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a b s t r a c t

Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings.

Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance

their lifetime. Therefore, a new experimental device has been developed to control the load path under

multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of

zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial

loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The

anisotropy of the material is revealed and iso-creep strain curves are given.

1. Introduction

The creep resistance of zirconium alloys is a major concern for

the in-pile behaviour of fuel claddings used in fuel assemblies of

pressurized water reactors (PWR and BWR). These fuel claddings –

which constitute the first barrier against fuel leaks – are submitted

to multi-axial creep loadings, mainly due to water pressure and to

the production of gas during the nuclear reactions in the fuel pel-

lets [1]. That is why these structural elements have been largely

investigated for years [2–4]. Nevertheless, few data are available on

multi-axial loading, especially during the creep tests. Furthermore,

the influence of the loading path on the behaviour of fuel claddings

remains unexplored, even if this parameter can have a strong influ-

ence in the case of anisotropic materials. Therefore a new device has

been developed to control the load path during creep test, to enlarge

the data base required to study its impact on creep behaviour. In

the first part of the paper, the device and the material tested are

presented. Then experimental results will be given and discussed.

2. Materials and experimental procedure

2.1. Materials

The investigated zirconium alloy in this study is a stress-relieved

Zircaloy 4, which has already been previously investigated [5–7].

The interest in such an alloy is the possibility to compare the previ-
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ous and present results on its mechanical behaviour to validate the

newly developed experimental device. Its chemical composition is

given in Table 1.

The specimens used are segments of fuel claddings. These tubes

present an outer diameter of 9.51 mm, and an inner diameter of

8.35 mm (cf. Fig. 1). They have been formed by a cold pilgering pro-

cess, which induces a noticeable and characteristic crystallographic

texture [8]. Thus, the zirconium alloys which are already intrinsi-

cally anisotropic due to their hexagonal compact structure, have its

anisotropy enhanced by the forming process [9]. This anisotropy

influences the mechanical behaviour of the tested fuel claddings.

2.2. Experimental setup

The experimental setup has been developed to control the

thermomechanical loadings of cladding tube specimen. This appa-

ratus can be divided into independent subsystems as detailed in

Fig. 2.

Firstly, the specimen is constituted of a 130 mm long tube and its

clamping set [10] (Fig. 1). On this tube, two alloy 718 strips are spot-

welded to delimit the gauge length (20 mm centred on the middle of

the tube), and used to follow the axial deformations. Three thermo-

couples are also spot-welded on the sample to control and regulate

the temperature of the three zones radiative furnace.

Two couples of laser transmitter/receptor are used to follow

the change of the gauge length z and of the outer diameter of the

tube, 2rext. The axial and the hoop strain are deduced from these

measurements.



Table 1
Chemical composition of Zircaloy 4 alloys (wt.%, ASTM Standard).

Sn 1.20–1.70

O 0.10–0.14

Fe 0.18–0.24

Cr 0.07–0.13

Zr Bal.

Fig. 1. Specimen set up, face (a), (b) and top (c) figures.
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The apparatus uses a tensile and compression electromechanical

device to submit the sample to an axial load which enables loadings

up to 10 kN with an accuracy of ±2 N. The pressurizing and regu-

lating system can load the sample to hoop stress ��� up to 150 MPa

(±0.5 MPa).

The distinctive feature of this device is the simultaneous use of a

radiative furnace, laser extensometers, an open pressuring system

and a tensile and compression electromechanical device. Indeed,

radiative furnace have already been used by Kaddour [11,12]. Laser

extensometers have been used by Ferrer or Onimus [13,14]. In Ref.

[12], Earthman and Murty studied the creep of Zycraloy-4 with

specimens made of open tubes pressurized by an inert gas to sub-

mit the sample to a hoop stress controlled by the pressure level. But

as they used static load to impose the axial load to the sample, they

were not able to control precisely the load path.

By the way, the present apparatus allows us to control the axial

and hoop stresses. Furthermore, the temperature difference on the

20 mm gauge length is less than 0.5 K and both axial and hoop

strains versus time are collected.

Fig. 2. Scheme of the new device.

2.3. Experimental procedure

The purpose of the tests carried out on this new device is to con-

trol the temperature, the hoop and the axial stress during the whole

thermo-mechanical loading. For the tests detailed in the present

study, the experimental procedure depends on the biaxiality ratio

ˇ of the creep test, which is the ratio of the axial stress �zz to the

hoop stress ���.

ˇ = �zz

���

If S is the cross-section of the tube, P the imposed pressure inside

the tube, F the axial load, rext the outer radius of the cladding tube

and rint its inner radius (cf. Fig. 1), then the following relations can

be used for this thin tube geometry, in which the radial stress �rr

can be neglected [15]:

�zz = F

S
+ P

4

(rext + rint)

(rext − rint)
and ��� = P

2

(rext + rint)

(rext − rint)

When pressure is needed to reach a given value of the hoop stress

(���), the air tightness is checked before positioning the furnace.

Then, all the tests follow the same procedure. A small axial load

corresponding to 3 MPa is applied to the tube in order to avoid

buckling during thermal loading. The heating is then imposed from

room temperature to 673 K (400 ◦C) at 50 K/min. The temperature

stabilization in the whole device is reached after 15 min. Then the

imposed mechanical loading is monitored and data from the exten-

someters and the load cell are collected at a frequency of 1 Hz. The

strain rate during loading was set to 10−6 s−1 except for tests 1 and

2 [10−3 s−1] and tests 3 and 4 [10−4 s−1].

The purpose of the creep tests carried out in the present work is

to study the strain rates during the steady state. So tests are stopped

when secondary creep is stabilized and before reaching the tertiary

creep.

3. Results

The first tests were done to validate results obtained with the

new device. Thus, 14 creep tests have been carried out with different

biaxiality ratio ˇ [from 0.25 to ∞]. The purpose was (i) to check the

results obtained on that device compared to previous experimental

data, (ii) to validate the range of biaxiality that could be controlled

and maintained during creep tests on the new device and (iii) to

get first creep strain results to help to determine further testing

programs.

The first step in the data analysis is the determination of the

axial and hoop strains, and their representation versus time (cf.

Fig. 3). From this one, important information will be deduced such

as the axial and hoop coefficients of thermal expansion, and the

steady-state creep strain rates.

Table 2 summarized the results concerning the thermal

behaviour obtained during these tests. Indeed, the anisotropy

of dilatation of the material is evidenced during heating.

The average value of the coefficient of thermal expansion is

5.1 × 10−6 K−1 in the axial direction (˛zz) and 8.3 × 10−6 K−1 in

the circumferential direction (˛��). As a consequence, the aver-

age ratio between these thermal expansion coefficients is close to

0.6.

Table 3 summarizes all the creep results. Tests labelled from 1

to 14 were carried out during the first campaign devoted to test the

device. For each creep test, the ratio r of the axial strain rate ε̇zz over

the hoop strain rate ε̇�� is determined.

r = ε̇zz

ε̇��



Fig. 3. Example of experimental data showing the axial and hoop strains versus time

for an uniaxial creep test under 135 MPa, at 623 K.

Table 2
Hoop and axial coefficients of thermal expansion obtained on stress-relieved

Zircaloy 4.

Test label ��� [MPa] �zz [MPa] ˇ ε̇ [s−1] 20–400 ◦C

˛�� [10−6 K−1] ˛zz [10−6 K−1]

1 0 125 ∞ 10−3 8.97 5.13

2 0 125 ∞ 10−3 8.06 4.79

3 0 125 ∞ 10−4 7.58 5.53

4 0 125 ∞ 10−4 9.14 5.67

5 0 125 ∞ 10−6 8.73 5.62

6 0 125 ∞ 10−6 6.77 5.13

8 80 120 1.5 10−6 7.67 5.58

9 120 120 1 10−6 8.17 3.94

11 140 70 0.5 10−6 8.55 5.43

12 140 70 0.5 10−6 7.50 4.19

13 138 38 0.25 10−6 6.87 5.03

Fig. 4. Plot of the stationary axial and hoop creep strain rates.

In the case of a uniaxial creep test, biaxiality ratio ˇ is infinite.

For isotropic material then r = −2 [15]. Data obtained during the

experiments are not far from this value (see Table 3). Different strain

rates have been used during loadings for the tests labelled 1 to 6

in order to see if the initial strain rate during loading influences

the secondary creep strain rate. Between 10−6 s−1 and 10−3 s−1 no

effect was observed (Table 3 and Fig. 4).

The creep tests carried out in multi-axial loading conditions

enhanced the anisotropic behaviour of the tested materials (Fig. 2).

For ˇ = 2, |r| ≈ 1; for ˇ = 1, |r| ≈ 0.3; for ˇ = 0.5, |r| ≈ 0.2 and ˇ = 0.25,

|r| ≈ 0.1. A small value for the hoop strain rate strongly influences

the r-value obtained and increases the uncertainty. However, the

device allows carrying out all the tests planned. The results in terms

of thermal behaviour, as well as in terms of mechanical behaviour

are reproducible except for ˇ = 1. Indeed, the value of r obtained

for small stresses (cf. Table 3) differs from these obtained for larger

stresses. New tests comparable to tests 19 and 20 should be done

to check the values of r (cf. Table 2).

Table 3
Hoop and axial secondary creep strain rates obtained on stress-relieved Zircaloy 4 at 400 ◦C (�VM corresponds to Von Misès stress and ε̇ to the equivalent creep strain rate).

Test label ˇ ��� (MPa) �zz (MPa) �VM (MPa) Duration (h) Secondary creep

ε̇�� (s−1) ε̇zz (s−1) ε̇ (s−1) r

1 ∞ 0 125 125 70 −1.53 × 10−9 3.55 × 10−9 3.76 × 10−9 −2.32

2 ∞ 0 125 125 67 −1.16 × 10−9 3.99 × 10−9 4.10 × 10−9 −3.44

3 ∞ 0 125 125 61 −2.37 × 10−9 4.51 × 10−9 4.91 × 10−9 −1.90

4 ∞ 0 125 125 69 −3.86 × 10−9 4.06 × 10−9 5.14 × 10−9 −1.06

5 ∞ 0 125 125 64 −2.99 × 10−9 4.73 × 10−9 5.32 × 10−9 −1.58

6 ∞ 0 125 125 62 −1.92 × 10−9 3.90 × 10−9 4.20 × 10−9 −2.03

7 1.5 80 120 106 18 1.28 × 10−8 1.27 × 10−8 1.64 × 10−8 0.99

8 1.5 80 120 106 20 1.80 × 10−8 1.94 × 10−8 2.43 × 10−8 1.08

9 1 120 120 120 21 3.52 × 10−8 1.57 × 10−8 3.27 × 10−8 0.45

10 1 120 120 120 28 3.02 × 10−8 1.28 × 10−8 2.78 × 10−8 0.42

11 0.5 140 70 121 22 5.47 × 10−8 9.81 × 10−9 4.57 × 10−8 0.18

12 0.5 140 70 121 20 3.48 × 10−8 7.89 × 10−9 2.95 × 10−8 0.23

13 0.25 138 38 123 29 6.46 × 10−8 6.03 × 10−9 5.31 × 10−8 0.09

14 0.25 138 35 124 20 6.57 × 10−8 8.11 × 10−9 5.43 × 10−8 0.12

15 ∞ 0 199 199 113 −5.87 × 10−9 1.18 × 10−8 1.27 × 10−8 −2.01

16 ∞ 0 199 199 89 −7.39 × 10−9 1.90 × 10−8 1.99 × 10−8 −2.57

17 2 56 112 97 65 3.31 × 10−9 5.00 × 10−9 5.68 × 10−9 1.51

18 2 80 160 139 45 1.68 × 10−8 1.84 × 10−8 2.30 × 10−8 1.10

19 1 76 76 76 88 7.87 × 10−9 −2.89 × 10−9 7.05 × 10−9 −0.37

20 1 76 76 76 44 8.14 × 10−9 −1.19 × 10−9 6.75 × 10−9 −0.15

21 0.5 84 42 73 67 8.72 × 10−9 2.29 × 10−9 7.48 × 10−9 0.26

22 0.5 134 67 116 37 5.91 × 10−8 1.47 × 10−8 5.01 × 10−8 0.25

23 0.5 110 55 95 48 2.35 × 10−8 5.01 × 10−9 1.98 × 10−8 0.21



Fig. 5. Representation of the vectors of the creep strain rate (secondary creep) plot-

ted for the different tested stress states. The arrows size is proportional to the creep

strain rate.

In order to be able to plot iso-creep strain rate curves for different

stress states, further creep tests were defined using a Norton creep

law [16].

ε̇ = A�n

with � = �VM = 1√
2

×
√

(�rr − ���)2 + (��� − �zz)2 + (�zz − �rr)2

and ε̇ =
√

2

3
× (ε̇2

��
+ ε̇2

zz)

A value of n = 4.3 was identified after the first creep tests and addi-

tional tests were then defined to get results for a low strain rate of

about 5 × 10−9 s−1, and a medium strain rate of 3.5 × 10−8 s−1. The

purpose is to get iso-creep strain rate curves for these two strain rate

levels. These curves correspond, for creep data, to the yield surfaces

obtained for the plastic behaviour. However, plasticity mechanisms

involved during slow strain rate creep tests can differ from those

observed at higher strain rate.

Tests labelled from 15 to 22 given in Table 3 were obtained

in this second creep tests campaign. The corresponding strain

rates are closed to the awaited ones which were 5 × 10−9 s−1 and

3.5 × 10−8 s−1 (Table 3). The axial and hoop strains obtained for dif-

ferent stress states are plotted in Fig. 5 by the use of strain rate

vectors, whose vertical and horizontal components are respectively

ε̇zz and ε̇�� . Thus the direction of the vector indicates the creep flow,

and its position ��� and �zz corresponds to the creep loading. From

these results, we can interpolate the shape of the two iso-creep

strain rate curves (dashed lines). Furthermore, for different biaxi-

ality ratio, Norton coefficients can be calculated as shown in Fig. 6

and given in Table 4.

Table 4
Norton exponent as a function of the biaxiality ration for stress-relieved Zircaloy 4

at 400 ◦C.

ˇ n

∞ 2.7

2 4.0

1 3.1

0.5 3.3

Fig. 6. Map of the deformations versus Von Mises Stress for each kind of creep tests.

4. Discussion and conclusion

The anisotropy of the Zircaloy 4 has been well highlighted, in

terms of thermal but also mechanical behaviour. Moreover, the

results obtained under multi-axial loadings in the present study

are coherent with results already presented in the literature.

First of all, the present creep tests under internal pressure

(ˇ = 0.5) can be compared to Brenner’s results [17]. Indeed for

creep tests realised with hoop stresses of 113 MPa and 130 MPa,

he observed r ratios, respectively, of 0.20 and 0.22. In the present

study, we observed r ratios of 0.18 and 0.25 for a hoop stress of

140 MPa.

In the same way, the thermal expansion coefficients are compa-

rable to those observed by Brachet et al. [18]. For a zirconium-based

alloy (Z > 98%), the dilatometric measurements realised between

473 K and 773 K ranged from 5.58 × 10−6 K−1 to 8.31 × 10−6 K−1,

depending upon the cutting range of the sample, leading to a ther-

mal anisotropy ratio of 0.67.

Lastly, the Norton coefficients observed are in good agreement

with the coefficients n presented by Charit and Murty [19] for zirco-

nium alloys, since for zirconium alloys of class A (Nb-Zr) and class

M (Zircaloys) n is equal, respectively, to 3 and 4 for temperatures

ranging from 623 K to 773 K. Nevertheless further tests are needed

to confirm the dependence of n upon ˇ.

This new device specially adapted to cladding tube testing

allows us to lead a large range of creep tests, and thus to increase

the present data base on zirconium alloys. As a consequence, with

a better knowledge of the practical thermomechanical behaviour

of these materials, we will be able to improve the polycrystalline

models used to predict the mechanical behaviour of these alloys

under various thermal creep conditions.
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