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Dynamic modeling of Terahertz

Quantum Cascade Lasers
Yoann Petitjean, Fabien Destic, Jean-Claude Mollier Member, IEEE, and Carlo Sirtori, Member, IEEE.

Abstract—In this paper, the influence of the simplifications
made in the four-equation-based set of rate equations describing
the dynamic behavior of a Quantum Cascade Laser (QCL) is
studied. Numerical simulations based on the set of four rate
equations has been developed, enabling the theoretical study of
the influence of different parameters on the direct modulation
response of the laser. These equations have been then linearized in
order to deduce a set of state system equations, which was written
in a matrix formalism. Finally, an approximate second order
transfer function has been derived with the linearized dependence
of its times constant.

Index Terms—Terahertz, Quantum Cascade Laser, modeling,
dynamic behavior, bandwidth.

I. INTRODUCTION

THIS paper aims at proposing a theoretical description

of small signal modulation of Quantum Cascade Lasers

(QCL). Their invention in 1994 by Faist, Capasso et al. [1]

brought a powerful and compact solid source of far infrared

radiation. Since then, their performances have continuously

improved. Terahertz QCL working above liquid nitrogen tem-

perature [2] [3], and even at room temperature by intracavity

difference-frequency generation, have been reported [4]. Their

spectral range is now extending from the mid-infrared down to

1.2 THz [5]. Due to the novel properties and unique interaction

with many materials, the terahertz radiation has become a topic

of active research for the past few years, and is still a going

concern [6] [7]. Among the large possibilities of applications,

free space short range communications have been studied

[8] [9] because of the Wi-Fi capabilities of terahertz waves

and QCL large supposed bandwidth modulation [10]. QCL-

based local oscillators are also attractive for radioastronomy

applications [11] thanks to their high spectral purity, adequate

output power and good stability. Modeling the behavior of

QCLs is therefore an important step toward the prediction

of performances of such semi-conductor sources. Microscopic

modelings have proved to be relevant in predicting and an-

alyzing quantum device carrier dynamics and have largely

participate to their design improvement [12] [13].

However, hereinbefore mentioned applications need a more

global consideration of the optoelectronic system, and the

establishment of a small signal equivalent circuit appears to

be useful with this end in view. That is the final purpose of
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the theory presented in this paper. Indeed, theoretical study of

electro-optical behavior, associated with the electrical ports S-

parameters of a QCL should create a link between experimen-

tal measurements and intrinsic parameters values of the laser

diode, and a better prediction of embedded device behavior.

This method has proved to be apposite for many kinds of

semiconductor lasers used in such applications. Macroscopic

theoretical modeling of the QCL dynamic are easily usable:

the set of rate equations governing the number of photons

in the cavity and of electrons on the different possible states,

along with their different lifetimes are sufficient. However, the

microscopic theory is still needed to get a good description of

the physical phenomena without introducing phenomenologi-

cal parameters.

Considering the full rate equations system [14], a numerical

simulation is firstly establish. It leads to modulation bandwidth

up to a few dozens of gigahertz. Then, an analytical calculation

is made to propose a transfer function that is simplified next,

in order to study its dependence as a function of various

parameters like lifetimes and number of periods.

January 30, 2010

A. Simplified QCL model

The simplified rate equations are based on a three-level

classical scheme which leads to a 3 equations-system (2 for

electrons on the two levels involved in the laser transition and

1 for photons). For a QCL of Np periods, these equations are

written as follows (Eq.(1) to (3)) [15] :

∂N3

∂t
= η

I

q
−

N3

τ3
− G (N3 − N2)P (1)

∂N2

∂t
=

N3

τ32
−

N2

τ2
+ G (N3 − N2)P (2)

∂P

∂t
= Np G (N3 − N2)P −

P

τp

+ β
N3

τsp

(3)

where Ni is the number of electrons in the ith level, P the

number of photons, G the optical gain, τ32 the non-radiative

scattering time, τi the electron lifetime in level i, and τp the

photon lifetime. τsp is the spontaneous emission lifetime.

B. Benefits and inaccuracies of this model

These rate equations well describe the static behavior of

quantum cascade lasers, as they lead to the same result

than the full system as illustrated in fig.(1). The much more

simple calculation needed for this model allows quite simple

analytical results. Moreover, as other macroscopic theories
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Fig. 1. Optical power versus current of a 30-periods QCL (dotted line :
experimental data, solid line : simplified model and dashed line : enhanced
model) [16]

that allow to deduce a small signal equivalent circuit, helpful

for optoelectronic applications like direct intensity modulation

communications, this modeling is very valuable.

However, this simplified modeling leads to a root-squared-

law increase of the bandwidth with the number of periods. It

is not a quite intuitive result. Indeed, the extraction time of the

electrons to pass through the different periods is not taken into

account. We can spontaneously think that this extraction time

could decrease the small signal bandwidth of the QCL. That

will be discussed further. Because of this simplification, small

signal equivalent circuits deduced from this set of equations

might lead to inaccuracies.

II. FULL RATE EQUATIONS

The previous set of rate equations is actually deduced from a

more complex one. In order to take into account the extraction

time of the electrons to pass from the fundamental level of

the ith level to the excited one of the i + 1th level, one

more equation has to be reintegrated. The rate equations are

consequently based on a three-level scheme with 4 equations

(one for each of the three levels of the electrons and one for

the photons) [14]. This so called full rate equation system is

given by Eq.(4) to Eq.(7) :

∂N
(j)
3

∂t
= η

Iin
(j)

q
−

N
(j)
3

τ3
− G(j) (N

(j)
3 − N

(j)
2 )P (4)

∂N
(j)
2

∂t
=

N
(j)
3

τ32
−

N
(j)
2

τ2
+ G(j) (N

(j)
3 − N

(j)
2 )P (5)

∂N
(j)
1

∂t
=

N
(j)
3

τ31
−

N
(j)
2

τ21
−

Iout
(j)

q
(6)

∂P

∂t
=

Np
∑

j=1

G(j) (N
(j)
3 − N

(j)
2 )P

+ nsp

N
(j)
3 − N

(j)
2

τsp

−
P

τp

(7)

where Ni is the number of electrons in the ith level, P the

number of photons in the cavity, G(j) the optical gain of the

jth period, τi the electron lifetime in level i, and τp the photon

lifetime. τ31, τ32, τ21 are the non radiative scattering times that

are due to LO-phonon emission between the corresponding

levels. nsp is the spontaneous emission coefficient and τsp

the radiative spontaneous relaxation time. I
(j)
in and I

(j)
out are

respectively the input and output currents of the jth period.

For the first period, I
(1)
in comes down to the input current of

the QCL.

Moreover, in order to describe the cascade scheme of the

QCL, since the input current of the jth period is the output

current of the (j − 1)th period, these currents can be linked

to a number of electrons extracted from the lower level of the

(j − 1)th period and injected on the upper level of the jth

period. Then, the output current of the jth period is the rate

of electrons leaving the level (1) given by Eq.(8) and the input

current of the jth period is the rate of electrons arriving on

the level (3) from the level (1) of the previous period, given

by Eq.(8).

Iout
(j)

q
=

N
(j)
1

τout

(8)

Iin
(j)

q
=

N
(j−1)
1

τout

(9)

III. ANALYTICAL RESOLUTION

A. Hypotheses

The analytical resolution of the full rate equation is quite

difficult for the time being. Consequently, one has to assume

some simplifying hypotheses. First of all, the gain is supposed

constant in the different periods. However, it could be an

interesting job to focus on the spatial non-uniformity of the

gain to describe furthermore the reality of the static and

dynamic behavior. Secondly, the spontaneous emission term in

the last equation is neglected as compared with the stimulated

one. It is a well-known and quite correct assumption as soon

as the laser is biased well above threshold. Last assumption,

the η coefficient standing for the non-perfect injection of the

electrons on the excited level will be supposed equal to 1.

The value of this parameter has mainly an impact on the static

behavior.

B. Linearized equations

From the rate equations above, a small perturbation method

will be used to linearize them. Thus, the number of photons

P (t) will be the sum of the steady-state value P0 and a

small variation p(t) around P0. In the same way, the different

numbers of electrons N
(j)
i (t) in each level will be the sum of

a steady-state term Ni0
(j) and a perturbation one n

(j)
i (t).

P (t) = P0 + p(t) (10)

with p(t) ≪ P0

N
(j)
i (t) = Ni0

(j) + n
(j)
i (t) (11)

with n
(j)
i (t) ≪ Ni0

(j)



This method, associated with the previous hypotheses leads

to a linearized set of four rate equations, given by Eq.(12) to

(15) (the time dependence has been voluntarily omitted for

clarity)

∂n
(j)
3

∂t
=

n
(j−1)
1

τout

−
n3

(j)

τ3
− G (n

(j)
3 − n

(j)
2 )P0

− G∆N0 p (12)

∂n
(j)
2

∂t
=

n
(j)
3

τ32
−

n
(j)
2

τ2
+ G (n

(j)
3 − n

(j)
2 )P0

+ G∆N0 p (13)

∂n
(j)
1

∂t
=

n
(j)
3

τ31
−

n
(j)
2

τ21
−

n
(j)
1

τout

(14)

∂p

∂t
= GP0

Np
∑

j=1

(n
(j)
3 − n

(j)
2 )

+

(

GNp ∆N0 −
1

τp

)

p (15)

where ∆N0 = N30
(j) −N20

(j) is a constant for the different

period j and it is actually the case in the simulations.

Now, using Laplace formalism (s will be the Laplace

variable and X(s) the Laplace transform of x(t)), Eq.(16) to
Eq.(19) are obtained :

(

s +
1

τ3
+ GP0

)

N
(j)
3 (s) =

N
(j−1)
1 (s)

τout

+ GP0 N
(j)
2 (s)

− G∆N0 P (s) (16)

(

s +
1

τ2

)

N
(j)
2 (s) =

N
(j)
3 (s)

τ32
+ GP0 N

(j)
3 (s)

+ G∆N0 P (s) (17)

(

s +
1

τ1

)

N
(j)
1 (s) =

N
(j)
3 (s)

τ31
+

N
(j)
2 (s)

τ21
(18)

(

s +
1

τp

− GNp ∆N0

)

P (s) = − GP0

Np
∑

j=1

(

N
(j)
3 (s)

− N
(j)
2 (s)

)

(19)

C. Full QCL Matrix

The previous set of equations can be considered as a

recurrent state system. Let us describe it thanks to a matrix

formalism (Eq.(20)).

[

A
]

·
[

N
(j)
]

=
[

E
]

·
[

N
(j−1)

]

+
[

σ
]

· P (s) (20)

Where [A] is the 3 × 3 state matrix of one period, [E] is
also a 3 × 3 matrix that could be called the extraction matrix

as it is a null matrix if the extraction time of the electrons is

not taken into account, and [σ] a 3×1 column matrix standing

for the presence of photons in the electronic rate equations.

These matrices are written as follows (Eq.(21) to Eq.(24)).

[

N
(j)
]

=







N
(j)
3 (s)

N
(j)
2 (s)

N
(j)
1 (s)






(21)

[

A
]

= k













s + 1
τ3

+ GP0 −GP0 0

− 1
τ32

− GP0 s + 1
τ2

+ GP0 0

− 1
τ31

− 1
τ32

s + 1
τout













(22)

=













α11 α12 0

α21 α22 0

α31 α32 α33













[

E
]

=













0 0 − k
τout

0 0 0

0 0 0













(23)

[

σ
]

=













−∆N0

P0

∆N0

P0

0













=













−σ

σ

0













(24)

where k = 1
G P0

≈ 8.2 × 10−14 is a scale factor avoiding

overflow during numerical computation.

This recurrent state system, associated with Eq. (19), can

be described by a more complex state system allowing us to

link the optical power Popt(s) to I(s). Indeed,

[Ω] ·

























[

N
(1)
]

[

N
(2)
]

:

[

N
(j)
]

:
[

N
(Np)

]

P (s)

























=

























I(s)
q G P0

0
:

:
:
0
0

























(25)

with :



[Ω] =

























[A] [0] . . . [0] [σ]
[E] [A] [0] . . . : [σ]
[0] [E] [A] [0] . . . : [σ]

:
. . .

. . .
. . .

. . . : :

:
. . .

. . .
. . . [0] :

[0] . . . . . . [0] [E] [A] [σ]
[γ] . . . . . . [γ] δ

























(26)

[γ] =
[

1 −1 0
]

(27)

δ = k

(

s + Np G∆N0 +
1

τp

)

(28)

Popt(s) = αm

c

ng

h ν P (s) (29)

ng and αm are respectively the mode-group index and the

mirror losses.

D. Analytic Transfer Function Calculation

In order to calculate the transfer function of the QCL,

the (3Np + 1) - by - (3Np + 1) [Ω] matrix has to be inverted

using the well known method :

[Ω]
−1

=
1

det ([Ω])
tCom ([Ω]) (30)

In fact, only the {(3Np + 1) ; 1} term of [Ω]
−1
, linking

S(p) to I(p), is interesting. So, we just have to calculate the

{1; (3Np + 1)} term of the co-matrix Com ([Ω]), which cor-

responds to the {1; (3Np + 1)}th order minor determinant of

[Ω] calculated by suppressing the 1st line and the (3Np + 1)
th

column (last one) of [Ω].

Then, the small signal electro-optical transfer function H(s)
is given by Eq.(31) :

H(s) =
Popt(s)

I(s)
= αm

c

ng

h ν

q
k

(−1)(3Np+2) Cof1,Np

det ([Ω])
(31)

with

det ([Ω])=(−1)(3Np+1)σ

(

Np−1
∑

k=0

(−d)k
(

Cof1,Np−k

+ Cof2,Np−k

)

)

+ δ dNp (32)

in which Cofi,k is the minor determinant (co-factor) of a k-

periods-QCL [Ω] matrix with the ith line and last column

suppressed. A recurrent relation on these determinants leads

to the following general equations (Eq.(33) and Eq.(34)).

Cof1,k = −Cof1,1

k−1
∑

i=0

(

ak−i−1
1 di

)

(33)

Cof2,k = (−1)3Np a2 Cof1,k−1 + Cof2,1 dk−1 (34)
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Fig. 2. Comparison between full numerical simulation and linearized state
system of a 30-periods QCL at 450mA bias point.

with

a1 = −
k σ

τout

(α21 α32 − α22 α31) (35)

a2 = −
k σ

τout

(α11 α32 − α12 α31) (36)

d = det ([A]) (37)

Cof1,1 = σ α33 (α21 + α22) (38)

Cof2,1 = σ α33 (α11 + α12) (39)

The higher degree Laplace terms ’s’ of this transfer function

is Cof1,1 dNp−1 for the numerator and δ dNp for the denom-

inator. They respectively correspond to an s3Np−1 term over

an s3Np+1. Indeed, the higher degree term of d = det ([A]) is
s3, the higher one of δ is s, and the higher one of Cof1,1 is

s2. Therefore, the calculation leads to a globally second-order

transfer function.

IV. SIMULATIONS

A. Transfer Function Characteristics

From the study of the linearized bode diagram given in

fig(2), we propose an approximate 2nd order transfer function

written as Eq.(40).

H(s) ≈ H0
1 + τn s

(1 + τd s)
(

1 + 2 ξ
ω0

s + s2

ω2

0

) (40)

with :

H0 = ηi

αm

α

h ν

q
Np ≈ 37 mW/A (41)

where ηi is the internal quantum efficiency given by Eq.(42)

ηi =
τ3

(

1 − τ2

τ32

)

τ2 + τ3

(

1 − τ2

τ32

) (42)

Involved parameters values are given in table I.



TABLE I
DEVICE PARAMETERS USED IN NUMERICAL SIMULATIONS (UNLESS

STATED OTHERWISE) (FROM [14], [15], [17], [18])

Parameter Value

Lasing frequency ν (wavelength λ) 2.9 THz (103 µm)

Number of periods Np 30

Confinement factor Γ 0.27

Cavity width w 80 µm

Cavity length L 3 mm

Facet reflectivity R 0.29

Mode-group index ng 3.3

Cavity losses αi 24cm−1

Differential gain g 5×10−8 cm

Gain G = g Γ c
ng L w

5.3×104 s−1

Equilibrium population inversion ∆N0 105

Equilibrium photon number P0 @I0 = 450mA 2.3×108

τout 0.5 ps

τ2 0.3 ps

τ3 1.1 ps

τ31 2.4 ps

τ32 2 ps

τp 3.7 ps

τsp 7 ns

B. Evolution with various parameters

We can compute the dependence of τd, τn, ω0 as a function

of the number of periods Np, the extraction time of the

electrons τout, the lifetimes τ2 and τ32, and the number of

photons in the cavity at equilibrium P0.

Plots in fig.(3) to fig.(5) are the results of the simulations

of the state system for several values of each parameter. In

each case, only one parameter may vary, all others remaining

constant and equal to the value given in table I.

Fig.(3) shows a very linear dependence of the inverse of the

bandwidth, defined by a 3dB-decrease of the Bode response

magnitude, as a function of Np, τ2, and τout. A linear fit

of each plot leads to Eq.(43). The bandwidth is consequently

linearly dependent on the inverse of the number of periods,

which is a quite new result and implies a compromise between

the optical power and the bandwidth. The variation of the

bandwidth versus the inverse of the extraction time τout is

understandable as the time taken by electrons to go from one

period to the next should have an impact on the bandwidth.

Linear dependence of the inverse of the bandwidth with respect

to τ2 is on the contrary a known result [15]. Other simulations

have been made to study the dependence of the bandwidth on

the photon lifetime τp with the result of a non-dependence,

when τp varies in a range of a decade. This could be explained

by the order of magnitude between the photon lifetime and the

actual inverse of simulated bandwidth, the latter being indeed

more driven by the carriers dynamic in the structure than the

photon lifetime itself.

ω0 ≈
1

0.34 × 10−12 Np + 11.5 τout + 15 τ2 − 7.8 × 10−12

(43)
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Fig. 3. Variations of the inverse of the bandwidth with (a) τout, (b) τ2
and (c) Np. One can note the very linear dependence of the inverse of the
bandwidth with these parameters.

The variations of τd with Np and τ−1
d with P0 are quite

linear. The step-like shape of the simulated curve in Fig.(4(b))

is only due to the precision of the numerical simulation.

Eq.(44) can be considered to be a good approximation of τd

variations against P0 and Np.

τd ≈ 1.65 × 10−17 Np +
1

2GP0 + 1
τ2

− 1
τ32

(44)

The variations of τn with τout, τ2 and Np are much

more complicated. Indeed, there is no simple relationship

between these parameters as shown in fig.(5). Nevertheless, the

variations of τn can be roughly linearized around the nominal

values of τout, τ2 and Np given in table I to obtain Eq.(45).

For a more accurate model, a higher degree polynomial form

to fit τn variations can be used.

τn ≈ 4.3 × 10−15 Np + 2.5 τout + 3 τ2 − 1.4 × 10−12
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The two time constants τn and τd have not a major impact

on the bandwidth as their numerical value is at least one order

of magnitude less than the inverse of the bandwidth. However,

they partially shape the Bode response magnitude in the high

frequency domain (above the 3dB bandwidth) and their value

is still important to extract parameter values like scattering

times for instance.

V. PROSPECTIVES

In order to experimentally establish the bandwidth of QCLs,

a test bench has been developed. It consists in a home-

made electro-optical probe station, based on a TK1813 QMC

Instruments Ltd. cryostat. A Cascade Microtech microwave

probe and special feedthrough allow applying both the bias and

modulation current up to 40 GHz. This probe is driven by a

three-axis micrometer stage. Two others three-axis micrometer

stages drive two optical 1,55 µm focalizers. Indeed, as there

is not currently fast enough THz detector available, an up-

conversion toward telecoms wavelength has been planned [19]

[20]. Because of the second order non-linear susceptibility χ2

of GaAs, the whole THz spectra with microwave modulation

sidebands is shifted on both sides of the telecom wavelength

line. Modulation frequencies as high as 13 GHz [21] and

more recently, 24GHz [22] have been achieved with this

technique. This test bench will allow us to have access to the

Bode diagram magnitude of a QCL to validate our modeling.

Based on this theory, work is in progress to propose small

signal equivalent circuit of QCL, helpful for direct modulation

applications. The different elements of the circuit are then

link to intrinsic parameters and optimization of the QCL

in accordance with the application is possible. It is also an
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Fig. 5. Plots of the variations of τn with (a) τout, (b) τ2 and (c) Np. The
dependence of τn with these various parameters is obvious, but not simple
like a linear one.

efficient method to get access to the intrinsic parameters of

the laser chip under test and to evaluate the device features,

in the same way as the technique used for more conventional

lasers like VCSELs [23].

VI. CONCLUSION

A simplified transfer function, taking account of QCL

cascade scheme architecture has been presented. The time con-

stant variations of this transfer function have been pointed out

and lead to a dependence of the direct modulation bandwidth

with the number of periods and the electron extraction time.

Numerical functions have been proposed, that could be useful

as a way of prediction of dynamic QCL performances. Further

work and experiments are in progress to experimentally prove

these dependences.
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