to significantly improve over

the LS estimator at low SNR.

Appendix A. Derivation of Jeffreys prior

In this appendix, we derive Jeffreys prior for the

complex random variable A ¼ AR þ iAI where AR and AI

stand for the real and imaginary parts of A, respectively.

Let us consider the generic model

y ¼ Axþ n ð29Þ

where x is drawn from a complex Gaussian distribution

with mean x and covariance matrix C, i.e. x�CN ðx;CÞ, and

n is a zero-mean complex Gaussian vector with covariance

matrix s2I, independent of x. The model in (4) corre-

sponds to x ¼ Fg and C ¼ s2gFF
H . Under these assump-

tions, one has y�CN ðAx;C ¼ jAj2C þ s2IÞ. Therefore, the
distribution of y conditionally to A is given by

f ðyjAÞ ¼ p�NjCj�1e�ðy�AxÞHC�1
ðy�AxÞ: ð30Þ

In order to derive Jeffreys prior for AR;AI, we need to derive

the Fisher information matrix (FIM) as Jeffreys prior is

proportional to the square root of the determinant of the

Fisher information matrix. The latter is obtained by

differentiating twice the log-likelihood function

LðyjAÞ ¼ �Nlnp� lnjCj � ðy � AxÞHC�1
ðy � AxÞ ð31Þ

with respect to ½AR AI�
T , and by taking expectation. Using

the fact that

@C

@AR
¼ 2ARC;

@C�1

@AR
¼ �2ARC

�1CC�1
;

@C

@AI
¼ 2AIC;

@C�1

@AI
¼ �2AIC

�1CC�1

it is straightforward to show that

@lnjCj

@AR
¼ tr C

�1 @C

@AR

� �

¼ 2ARtrfC
�1Cg ð32aÞ

@lnjCj

@AI
¼ tr C

�1 @C

@AI

� �

¼ 2AItrfC
�1Cg: ð32bÞ
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Differentiating again leads to

@2lnjCj

@A2R
¼ 2 trfC�1Cg � 4A2R trfC

�1CC�1Cg ð33aÞ

@2lnjCj

@A2I
¼ 2 trfC�1Cg � 4A2I trfC

�1CC�1Cg ð33bÞ

@2lnjCj

@AR@AI
¼ �4ARAI trfC

�1CC�1Cg: ð33cÞ

For the sake of convenience, let us temporarily note z ¼

y � Ax and u ¼ C
�1z. Since

@z

@AR
¼ �x;

@u

@AR
¼ �2ARC

�1Cu� C
�1x;

@z

@AI
¼ �ix;

@u

@AR
¼ �2AIC

�1Cu� iC�1x;

it follows that

@zHu

@AR
¼ �xHu� uHx � 2ARu

HCu ð34aÞ

@zHu

@AI
¼ ixHu� iuHx � 2AIu

HCu: ð34bÞ

Using the fact that

@uHCu

@AR
¼ �xHC�1Cu� uHCC�1x � 4ARu

HCC�1Cu ð35aÞ

@uHCu

@AI
¼ ixHC�1Cu� iuHCC�1x � 4AIu

HCC�1Cu ð35bÞ

one obtains the second-order derivatives as

@2zHu

@A2R
¼ 2xHC�1x þ 4ARx

H
C

�1Cuþ 4ARu
HCC�1x

þ 8A2Ru
HCC�1Cu� 2uHCu ð36aÞ

@2zHu

@A2I
¼ 2xHC�1x � 4iAIx

H
C

�1Cuþ 4iAIu
HCC�1x

þ 8A2I u
HCC�1Cu� 2uHCu ð36bÞ

@2zHu

@AR@AI
¼ �2iAxHC�1Cuþ 2iA�uHCC�1x

þ 8ARAIu
HCC�1Cu: ð36cÞ

Now, since Efug ¼ 0 and

E fuHCug ¼ trfC�1Cg ð37aÞ

E fuHCC�1Cug ¼ trfC�1CC�1Cg ð37bÞ

it follows that the FIM is given by

IðAR;AIÞ ¼
2aþ 4A2Rb 4ARAIb

4ARAIb 2aþ 4A2I b

  !

ð38Þ

where a�xHC�1x and b�trfC�1CC�1Cg. The previous

equation holds for any matrix C. Let us now consider our

case where C ¼ s2gFF
H . Using some matrix inversion

lemma, it is straightforward to show that

xHC�1x ¼ s�2gH
½ðFHFÞ�1 þ s�2jAj2s2g I�

�1g ð39aÞ

C
�1C ¼ s�2s2gF½I þ s�2jAj2s2gF

HF��1FH : ð39bÞ

Therefore, with T�1 ¼ ðFHFÞ�1 þ s�2s2g jAj
2I, one obtains

a ¼ s�2gHTg ð40aÞ

b ¼ ðs�2s2g Þ
2trfTHTg: ð40bÞ

In the particular case where FHF ¼ gI, one finally gets

a ¼
gs�2kgk2

1þ gs�2s2g jAj
2

ð41aÞ

b ¼
Mðgs�2s2g Þ

2

½1þ gs�2s2g jAj
2�2

: ð41bÞ

Jeffreys prior is obtained as the square-root of the

determinant of IðAR;AIÞ and the latter can be written as

jIðAR;AIÞj ¼ 4a½aþ 2bjAj2�

p
1þ gs�2s2g ½1þ 2Ms2gkgk

�2�jAj2

½1þ gs�2s2g jAj
2�3

: ð42Þ

Appendix B. Proof of Proposition 1

In this appendix, we show how to solve the con-

strained LS problem in (17) which we recast here for the

sake of convenience

min
A;h

�h� Ag�2 subject to �y � Fh�2re2: ð43Þ

Let us first minimize the criterion with respect to

(w.r.t.) A. It is well known that

min
A

�h� Ag�2 ¼ h
H
P?
g h ð44Þ

so that we are left with the following optimization

problem:

min
h

h
H
P?
g h subject to �y � Fh�2re2: ð45Þ

To begin with, we show that the inequality constraint

in (45) is in fact an equality constraint. To see this, let us

temporarily denote by h0 the solution and let us assume

that �y � Fh0�
2
�e2. Let also note

A1 ¼ argmin
A

�y � AFg�2 ¼
gHFHy

gHFHFg
ð46aÞ

h1 ¼ A1g ¼
gHFHy

gHFHFg
g : ð46bÞ

From the assumption made in (19), we clearly have

�y � Fh1�
2 ¼ e2max�e

2. Let

hðmÞ ¼ h0 þ mðh1 � h0Þ; m 2 ½0;1�: ð47Þ

Eq. (47) defines a trajectory from h0 to h1 and therefore,

there exists at least one value of m 2�0;1½ such that

�y � FhðmÞ�2 ¼ e2. Now, for any m 2�0;1½,

hðmÞHP?
g hðmÞ ¼ ½ð1� mÞh0 þ h1�

HP?
g ½ð1� mÞh0 þ h1�

¼ ð1� mÞ2h0P
?
g h0�h0P

?
g h0: ð48Þ

Therefore, there would exist a vector hðmÞ such that

hðmÞHP?
g hðmÞ�h0P

?
g h0 and that would satisfy the con-

straint, which is in contradiction with the fact that h0 is

the solution. Therefore, the inequality constraint in (45) is

necessarily an equality constraint and hence we are finally
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left with the problem of solving

min
h
h
H
P?
g h subject to �y � Fh�2 ¼ e2: ð49Þ

In order to solve (49) a Lagrange multiplier technique is

used. The Lagrangian can be written as

Lðh; lÞ ¼ h
H
P?
g hþ l½�y � Fh�2 � e2� ð50Þ

where l�0 is the real-valued Lagrange multiplier. One

can rewrite (50) as

Lðh; lÞ ¼ ½h� lQ�1FHy�HQ ½h� lQ�1FHy�

þ lðyHy � e2Þ � l2yHFQ�1FHy ð51Þ

with Q ¼ lFHF þ P?
g . For a given l, Lðh; lÞ is thus

minimum for

hðlÞ ¼ lðlFHF þ P?
g Þ

�1FHy: ð52Þ

Let us find a more convenient expression for the above

hðlÞ. Observing that FHF ¼ gI and ĥls ¼ g�1FHy, it follows

that:

hðlÞ ¼ l½lgI þ P?
g �

�1FHy

¼ l½ð1þ lgÞP?
g þ lgPg �

�1FHy

¼ l½ð1þ lgÞ�1P?
g þ ðlgÞ�1Pg �F

Hy

¼ Pg ĥls þ
lg

1þ lg
P?
g ĥls: ð53Þ

In order to obtain l, we enforce the constraint that

�y � FhðlÞ�2 ¼ e2. Towards this end, let G? denote an

orthornormal basis for the space orthogonal to g and

observe that

y � FhðlÞ ¼ y �
l

1þ lg
FG?G

H

?F
Hy � g�1

FggHFHy

gHg

¼ y �
lg

1þ lg
P
FG?

y � PFg y

¼ ½PF þ P?
F �y �

lg

1þ lg
P
FG?

y

� ½PF � P
FG?

�y

¼ P?
F y þ

1

1þ lg
P
FG?

y: ð54Þ

It ensues that

�y � FhðlÞ�2 ¼ �P?
F y�

2 þ
1

ð1þ lgÞ2
�P

FG?
y�2

¼ �P?
F y�

2 þ
1

ð1þ lgÞ2
½�PFy�

2 � �PFg y�
2�

¼ �P?
F y�

2 þ
1

ð1þ lgÞ2
½�P?

Fg y�
2 � �P?

F y�
2�

¼ e2min þ
1

ð1þ lgÞ2
½e2max � e2min�: ð55Þ

Therefore, �y � FhðlÞ�2 ¼ e2 leads to

ð1þ lgÞ2 ¼
e2max � e2min

e2 � e2
min

: ð56Þ

The solution ĥcls to the minimization problem is thus hðlÞ

in (53) with l given in (56), which concludes the

proof.
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