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Abstract 

Cereals are an important source of sterols and stanols in the human diet. The present 

study underlines the effect of genotype and weather conditions in bread wheat, on total 

sterol and stanol content (TSS), agronomic traits, proteins and ash content under organic 

conditions. Variations in TSS as well as other characters between two sowing dates 

were observed. A broad genotypic variability was also reported since extreme genotypes 

differed by more than 30 mg 100. g-1 DW for TSS, with total stanol content varying 

twofold. Moreover, two groups of genotypes that differed in agronomic production, ash 

and protein content were depicted, based on their response to an increase in 

temperature. This result suggests that the genotypic factor prevails over the sowing date 

factor for determining sterol and stanol traits in wheat cultivated under organic 

conditions. Nevertheless, a strong interaction exists between the two factors, which can 

be used to drive bioaccumulation of these molecules. 

 

Keywords: bread wheat, phytosterols, phytostanols, genetic variability, crop 

management, organic conditions, bioaccumulation. 



  

1. Introduction 

Cereal grains contain a wide variety of nutrients and bioactive molecules that play an 

important role in disease prevention (Halvorsen et al., 2002). Among these molecules, 

much attention has been focused on phytosterols in the last few years. As minor 

constituents of lipids, they constitute a group of cholesterol-like molecules and are 

characterised by the presence of a methyl or ethyl group in carbon 24 of the basic 

cholesterol chemical structure (Moreau, Whitaker & Hicks, 2002). Phytosterols occur in 

plants as free sterols and conjugated forms (Piironen, Lindsay, Miettinen, Toivo, & 

Lampi, 2000). They are key compounds for the formation of plant plasma membrane 

microdomains (Roche et al., 2008). These molecules play an essential role in the 

regulation of membrane fluidity and permeability by affecting the proteins associated to 

membranes. Moreover, they are precursors of brassinosteroids and are involved in 

embryogenesis (Schaller, 2003). 

Phytosterols have been described as cancer-preventive bioactive molecules and have an 

immuno-modulating activity (Bouic, 2001). However, the most important property of 

phytosterols is their beneficial effect in reducing the low density lipoprotein (LDL) 

cholesterol level (Calpe-Berdiel, Escolà-Gil & Blanco-Vaca, 2008). According to Valsta 

et al. (2004), even if the sterol level in cereals is lower than that of oilseeds, cereals 

remain the major source of natural sterols in the human diet due to the large amounts 

consumed daily. Comparison between sterol content in cereals was performed by 

Piironen, Toivo & Lampi (2002). It appears clearly that rye, wheat and barley grains 

exhibit the highest sterol-stanol content whereas oat presented the lowest level of these 

same compounds. Moreover, wheat is one of the most important food crops and is 

grown worldwide. 



  

Phytosterols in cereals are present in two forms: sterols and their completely saturated 

forms, stanols. This fact has oriented clinical experiments to focus on stanol versus 

sterol efficiency in reducing LDL cholesterol, and it seems that stanols are more 

efficient (Santos, Limas, Sousa, da Conceição Castilho, Ramos & Noronha da Silveira, 

2007).  

Several authors have studied total phytosterol content in grains of different cereals 

(Moreau, Singh, Nunez & Hicks, 2000) and in cereal by-products (Nyström, Paasonen, 

Lampi & Piironen, 2007; Jiang & Wang, 2005; Hakala et al., 2002). However, in these 

studies, sterol content was measured on commercial samples, which considerably limits 

source traceability. Other experiments have been carried out to study sterol and stanol 

levels in oat (Määttä, Lampi, Petterson, Fogelfors, Piironen & Kamal-Eldin, 1999), rye 

(Zangenberg, Boskov Hansen, Jorgensen & Hellgren, 2004; Piironen et al., 2002), corn 

(Harrabi et al., 2008) and bamboo (Lu, Ren, Zhang & Gong, 2009) across locations as 

influenced by genotype under conventional conditions. However, information on the 

effects of genotype and environmental conditions on the stanol and sterol composition 

of wheat is lacking. Moreover, effect of water deficit or high temperatures on 

technological traits as sterols content and protein content was studied under 

conventional conditions where pests and diseases were managed by chemicals (Dupont 

et al. 2006; Zangenberg et al., 2004; Määttä et al., 1999). In contrast, organic culture, 

conducted without chemicals, can be considered as stress for plants. Thus, this 

agricultural method may influence molecules composition in wheat grain. 

Phytosterols used in industrial preparations are chemically extracted from oil plants, and 

phytostanols are obtained by hydrogenation of sterols (Mouloungui, Roche & Bouniols, 

2006), often by using harsh chemical methods that are not always in accordance with 

European Union recommendations and REACH legislation. It has in fact been 



  

recommended to decrease different inputs, particularly chemicals, in agriculture, and to 

develop environmentally-friendly production and extraction methods. This latter goal 

could be easily reached by the improvement of sterol thresholds in plant organs.  

The objectives of this work were therefore to study the genotypic variability of 

phytosterols and phytostanols in bread wheat cultivated under organic conditions and to 

examine the effect of weather conditions during grain filling on target compound 

content in the kernel. Relationships between sterols–stanols and protein and ash content, 

which are the most important quality traits, are also examined. 

 

2. Materials and methods 

2.1. Plant material 

Twenty bread wheat (Triticum aestivum L.) cultivars varying in yield potential and 

technological traits were used in this study, as well as three other synthetic populations 

currently used in organic culture in France. The details of genotype characteristics are 

presented in Table 1. 

 

2.2. Crop management and experimental conditions 

Trials were carried out at the Regional Organic Agriculture Experimental Station in 

Auch (near Toulouse, south-west France, 43° 38’ 47” N, 0° 35’ 08” E). Two sowing 

dates were chosen. The first sowing was done on 24 November 2005. The second 

sowing was performed on 15 January 2006. 

The crops were completely managed under organic and rainfed conditions without any 

chemical supply. Crushed feathers were applied as an organic fertiliser at a rate of 60 

units. ha-1 in April and May for the conventional (SD1) and later (SD2) sowings, 

respectively. Weeds were mechanically eliminated. 



  

The soil was a clay-loam (organic matter content: 3.2%; pH 8.1) with a depth of about 

1.2 m. Table 2 shows temperature and rainfall during the plant cycle. The growing 

season was characterised by a total rainfall of 405 mm and 385 mm for SD1 and SD2, 

respectively. These amounts are 110 mm and 50 mm lower than the half-century 

average rainfall observed for the same period in our area. In contrast, temperature 

during the grain filling period was 18.4 and 22.4°C in SD1 and SD2, respectively. 

These temperatures were at least 2°C higher than the observed average temperature 

during the 50 past years in our region. It clearly appears that the grain filling period in 

SD2 coincided with higher temperatures and lower water availability. 

The field experiments were conducted as a randomised complete block design with 

three replicates. Seeds were sown in 22.5 m² plots with seven rows per plot (20 cm 

between rows and 3 cm between plants). Anthesis occurred from beginning to mid-May 

and from mid-May to end-May for SD1 and SD2, respectively. Maturity took place at 

the end of June for SD1 and the first week of July for SD2. 

 

2.3. Trait measurements 

2.3.1. Agronomic measurements 

The number of grains per ear was noted at maturity on ten ears (randomly selected) per 

plot. Plants were therefore separately harvested by plot in each block. The grain yield 

was determined by weighing and expressed in tonnes ha-1. Two samples of 1000 grains 

were taken and then weighed in order to determine the thousand grains weight of each 

genotype in each plot. Two aliquots, each of 10 g, were sampled in order to analyse 

protein and sterol-stanol content separately. 

 

2.3.2. Sterol–stanol, protein, ash and moisture determination  



  

The method of sterol determination was adapted from the one performed by Toivo, 

Lampi, Aalto & Piironen (2000). Wheat samples (1.3 g) were added to each tube 

containing 100 µg of cholestanol (dihydrocholesterol; Aldrich Chemicals Co.), used as 

an internal standard. Saponification was performed by adding ethanolic KOH (1 M) 

(TITRINORM, Prolabo) for 60 min at 75°C. One millilitre of distilled water was added 

to the samples and the unsaponifiable fraction was extracted from the saponified lipids 

with 6 mL of iso-hexane (Merck). Sterols and stanols were silylated by N-methyl-N-

trimethylsilyl-heptafluorobutyramide (MSHFBA; Macherey-Nagel) mixed with 1-

methyl imidazole (Sigma). One µL of sterol and stanol trimethylsilyl ether derivatives 

was injected into a Perkin-Elmer GC equipped with a CPSIL 5CB 30m column (i. d.: 

0.25 mm), and an on-column injector. Detection was performed with a Flame Ionisation 

Detector. The thermal regime was the following: 160°C (0.5 min), 10°C min-1 to 260°C, 

2.5°C min-1  to 300°C, 25°C min-1 to 350°C, and 350°C (1.5 min) for the oven 

temperature; 55°C (0.5 min), 200°C min-1 to 320°C, 30°C min-1 to 350°C, and 350°C 

(2.5 min) for the injector temperature; and 365°C for the detector temperature. Total 

phytosterols and phytostanols detected included desmethylsterols (-sitosterol, 

stigmasterol, campesterol, ∆-7 stigmastenol, ∆-7 avenasterol), campestanol and 

sitostanol. A typical GC chromatogram of the compounds analysed is shown in Fig. 1. 

Grain protein content was determined by NIRS (AACC method 39-11, American 

Association of Cereal Chemists, 2000). 

The moisture content of the samples was determined by drying them (5.0 g) at 105 ± 

2°C overnight. Ash content (expressed in mg. g–1 dry weight) was determined after 

complete combustion of the powder aliquot in a muffle furnace at 900°C and 

subsequent weighing of the residue. Each sample was analysed at least three times. 

2.3.3. Statistical analyses 



  

All the data were subjected to variance analysis using the GLM procedure of SAS (SAS 

Institute, 1987, Cary, NC, USA). Since genotypes were different in terms of flowering, 

there were differences for the number of days from sowing to heading. This trait was 

therefore taken as a covariate in an ANOVA and adjusted means were generated to 

overcome the effect of flowering date on other traits. The mean pairwise comparisons 

were based on the means test at 0.5% probability level. Correlation analysis was 

performed to determine the relationships between the traits using the SAS CORR 

procedure. 

 

3. Results 

3.1. Effect of genotype on sterol-stanol, protein and ash content in grain 

In the collection studied, total sterols consisted of 21.3% stanols and 78.7% sterols, 

where the mean value of sterols + stanols was 65.6 mg. 100 g-1 DW. The most abundant 

sterol was β-sitosterol, which represented nearly 70% of the total sterols and more than 

half of the sterols + stanols. Campestanol and sitostanol represented nearly one third 

and two thirds of the total stanol content, respectively (Table 3). 

Significant differences were observed among the studied genotypes for sterol-stanol 

level and for both protein and ash content (Table 3). Total sterol (sterols and stanols, 

TSS) content varied between 49.4 (Bulk 3) and 79.6 mg 100 g-1 DW (Caphorn). The 

largest genotypic difference was observed for stanols since values varied twofold 

between Orpic (highest value, richer one) and Palladio (lowest one, poorer one). From 

the point of view of relative value, the latter genotype was the poorest genotype in terms 

of stanols compared to TSS, whereas stanols represented more than a quarter of TSS in 

the case of Kalongo. There were significant differences among bread wheat genotypes 

in our collection for each sterol and stanol. Caphorn, which showed the highest value of 



  

TSS, was the richest genotype in sterols, whereas Apache and ORP, the two other 

richest genotypes in TSS, exhibited the highest values in stanols. In contrast, PR22, the 

poorest cultivar in TSS, presented the lowest value of sterols.  

A wide variability was observed among the studied genotype for ash content. This trait 

varied from 19.7 (Pactole) to 60.0 mg. g-1 DW (Quebon), with a mean value of 39.3 mg. 

g-1 DW. Protein content varied less than sterol and ash content. Pollux contained nearly 

3% more proteins than Aubusson, while Caphorn and Bulk-3, extreme genotypes for 

TSS, showed intermediate values for protein content. 

 

3.2. Effect of sowing date on sterol-stanol, protein and ash content in grain 

The objective of different sowing dates was to study the effect of contrasted 

temperatures that occurred during grain filling. In this region, late sowing delays grain 

filling, which in turn coincides with high temperatures. Higher protein and ash content 

values were observed for later sowing.  

Sowing date has shown a significant impact on sterol and stanol content in grain, except 

on stigmasterol, β-sitosterol, d7-stigmasterol content and TSS. Two response patterns 

were depicted. The increase in temperature during grain filling (by sowing at the later 

date rather than the conventional date) improved the content for several sterols but did 

not significantly increase the most abundant one (i.e., β-sitosterol) and the total sterol 

level (Table 3). In contrast, and surprisingly, sitostanol, campestanol and total stanol 

content decreased when temperatures increased. Despite this, a strong increase of the 

campestanol/sitostanol ratio was observed for delayed sowing (Table 3). A significant 

increase of the ratio of campesterol to β- sitosterol plus stigmasterol was observed in 

grain for late sowing (Table 3). Genotype by sowing date interaction was also 

significant for all traits (Table 3). 



  

Two genotypic groups were different in response to high temperatures. A group made 

up of 18 genotypes reduced its TSS from the conventional (SD1) to the late sowing date 

(SD2) by more than 4.0 mg 100 g-1 DW, mainly due to the decrease in stanol content 

(Table 4). This group included Aubusson, Lona, Palladio, Quebon and the three bulk 

genotypes. In contrast, the second group composed of five genotypes (Fiorenzo, 

Kalongo, Orpic, Renan and Stefanus) increased TSS by nearly 13.0 mg. 100 g-1 DW 

(2.1 mg. 100 g-1 DW of stanols and 10.4 mg. 100 g-1 DW of desmethylsterols) from SD1 

to SD2 (Table 4). Moreover, the difference between SD1 and SD2 was more 

pronounced for the genotypes of the former group than for the group of the five 

genotypes for the agronomic traits (Table 4). 

 

3.3. Effects of sowing date and genotypes on agronomic traits 

Both sowing date and genotype effects significantly influenced agronomic traits. 

Interaction between the two factors was also significant for all traits (Table 3). 

Plants sowed at the conventional date produced more grains by spike and filled those 

more than grains sowed later. Consequently, grain yield was higher for conventional 

compared to late sowing. Large and significant genotypic differences were observed 

within the collection studied  for agronomic traits. Saturius produced three times more 

grain than Esperia. Grains of Renan were more than two times heavier than those of 

Orpic. PR22 yielded two times more than Pollux.  

 

4. Discussion 

4.1. Effects of genotype and sowing date on agronomic traits, protein and ash content 

Differences were observed in agronomic traits, ash and protein content within the 

collection of genotypes studied (Table 3). Grain yield varied twofold between extreme 



  

genotypes. These differences resulted from the variability in yield components (Table 

3). These results were expected since genotypic variability in agronomic traits had been 

widely reported in cereals (Xu, Yuan, Li & Monneveux, 2007; Asseng and Milroy, 

2006; Merah, Deléens, Souyris & Monneveux, 2001). Similarly, protein and ash content 

varied considerably among the studied genotypes (Table 3), confirming results of 

previous reports in several cereals (Ma et al., 2007; Xu et al., 2007; Roussel, Branlard, 

Vezine, Bertrand & Balfourier, 2005; Merah et al., 2001). 

Significant differences were observed for all traits between the two sowing dates (Table 

3). Late sowing induced a decrease in agronomic characteristics. This decrease is 

probably related to the difference in weather conditions between the two sowing dates, 

primarily during the grain filling period (Xu et al., 2007; Merah, Deléens & 

Monneveux, 1999). It clearly appears that terminal drought and higher temperatures 

were more pronounced at the late sowing date (Table 2). This may explain the 

differences in grain yield between SD1 and SD2, resulting from the decrease in the 

number of grains per ear and the grain weight due to increasing stress (Asseng & 

Milroy, 2006; Spiertz, Hamer, Xu, Primo-Martin, Don, & van der Putten, 2006). 

The negative correlation between ash content and grain yield (r = 0.50, P > 0.01, DF = 

44) found in our study is in agreement with reports of Xu et al. (2007) and Merah et al. 

(2001, 1999). These reports suggest that minerals accumulate in grains by phloem 

transport rather than passively from the transpiration stream. Therefore, mineral 

accumulation in the grain primarily depends on translocation from the leaves and on 

minerals removed from the lower parts of the plant after the onset of senescence. As a 

consequence, genotypes that cannot maintain high rates of stomatal conductance and 

photosynthesis during grain filling would fill their grains through retranslocation of 

photoassimilates from preanthesis reserves, and of minerals from early senescent 



  

vegetative tissues (Merah et al., 2001). The ash concentration in grain could be an 

indication of the importance of the retranslocation processes during grain filling (Merah 

et al., 1999). These results suggest that grain ash content is higher in genotypes more 

affected by drought and higher temperatures during grain filling. Moreover, Xu et al. 

(2007) reported that higher temperatures, drought or both induced an increase of grain 

ash content, regardless of genotype tolerance. 

Differences between SD1 and SD2 in grain protein content were also observed. This 

result means that variation in protein content was a consequence of agronomic practices 

(late sowing in this case) due to differences in weather conditions, for the same location 

and the same genotype. Previous studies have emphasized the increase of protein 

content in grain or in flour as a result of moisture stress (Saint Pierre et al., 2008) and 

high temperatures (Asseng and Milroy, 2006; Dupont et al., 2006; Spiertz et al., 2006). 

It has been reported that higher temperatures as well as water stress during the grain 

filling period induces more of an increase in nitrogen accumulation than in dry weight 

accumulation, leading to higher protein content in grain (Asseng and Milroy, 2006; 

Dupont et al., 2006; Spiertz et al., 2006). In our study, the average temperature during 

grain filling was 4°C higher for plants that were grown later than the conventional 

sowing date, in conjunction with low water availability (Table 2). As a consequence, 

plants sowed later accumulate less dry matter per grain but increase their protein content 

(Table 3). Thousand grains weight was in fact 6 g lower in SD2 than in SD1, whereas 

the grain accumulated more proteins in late sowing than in conventional sowing (Table 

3), thereby confirming previous reports. This is also supported by the negative 

correlation found between protein content and grain yield (r = -0.71, P < 0.001, df  = 

44). 

 



  

4.2. Effects of genotype and sowing date on phytosterol and phytostanol content 

In our study, the range of genotypic variation was from 49.4 to 79.6 mg. 100 g-1 DW. 

This wide range of variation was similar to those reported for wheat grain in other 

studies. Piironen et al. (2002) reported a mean value of two wheat genotypes of 69.0 

mg. 100 g-1. Analysis of whole grains of commercial samples revealed 78.3 mg. 100 g-1 

D W (Nyström et al., 2007). It is clear that the range of variation in total sterol level in 

bread wheat grain observed within our collection is similar to those reported in the few 

studies done on wheat grain. Nevertheless, our results cannot be compared to those 

observed elsewhere. There are several reasons for this discrepancy. The main studies 

dealing with sterol content in grain or other plant organs were done on commercial 

samples. These samples may come from bulk grains of several genotypes obtained from 

crops in different locations and under different climates, and information on growing 

conditions in these studies was inadequate. Moreover, our study was done under organic 

conditions that are considered to be stressed growing conditions and that probably 

influence the potential expression of the genotypes.  

The second reason is the difference in analytical methodology for sterol analysis. In our 

study, we focused on sterols and steryl fatty acid esters, whereas Nyström et al. (2007) 

and Piironen et al. (2002) also assessed conjugated forms. In spite of this difference, our 

values were similar to those of Piironen et al. (2002). 

The third reason was that results reported in the different studies were expressed in lot 

of units and the comparison was therefore not possible. This fact has already been 

reported by Zangenberg et al. (2004). These authors, as well as Määttä et al. (1999), 

highlighted the influence of genotypes on sterol content in cereal grains, which could 

also partially explain the different values observed between our study and the other 

studies mentioned above. 



  

The fourth reason was that the studies differed by the number and the genotypes used 

for the evaluation of sterol and stanol content. A large variation was observed for sterol 

and stanol content within the collection of bread wheat genotypes studied. Genotypic 

variation was reported for sterol content among seven oat cultivars (Määttä et al., 1999) 

and three rye cultivars (Zangenberg et al., 2004). Piironen et al. (2002) also reported 

differences in four cereals. In the latter study, the difference reported between the two 

genotypes used was 5.0 mg. 100 g-1 DW. This difference represents nearly a quarter of 

the observed genotypic range within our collection. For the other cereal species, 

genotypic ranges for TSS were quite lower than those observed in our study (Zagenberg 

et al., 2004; Piironen et al., 2002; Määttä et al., 1999). Even if the range of genotypic 

variation for stanol content was wider in our study, the mean reported value was quite 

equivalent to the values reported by Piironen et al. (2002) in wheat. 

A difference was observed between the two sowing dates for campesterol. Surprisingly, 

sitostanol strongly decreased in later sowing, which in turn induced a reduction of 

stanol content in the grain. Consequently, TSS was lower in later sowing. In rye, a 

decrease of sitostanol was observed for three genotypes across years (Zagenberg et al., 

2004). Unfortunately, climatic conditions were not recorded in this study and we can 

therefore not effectively compare our results to those obtained by Zagenberg et al. 

(2004). 

In sunflower, high temperatures (late sowing) induce an increase of sterol content in the 

kernels (Roche, Bouniols, Mouloungui, Barranco & Cerny, 2006; Valsta et al., 2004). 

Other studies have reported that variations in temperature may cause a difference in 

sterolic profiles, mostly for campesterol vs. stigmasterol + β-sitosterol (Schaller 2003; 

Hartmann 1998). In our study, we observed that the ratio of campesterol to stigmasterol 

+ β-sitosterol (hereafter C/SSr) was not significantly different between SD1 and SD2. In 



  

contrast, the ratio of campestanol to sitostanol (hereafter referred to as C/Sn) strongly 

increased at the later sowing date (Table 3). This was due to the concomitant decrease 

of sitostanol with the slight reduction of campestanol in the grain from later sowing. 

However, this is a general tendency and the two groups were differentiated on the basis 

of their response to higher temperatures. The first one (GRP1), made up of five 

genotypes, increased its TSS as a result of the increase in the stanol level and of 

desmethylsterols, in particular. In contrast, in the second group (GRP2), composed of 

18 genotypes, high temperatures led to a decrease of sterol and particularly stanol 

content (Table 4). Moreover, the genotypes of the former group had increased levels of 

mainly -sitosterol and sitostanol from the conventional to the delayed sowing. These 

two components were the main molecules that were reduced by high temperatures in the 

second group. Sterols and stanols play an important role in membrane fluidity and 

permeability (Schaller, 2003; Moreau et al., 2002). Changes in the physical properties 

of membranes reflect variations in their composition resulting from alterations in 

metabolic processes. These processes are accompanied by an increase in the sterol-to-

phospholipid ratio (Itzhaki, Borochov & Mayak, 1990; Borochov and Woodson, 1989). 

Moreover, membrane fluidity is not only influenced by the level of sterols but also by 

the change in their composition (Schaller, 2003; Moreau et al., 2002). It seems that the 

increase in -sitosterol content increases membrane fluidity, which in turn changes 

metabolic cell functioning. In contrast, the increase of campesterol content reduces the 

physical properties of the membrane, thus leading to increased fluidity. Variation in 

desmethylsterols (represented in our study by C/SSr) may result from the activity of 

sterol-methyl-transferase 2 (SMT2) (Schaeffer, Bronner, Benveniste & Schaller, 2001). 

Interestingly, Schaller (2003) reported the importance of genotypic factor on this ratio, 

which is in accordance with our results (Tables 3 and 4). Moreover, our study 



  

emphasized the effect of temperature on C/SSr in grain, confirming previous reports on 

Arabidopsis (Schaeffer et al., 2001). Delayed sowing coincided with high temperatures 

during grain filling (Table 2). These conditions induced an increase in -sitosterol and 

sitostanol from conventional to delayed sowing in GRP1. A decrease of these sterols 

and stanols was observed for GRP2 with high temperatures (Table 4). In addition, the 

C/SSr ratio as well as the C/Sn ratio remained fairly constant in the former group, 

whereas these ratios increased for GRP 2 due to the decrease of -sitosterol and 

sitostanol (Table 4). 

In our study, different responses to high temperatures of the two groups of genotypes 

for agronomic traits were found. Grain yield and its component decreased with high 

temperature. This decrease was more pronounced in GRP2 than in GRP1 (Table 4). 

Similarly, genotypes of GRP2 accumulated 1.5 times more minerals in their grains in 

SD2 than in SD1, whereas genotypes belonging to GRP1 maintained a constant ash 

content (Table 4). We hypothesized that the difference in tolerance of high temperature 

and water shortage exists between the two groups of genotypes. Among the numerous 

mechanisms involved in this expressed genotypic difference, there is a difference in the 

maintenance of membrane fluidity. This could be the result of an increase in sterol 

content, which induces the changes in the physical properties of membranes and may 

therefore cause alterations in cell functioning and plant development, depending on the 

timing of the alterations during the plant cycle (Itzhaki et al., 1990; Borochov and 

Woodson, 1989). Our results also suggest that genotype effect was the main factor 

influencing sterol content. 

No significant correlation was found between sterols and agronomic traits (data not 

shown). Sterol content was not related to protein content in our study (r=0.05, df= 44). 

The relationship between sterol and protein content has not been studied in cereals. 



  

However, phytosterols are distributed in endosperm, germ and pericarp (Harrabi et al., 

2008), while proteins are localised in the aleurone cell layer. This fact could explain the 

lack of correlation in the accumulation of the two compounds. In sunflower cultivated 

under different water availability conditions, no significant correlation was found 

between protein and sterol content in the grain (Roche, 2005). This result is very 

interesting. If confirmed, it would mean that improvement of both sterol and protein 

content is possible and may be easily feasible within a selection programme. 

 

5. Conclusion 

Wheat is among the major sources of sterols and stanols. A wide variability of sterol 

and stanol content exists in bread wheat cultivated under organic conditions. Although 

the main factor remained the genotype, our data revealed a strong interaction with 

weather conditions that could easily be managed to promote the accumulation of 

targeted sterols or stanols and to provide added value to the wheat grain. Sterol and 

stanol content seems to be independent from other technological traits and, therefore, 

may be easily improved without any negative interaction with other characters of 

interest. These results are interesting and should be studied under other climatic 

conditions and with other genotypes. Much attention is being focused on functional 

foods at this time. The accumulation of compounds of interest such as sterols in plants 

should facilitate their extraction by soft methods, ultimately benefiting the consumer.  
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Figure caption  1 

Figure 1. A typical GC chromatogram of sterols and stanols found in bread wheat 2 

kernel. I.S. (internal standard) cholestanol, 1. campesterol, 2. campestanol, 3. 3 

stigmasterol, 4. β-sitosterol, 5. stigmastanol, 6. ∆-7 stigmastenol, 7. ∆-7 avenasterol. 4 



  

Table 1. Cultivars of bread wheat used in this study. 

Cultivar Origin Type of genotype 

Apache 
Ataro 
Attlas 
Aubusson 
Caphorn 
Esperia 
Fiorenzo 
Kalango 
Lona 
Mercato 
Orpic 
Pactole 
Palladio 
Pollux 
PR22R58 
Quebon 
Renan 
Saturnus 
Soissana 
Stefanus 
Bulk1* 
Bulk2* 
Bulk3* 

France 
Belgium 
France 
France 
France 
Italy 
Italy 
France 
France 
France 
France 
France 
Italy  
Belgium 
France 
France 
France 
France 
France 
Belgium 
France 
France 
France 

Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Improved variety 
Synthetic population 
Synthetic population 
Synthetic population 

* Bulk 1, 2 and 3 are synthetic populations currently used in organic agriculture in 



  

populations currently used in organic agriculture in south-west France.  



  

Table 2. Prevailing weather conditions during the plant cycle at two different sowing 

dates (conventional (SD1) and late (SD2) sowings) in Auch (south-west France, near 

Toulouse). Comparisons are made with the half-century average values of precipitation 

and temperatures in the same location. 

2005-2006 Last 50years 

Phenological period Weather parameter 

SD1 SD2 SD1 SD2 

Grain filling 
 
 
 
Plant cycle 

Rainfall (mm) 
Mean temperature (°C) 
Temperature sum (°C/day) 
 
Rainfall (mm) 
Mean temperature (°C) 
Temperature sum (°C/day)

95.8
18.4

1120.2

405.0
9.9

2398.7

78.0
22.4

1369.7

385.4
13.3

2922.4

112.9 
16.7 

1014.7 
 

515.0 
11.3 

2452.9 

81.0
19.7

1203.8

434.1
12.4

2839.7

 



  

Table 3. Sterol and stanol content (mg 100g-1DW), grain protein content (%), ash content (mg g-1DW) grain yield (t/ha), number of grains 

per spike (NGS), and thousand grains weight (TGW, g) of 23 genotypes of bread wheat grown under rainfed conditions in Auch (south-

west France) at two sowing dates (conventional (SD1) and late (SD2)). 

Trait SD1  SD2  Overall  Genotype 
(G) 

df=22 

Sowing 
date (SD) 

df=1 

G x SD DH LSD 

 Mean SE Mean 



  

SE 

rol 
Stigmasterol 
β-Sitosterol 
C/SSr 
Desmethysterols 
Campestanol 
Sitostanol 
C/Sn 
Total stanols 
Total sterols+stanols 
 
Protein content 
Ash content 
NGS 
TGW 
Grain yield 

10.2B 
1.8A 

35.7A 
0.27B 
50.8A 
5.0A 

10.0A 
0.52B 
15.0A 
65.8A 

 
12.1B 
32.9B 
54.2A 
34.0A 
2,6A 

1.6
0.3
3.9

0.02
5.7
1.1
2.0

0.14
2.5
6.6

0.7
7.9

13.6
3.5
0.5

10.8A

1.8A

36.0A

0.29A

51.6A

5.2A

8.4B

0.64A

13.6B

65.4A

12.5A

45.7A

37.9B

28.3B

2.2B

2.0
0.4
4.8

0.03
6.4
1.4
2.3

0.15
3.2
8.9

0.6
6.3

10.6
3.1
0.4

10.5
1.8

35.9
0.28
51.3
5.2
9.2

0.58
14.4
65.6

12.3
39.3
45.9
31.0
2.4

6.8 - 14.3 
1.3 – 2.8 

26.4 – 43.5 
0.22 – 0.33 
39.6 – 62.1 

2.4 – 7.9 
4.2 – 13.0 

0.29 – 0.89 
7.8 – 19.9 

49.4 - 79.6 
 

10.4 – 13.2 
19.7-60.0 

23.3 – 86.7 
23.3 – 39.5 

1.5 – 3.6 

14.9***
0.5***

65.7***
0.00***

121.8***
7.3****
20.2***
0.1***

39.3***
206.6***

2.1***
118.5***
856.3***
72.6***
94.1***

15.9***
0.1ns
2.9ns

0.01***
0.2ns
0.8ns

83.8***
0.49***
68.5***

19.2ns

6.9***
5609.0***
9071.9***
1145.3***
668.1***

4.4***
0.2***

49.4***
0.00***
96.7***

1.7**
6.2***

0.04***
8.9**

156.9***

2.0**
82.4**

3600.3***
815.9**

634.9***

1.2ns
0.1ns
4.4ns
0.0ns

10.9ns
0.1ns
1.1ns
0.0ns
2.0ns

18.4ns

0.4ns
1.0ns

8860.0***
1162.7***
638.0***

0.3 
0.1 
0.9 
0.0 
1.3 
0.3 
0.4 
0.0 
0.7 
1.8 

 
0.2 
2.3 
5.7 
0.9 
1.1 



  

† Values presented are mean (across genotypes) and standard error (SE) values. Means indicated by a different letter are significantly 

different (P≤0.05). LSD: least significant difference. For each trait, F-value and degrees of freedom (df) of the genotype, sowing date and 



  

their interactions (GxSD), as well as the covariate effect of the number of days from sowing to heading (DH), are also displayed. ** and 

*** significance at 0.01 and 0.001 probability levels, respectively. ns: not significant. C/SSr: ratio of campesterol to stigmasterol + β-

sitosterol; C/Sn: ratio of campestanol to sitostanol.  



  

to sitostanol.  



  

Table 4. Mean values of sterol content, stanol content, grain protein content, ash content 

and agronomic traits of two groups contrasted for their response to delayed sowing. 

Group 1 consisted of five genotypes and Group 2 of 18 genotypes. The 23 genotypes of 

bread wheat were grown under rainfed conditions in Auch (south-west France) at two 

sowing dates (conventional (SD1) and late (SD2)). 

Table 4. Mean values of sterol 

content, stanol content, grain protein 

content, ash content and agronomic 

traits of two groups contrasted for 

their response to delayed sowing. 

Group 1 consisted of five genotypes 

and Group 2 of 18 genotypes. The 23 

genotypes of bread wheat were 

grown under rainfed conditions in 

Auch (south-west France) at two 

sowing dates (conventional (SD1) 

and late (SD2)). 

Trait 

Group 1 Group 2 

 SD1 SD2 LSD SD1 SD2 LSD 

Campesterol (mg 100g-1DW) 9.8B 12.1A 1.3 10.3A 10.5A 1.3 



  

Stigmasterol (mg 100g-1DW) 
β-Sitosterol (mg 100g-1DW) 
C/SSr 
Desmethylsterols (mg 100g-1DW) 
Campestanol (mg 100g-1DW) 
Sitostanol (mg 100g-1DW) 
C/Sn 
Total stanols (mg 100g-1DW) 
Total sterols+stanols (mg 100g-1DW) 
 
Protein content (%) 
Ash content (mg g-1DW) 
Number of grains per spike 
Thousand grains weight (g) 
Grain yield (t/ha) 

1.8A

33.7B

0.28A

47.5B

5.2A

10.2A

0.52A

15.4A

64.7B

12.4A

40.1
53.9A

34.4A

2.6A

2.2A

41.0A

0.28A

57.9A

6.1A

11.4A

0.54A

17.5A

76.8A

12.8A

46.7
35.7B

29.9B

2.3A

0.6
4.5
0.0
6.0
1.9
2.1
0.2
3.0
8.1

0.5
7.5

11.9
6.5
0.5

1.9A

36.3A

0.27
51.8A

5.0A

9.9A

0.52B

14.9A

68.7A

12.0B

33.5B

54.2A

34.0A

2.6A

1.7A 
34.7A 
0.29 

50.0A 
5.0A 
7.7B 

0.67A 
12.7B 
64.2A 

 
12.5A 
45.5A 
38.8B 
28.1B 
2.2B 

0.3 
2.9 
0.0 
4.0 
0.8 
1.3 
0.1 
1.8 
5.0 
 
0.5 
8.3 
9.0 
2.0 
0.3 



  

C/SSr: ratio of campesterol to stigmasterol + sitostanol; C/Sn: ratio of campestanol to β-

sitosterol. 
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Figure 1. A typical GC chromatogram of sterols and stanols of bread wheat kernel. I.S. 

(internal standard) cholestanol, 1. campesterol, 2. campestanol, 3. stigmasterol, 4. β-

sitosterol, 5. stigmastanol, 6. ∆-7 stigmastenol, 7. ∆-7 avenasterol. 

 


