
 

Any correspondence concerning this service should be sent to the repository administrator: 

staff-oatao@inp-toulouse.fr 
 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers 
and makes it freely available over the web where possible.  

This is an author -deposited version published in: http://oatao.univ-toulouse.fr/  
Eprints ID: 3801 

To link to this article: DOI:10.1016/j.physa.2005.02.034 

URL: http://dx.doi.org/10.1016/j.physa.2005.02.034 

To cite this document : Olivi-Tran, N. and Lenormand, Pascal and Lecomte, A. and 
Dauger, A. ( 2005) Molecular Dynamics approach of sol–gel transition:Comparison with 
experiments. Physica A Statistical Mechanics and its Applications, vol. 354 . pp. 10-18. 
ISSN 0378-4371 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12041871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ARTICLE IN PRESS
doi:10.1016/j.physa.2005.02.034
�Correspo

E-mail ad
Molecular Dynamics approach of sol–gel
transition: Comparison with experiments

N. Olivi-Trana,�, P. Lenormandb, A. Lecomtea, A. Daugera

aS.P.C.T.S., UMR 6638, E.N.S.C.I., 47 avenue Albert Thomas, 87065 Limoges cedex, France
bC.I.R.I.M.A.T.-L.C.M.I.E., UMR 5085, Université Paul Sabatier, Bat. 2R1, 118 route de Narbonne,
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Abstract

A new aggregation model by a Molecular Dynamics approach at constant temperature was

compared with experimental results on a zirconia precursor gelling process. The evolution of

the distribution of the experimental scattered intensities (small angle X-ray scattering curves),

during gelling, was compared with the results of our Molecular Dynamics method, via the

computation of structure factors of the numerical structure for different times: a very good

agreement was found. Our numerical model allows one to understand the evolution as a

function of time of the size and quantity of matter corresponding to the upper limit of the

fractal domain.
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1. Introduction

Different models exist to represent aggregation and gelation in colloidal systems.
Up to now, the three main methods used to analyze gelation were, first, the
nding author: Tel.: +33 555 45 22 47; fax: +33 555 79 69 54.

dress: n_olivi-tran@ensci.fr (N. Olivi-Tran).

www.elsevier.com/locate/physa


ARTICLE IN PRESS
Smoluchowsky equation [1–4], which gave the evolution in time of the number
of particles inside clusters, but did not give an exact view of the internal structure
of the studied material. And second, the other method was the Diffusion
Limited Cluster Cluster Aggregation (DLCA) model [5–9] which, for given
materials gave an exact view of the internal structure but did not give, at least
directly, the evolution in real physical time as it was a Monte Carlo approach.
The third approach, was the computation of gelling and aggregation by a Brownian
dynamics approach [10–12]. In this last case, evolution and structure can be anal-
yzed almost directly but the particles and clusters trajectories correspond to a
probability density function and not to deterministic trajectories like in Molecular
Dynamics.

In this article, we will present a new Molecular Dynamics model for aggregation at
a constant temperature (Section 2). Section 3 corresponds to the experimental set up
description. In Section 4, the numerical results as well as experimental data are
shown. In Section 5, results are discussed and a comparison is made between
numerical and experimental data. And we conclude in Section 6.
2. Numerical model

The model system consisted of N spherical particles of diameter 1, contained in a
cubic simulation box of edge length L with periodic boundary conditions. The
volume fraction, c, for this system is:

c ¼
p
6

N

L3
. (1)

The trajectories of the particles are computed using a Molecular Dynamics
algorithm at constant temperature. To solve Newton’s equations we use a Verlet list
algorithm [13,14] and a predictor–corrector algorithm [15]. At each time step, all
particles receive a random force and have their velocities lowered using a constant
friction. It is equivalent to say that the particles are in contact with a thermostat
maintained at a constant temperature. The average magnitude of the random forces
and the friction are related in a particular way: called the Langevin thermostat
formalism. In this formalism, the particle i equation of motion becomes

mai ¼ �mgvi þ W iðtÞ , (2)

where ai (resp. vi) is the acceleration (resp. velocity) of particle i which has a mass
m; g is a friction coefficient with units of s�1 and W iðtÞ is a Gaussian random force
with a mean given by

hW iðtÞ;W jðtÞi ¼ dijdðt � t0Þ6kBmTg , (3)

where T is the temperature, kB is Boltzmann constant and t corresponds to time. By
this definition, this Gaussian random force is not correlated in space and time.
Moreover, the momentum p ¼ mv is not conserved.
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No long range interactions have been used in our model. Moreover, gravity has
been neglected as we assume that our particles are small and that the effect of weight
is negligible with respect to the thermal agitation.

When two or more particles touch each other, they stick definitively. Then the
mean acceleration and velocity resulting from all independent accelerations and
velocities of the particles inside the cluster are computed. And, in order to conserve
the relative positions of the particles inside the cluster, the mean acceleration and
velocity are used for all particles of the corresponding cluster. This allows the cluster
to move as a whole, in translation. By this method the friction coefficient and the
random force W iðtÞ act individually on each particle of the cluster and are not
renormalized with respect of the new size of the cluster: indeed, physically the liquid
surrounding the cluster acts on each particle individually as does the random
force W iðtÞ:

We use this method and not attractive potentials between particles for a
computing time reason: with attractive potentials, the Molecular Dynamics time step
has to be very small (down to 10�5 s and less) in order for the cluster to remain stable
and with irreversible sticking. Our method allows us to use up to 10�2 s Molecular
Dynamics time step, hence taking less computing time. Furthermore, with this
method of irreversible aggregation, there is no aging of the structure and no
restructuration.
3. Experiments

As described elsewhere [16], the zirconia precursor gels were prepared in the
zirconium n-propoxide, n-propanol, acetylacetone (acacH) and water system. In an
air dried glove-box, the zirconium n-propoxide was diluted with n-propanol and
chelated by acetylacetone. The complexing ligands are not easily hydrolyzed and
lead to obtain a chemical control of reactions [16,17] by avoiding precipitation and
slowing down condensation effects. Then, a water-alcohol mixture was added under
vigorous mechanical stirring and the glass container was hermetically closed until
gelling occurred.

The small angle X-ray scattering (SAXS) experimental set up was an original one
adapted to a rotating anode X-ray generator. For time-dependent investigation, a
small amount of the solution was placed in a cell with two kapton windows, spaced
at about 0.5 mm, and studied in situ at room temperature. The scattered intensity
was measured for successive aging times with an exposure time of 2 h. From time to
time, SAXS curves were collected on new samples from the ‘‘mother’’ solution to
check that no volume effect was involved.
4. Results

Numerically, we used a concentration of c ¼ 0:05 for a box edge length of L ¼ 35;
this corresponds to N ¼ 4094 particles. The diameter of the particles was equal to
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d ¼ 1: Numerical results have been averaged over three different realizations. The
friction coefficient was chosen equal to g ¼ 0:9:

Experimentally, the chemical parameters for the sol are the concentration in
zirconium C ¼ ½Zr
 ¼ 0:25 mol=l the hydrolysis rate W ¼ ½H2O
=½Zr
 ¼ 10 and the
complexation rate R ¼ ½acacH
=½Zr
 ¼ 0:7:

In Fig. 1a and b, there are two snapshots of the internal numerical structure of the
forming gel at respectively time t ¼ 1 and 4563 s.

Numerical structure factors have been computed as in Ref. [18]: the local structure
was examined in real space using the radial distribution function gðrÞ: The pair
distribution functions are a measure of the probability of finding a particle at a
distance r from another particle, and a fractal structure shows up as a power law
region in gðrÞ for the distance over which the fractal structure holds,

gðrÞ / rDf �3 . (4)

By plotting the pair distribution functions on a log–log scale, any fractal region
will appear as a straight line, the slope of the line giving a value for the fractal
dimension Df :

The long range structure can also be analyzed via the structure factor SðqÞ which
is derived from the pair distribution function, gðrÞ by the following Fourier
transform:

SðqÞ ¼ 1 þ
6c

p

Z 1

0

ðgðrÞ � 1Þ4pr2 sinðqrÞ

qr
dr . (5)

In Fig. 2a, we plotted the numerical structure factors of the forming gel SðqÞ as a
function of q ¼ 2p=r; at different times, starting from t ¼ 1 to 4563 s. Fig. 2b
corresponds to the SAXS intensity curves of the corresponding zirconia gelling sol,
at different times.

We analyzed the preceding numerical structure factors. For each structure factor,
the point where the fractal slope was lost: Scut-off ðqcut-off Þ was saved for each time

t. We deduced from Fig. 3a, where were plotted Scut-off and qcut-off as a function
of time t.

As a comparison, we saved the corresponding experimental points where the
fractal slope was lost on the SAXS curves. Each of these points has three
coordinates: Icut-off ; qcut-off and t. From these points we plotted Icut-off and

qcut-off as a function of time t in the same figure (Fig. 3b).
5. Discussion

As one can see in Fig. 2a and b, for early stages of the gelling process, the
computed structure factor and the SAXS curve do not present a real power law in a
log–log graphic, i.e., the slope at high q is not constant. In these two figures and for
later stages of the gelling process, this slope grows, being included between the
Guinier regime and the Porod regime: we call it the fractal slope because it is the
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Fig. 1. (a) Snapshot of the internal structure of the numerical sol at time t ¼ 1 s; (b) snapshot of the

internal structure of the numerical gelling sol at time t ¼ 4563 s:
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(a)

(b)

Fig. 2. (a) Structure factors SðqÞ as a function of q in a log–log plot for times ranging from t ¼ 1 to 4563 s,

(b) SAXS intensity IðqÞ as a function of q in a log–log plot for times ranging from t ¼ 15 to 55140 min.
signature of a fractal structure between two cut-off lengths. The cut-off at large q

corresponds to the beginning of the Porod regime: i.e., in the experimental SAXS
curves, it corresponds to the apparition of a �4 linear slope in a log–log plot, while
in the numerical curves it corresponds to the apparition of oscillations. The cut-off at
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(a)

(b)

100

10

1

0 500 1000 1500 2000 2500 3000
time (s)

time (s)

q Scut-off(q) : numerical
Scut-off(q) : numerical

q Icut-off(q) : experimental
Icut-off(q) : experimental

10000

1000

100

10

1

0 10000 20000 30000 40000 50000 60000

Fig. 3. (a) Evolution of Scut-off (squares) and qcut-off (circles) as a function of time t in a linear-log plot:

numerical results, (b) evolution of Icut-off (squares) and qcut-off (circles) as a function of time t in a

linear-log plot: experimental results.
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small q corresponds to the locations on the curves (experimental and numerical)
where the fractal slope is lost. Let us call qcut-off ¼ 2p=x this location: x is the size of

the smallest fractal cluster in the solution. For smaller q (i.e., larger sizes) the space
distribution of matter loses its mean fractal characteristic causing the slope of the
SAXS curves or of the structure factors to lose their power law behavior. When the
different fractal clusters or domains in the simulation box or in the experimental
gelling sol have a narrow distribution in sizes, the maximum of the small angle
scattering curve is smooth and can be interpreted as the inverse of the mean size of
the clusters. The largest cluster corresponds to a value of q for which the small angle
scattering intensity decreases for q ! 0:

One can see that there is a very good qualitative agreement between experimental
SAXS curves and numerical structure factors as a function of time. This allows us to
say that our Molecular Dynamics model at constant temperature used adequate
hypothesis to model the sol–gel transition of our zirconia precursor.

Let us now compare the evolution of qcut-off as a function of time numerically

(squares in Fig. 3a) and experimentally (squares in Fig. 3b). We plotted their evolution
in a linear-log plot. We plotted also in Fig. 3a (resp. Fig. 3b) the evolution of
Scut-off ðqcut-off Þ (resp. Icut-off ðqcut-off Þ), represented both by circles, as a function

of time. All the data of Figs. 3a and b follow an exponential law. To explain that feature,
report on Eq. (2). If we neglect the very first stages of aggregation in the numerical
model and if we take into account that we averaged all forces acting on the clusters (see
Section 2), we can say that the random force acting on each cluster tends to zero (see,
Eq. (3)) as the cluster grows. So for medium and large clusters, Eq. (2) reduces to

mai ¼ �mgvi . (6)

We call xðtÞ the characteristic length which the clusters have to go before encountering
another cluster at each time t: we suppose that for an interval of time Dt the size of the
cluster grows of the value Dx: With a dimensional analysis of the preceding equation and
thus taking the absolute values of each side of Eq. (6), we obtain

m
dxðtÞ=t

dt
¼ mgxðtÞ=t . (7)

We obtain

xðtÞ ¼ expðAgt þ BÞ , (8)

where A40 and B are integration constants. Hence

qcut-off ¼
2p
xðtÞ

¼ expð�Cgt þ DÞ , (9)

where C40 and D are integration constants.
As x is the size of fractal clusters, we can apply the following equation:

M / xDf , (10)

where M is the mass corresponding to a cluster of size x: Moreover, as qcut-off and

Icut-off (experimental SAXS intensity) or Scut-off (computational structure factor)
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are related by

qcut-off ¼
2p
x

/ M�1=Df / I
�1=Df

cut-off
(11)

because the SAXS intensity or the structure factor intensity are proportional to the
mass at the corresponding length (i.e., x). Hence

Icut-off ¼ exp E
g

Df

t þ F , (12)

where E40 and F are constants. Qualitatively and with the same reasoning,
Scut-off ðqcut-off Þ has also an exponential behavior as a function of time.

Finally, we can say that the fractal dimensions Df given by the linear slope of the
SAXS curves and the structure factors agree very well: each slope in a log–log plot is
equal to Df ¼ 1:6: Let us remark that, even if the probability of aggregation is equal
to one (irreversible aggregation), our model does not give the same fractal dimension
as a stochastic method like the DLCA method for which the resulting fractal
dimension is equal to 1.8.
6. Conclusion

We showed here a new Molecular Dynamics method modelling the gelation of an
assembly of small particles. The parameters that we took for our numerical model
lead to results that fit very well with the experimental results. Comparison between
the numerical structure factors and the SAXS curves are qualitatively very good,
leading to the conclusion that the size of the fractal domains and the mass
distribution during gelation follows an exponential law as a function of time.
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