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CONDITIONING CIRCUIT ANALYSIS FOR SLIMES
MANAGEMENT IN QUARRIES

F. BOURGEOIS, G. BAUDET, M. BIZI and H. GABORIAU

BRGM, Environment and Process Division, Orléans, France

riven by increasingly stringent environmental regulations on water usage, many
D European quarries are in the process of adding thickening circuits to their wash

plants for managing clayey tailings. One of the critical components of this circuit is
slurry conditioning. With typical water consumption over 1 m> per ton of washed aggregates,
quarries produce dilute slime streams that are conditioned with high flocculant dosages to
maintain water clarification rates as high as possible. At present, conditioning systems used in
the quarrying industry are designed from elementary rules-of-thumb derived from experience.
Practitioners acknowledge that conditioning system design criteria should be investigated
further in order to design more efficient full-scale conditioning systems. This work focuses on
weir-based conditioning tanks used in European quarries. The paper presents an applied
analysis of such conditioning systems based on a comparison between a full-scale conditioning
circuit and a controlled laboratory conditioning set-up. Within the range of plant operating
conditions, this approach shows that full-scale conditioning is essentially governed by average
shear rate and conditioning time. However, fine floc size distribution measurements reveal that
quarry slimes conditioning is a dynamic process. This explains the high sensitivity of the
process to variations in hydrodynamics, and the challenges of industrial conditioning system

design.
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INTRODUCTION

Overall, little information can be found on thickening of
quarry waste material as opposed to tailings from metallic
(Connelly and Richardson, 1984) and coal preparation
(Hogg, 1980; Waters, 1992) plants. The reason for this is
that sedimentation in thickeners is the most widely used
method for water removal from fine tailings in the mining
sector, whereas it is only in recent times that increasingly
stringent environmental regulations on water usage have led
quarries to start adopting this technology. Considering the
high wash water consumption and rising pressures for
recycling process water, quarry operators must operate
their thickening circuits optimally. There are several possi-
ble avenues for improving thickening, one of which is
optimization of slurry conditioning. Where thickeners are
being used in quarries, flocculant is added to the thickener
feed to accelerate clarified water recovery as opposed to the
mining sector, where the aim is primarily to maximize solids
throughput.

Conditioning efficiency depends on several parameters
that offer various scopes for optimization. These include
slurry properties (Klimpel and Hogg, 1986), water quality
(Rey, 1989), polymer chemistry (Hogg et al., 1993;
Spielman, 1977), hydrodynamics (Biggs and Lant, 2002;
Spicer et al., 1998; Tomi and Bagster, 1978; Argaman and
Kaufman, 1972; Parker et al., 1972; Keys and Hogg, 1979)

and process control (Gregory and Kayode, 1989; Pendse,
1989; Hogg, 1992). Among these parameters, several
laboratory investigations (Keys and Hogg, 1979) have
shown that the impact hydrodynamics has on conditioning
efficiency is paramount. Also, a number of authors (Flesch
et al., 1999; Tomi and Bagster, 1978; Argaman and Kauf-
man, 1972; Parker et al., 1972; Akers, 1975) have proposed
comprehensive theoretical analyses of the interaction
between hydrodynamic conditions and the flocculation
process. Despite this significant body of work, it is fair to
say that industrial conditioning system design used in the
quarrying industry relies far more on experience than
scientific-theories. This situation is partially due to the fact
that flocculation research has traditionally favored analysis
of flocculation fundamentals in the laboratory over engineer-
ing aspects of flocculation at full scale.

Conditioning performance can be defined in a number of
ways depending on the aim of the process. With quarry
slimes, the principal objective is water clarification. Conse-
quently, clarified water turbidity, floc subsidence rate and
floc size distribution (Farrow et al., 2000; Biggs and Lant,
2000) are relevant indicators of conditioning efficiency.

METHODS AND MATERIALS

Weir-based conditioning tanks (see Figure 1) provide a
favorable environment for conditioning mineral slurries in
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Figure 1. Schematics of a quarry slimes conditioning system.

quarries. This gravity-driven conditioning system consists of
a conditioning tank with high and low weirs followed by a
series of connecting pipes that feed the thickener. Emphasis
is placed on the overall conditioning system including both
the conditioning tank and the connecting pipe section.

The 2 m” conditioning box presented in Figure 1, which is
operating at a 220th™' quarry in the northwestern part of
France, is divided into compartments delimited by indivi-
dual flocculant injection points. The design of the tank is
such that the slurry has to go around a number of low and
high weirs. The height of and spacing between weirs are
calculated based on a maximum flow velocity set point
inside the conditioning tank. The design rationale consists
of delivering a high mixing energy input per unit volume of
slurry without developing regions of high shear rates.

A basic circuit analysis was carried out for the nominal
slurry flow rate Qr=0.106m>s™' and slurry density
pp=1022kg m . The absolute slurry viscosity Hp was
calculated using Heiskanen and Laapas’ (1979) viscosity
model for an average floc porosity of 0.96. Such a value
was obtained by applying a fractal analysis to floc size
distributions obtained with a dedicated laser sizer. The
slurry, which consists of washing cyclones’ overflow, had
a dgp=80 um.

Analysis of the conditioning system starts with estimation
of volumes and residence times. The volumes of individual
compartments (cf. Table 1) were estimated by measuring
free surface heights during operation. The head loss &
between adjacent compartments was obtained directly by
measurement of the free surface height drops from one
compartment to the next. Free surface height drops between
adjacentcompartments 1,2 and 3 were 0.23,0.20 and 0.22 m,
respectively. A standard analysis of major and minor losses
yielded a head loss #=0.52m in the 13 m long pipe section.

Next is a series of hydrodynamic parameters
(Akers, 1975) that can be used for characterizing the
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hydrodynamic environment during conditioning from first
hand observations:

e the power P, (Wt) dissipated across a given head loss A:
Py=p, x 0y xhxg (1)

where g is the gravitational acceleration.
e the average shear rate GG

G= |t
VX op,

e the product between average shear rate and residence time
G X 1t (dimensionless);

e the maximum shear rate G,,—there is no available
formula for calculating maximum shear rate inside weir-
based conditioning tanks; this information could be
obtained by laser doppler velocimetry or CFD simulation,
however such techniques are not readily available in
practice; it is likely that areas of high shear will occur
in the vicinity of low weirs where local contractions might
develop;

e the volume specific energy input E; (Jm™>):

@

E Py xt 3)
s \%4
e the micro-turbulence length 4 (m) (Spielman, 1977):
L3y 1/4
= ( = ) “)
Pp Py

e this turbulence length is related to the mechanical power
expanded per unit volume of slurry; it is caused by the
energy-containing eddies that carry and dissipate most of
the fluid’s kinetic energy;

e the macro-turbulence A (m)—essentially a function of
geometry (Tomi and Bagster, 1978), there is no known

Table 1. Basic hydrodynamic analysis of a full-scale quarry conditioning system.

Sections Volume V (m?) Residence time 7 (s) Py, (W) GGsh E,(Jm™) A (pm)
Compartment 1 0.605 5.7 244 465 2310 63
Compartment 2 0.479 4.5 213 487 2003 61
Compartment 3 0.531 5.0 234 485 2207 61
Connecting pipe section 1.388 13.1 449 416 4231 66




analytical method for estimating the macro-turbulence in
the geometry of interest.

Finally, Table 1 shows the conditioning parameters that
characterize the conditioning system shown in Figure 1.

Several observations can be made from this rudimentary
analysis. Firstly, it is found that the system achieves a
gradual injection of mechanical power into the slurry
during conditioning. This leads to a fairly uniform average
shear rate throughout the system. Secondly, the micro-
turbulence length appears to be commensurable with the
top particle size from quarry slimes, hence it is favorable in
terms of particle collision probability and floc formation
(Tomi and Bagster, 1978). Thirdly, Table 1 highlights the
significance of the connecting pipe section, which is respon-
sible for 39% of the overall power expanded within the
conditioning system as a whole. As earlier mentioned, there
is no simple way of estimating maximum shear rate and
macro-turbulence in such a system.

Thus far, a basic hydrodynamic analysis of weir-based
conditioning systems used in quarries has been carried out
from simple site observations. Yet, the relative influence of
hydrodynamic parameters is not obvious to the practitioner.

Minus 80 um fines produced at a washing plant near
Orléans (France) were used in series of flocculation tests
conducted at full scale and laboratory scale in order to
compare hydraulic and conventional conditioning. The
principal minerals in the slurry were illite (13 wt%), smectite,
sepiolite and attapulgite (23 wt%), kaolinite (9 wt%), calcite
(31 wt%), feldspars and mica (15 wt%) and quartz (5 wt%).

RESULTS AND ANALYSES

In order to analyse the behavior of such industrial
conditioning systems further, it was decided to explore the
direct link between conditioning at full scale in a weir-based
tank and under controlled laboratory conditions.

Laboratory Conditioning Set-up

A flat-bottom baffled geometry was selected as the basis
for laboratory conditioning experiments. The geometry is
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given in Figure 2(a) in dimensionless form. The vessel
contained four regularly spaced baffles. Vessels with inner
volumes of 0.5, 4 and 501 were used during this work.

The selected impeller was a two-blade radial flow turbine.
Torque readouts from the mechanical stirrer were calibrated
with water and a 50 wt% sucrose solution at 20°C. The
resulting power curve (Penney, 1985) is shown in Figure
2(b). This power curve was used to determine the torque 7'
and rotational velocity N that would dissipate a given power
Py, during conditioning.

With such a set-up, the micro-turbulence length follows
equation (4), hence it is inversely proportional to N2 In
such a configuration, it is admitted that the macro-turbu-
lence length, which depends on geometry only, equals
0.1 x D (Tomi and Bagster, 1978) for a given power Py,
With a 41 vessel, one finds A =~ 7 mm.

Direct Comparison Between Plant and Laboratory
Conditioning Systems

A 2m® conditioning tank that differed slightly from
Figure 1 was commissioned and connected to the plant
washing cyclones’ overflow via a gate valve. The basic
geometry of this tank is shown in Figure 3. A single
flocculant addition point was used during site trials and
samples of flocculated suspension were grabbed in the
middle of the second compartment. Control over the condi-
tioning tank feed rate with the gate valve permitted varying
the amount of power Py, expanded into the slurry between
flocculant injection point A and sampling point location B.

During site trials, the slurry solids concentration remained
stable around a set point of 8 kg m . For each flow rate, the
water head loss across the first high weir was measured for
calculation of the mixing parameters reviewed above. With
the inlet being placed at the base of the tank, the kinetic
energy of the incoming flow had to be accounted for in order
to quantify the power dissipated between points A and B.
The flocculant used on site and in the laboratory was SNF
AN934 MPM, a medium molecular weight slightly anionic
acrylate—acrylamide co-polymer. Given that the flocculant
feed solution of 0.5g1 " could only be added through
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Figure 2. Laboratory conditioning system.
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Figure 3. Operating and sampling procedure of a full-scale conditioning tank.
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spargers at a fixed flow rate, the actual flocculant dosage
varied with feed rate into the conditioning tank (cf. Table 2).

Samples of conditioned slurry were grabbed by carefully
dipping a 21 graduated glass cylinder directly into the
conditioning tank at the sampling point location B indicated
in Figure 3. Immediately after filling the graduated cylinder,
it was carefully placed in upright position and floc settling
velocity was measured by tracking falling flocs by eye and
timing their rate of descent down the cylinder. Likewise, floc
settling velocity distributions were obtained for three tank
feed rates. Clarified water samples were collected 5 min after
the end of floc settlement for measurement of supernatant
turbidity. Table 3 summarizes the operating conditions,
conditioning parameters and conditioning performance for
the three feed rates tested at full-scale.

In order to compare these results with laboratory condi-
tioning tests conducted with the same conditioning power Py,
and time 7, flocculation tests were conducted with a 41
laboratory conditioning vessel. Conditions used, which are
reported in Table 3 included those of the three feed flow
rates tested on site (cf. shaded columns in Table 3), plus a
number of intermediate conditions that would correspond to
intermediate feed rates into the full-scale tank, keeping in
mind that both residence time and flocculant dosage varied
with feed rate. In order to match plant operating conditions
as closely as possible, laboratory tests were conducted using
plant process water. The flocculant type was SNF AN934
MPM as in the plant. Finally, the flocculant makeup process
followed the manufacturer’s guidelines that were also used
on site. In each case, flocculant was squirted into the slurry
using graduated syringes. The conditioning settings used in
the laboratory are given in Table 3.

From literature (Farrow and Warren, 1993) and experi-
ence, the authors have found that it is difficult to transfer

flocculated suspensions from one vessel into another with-
out degrading the flocs. As a result, settling experiments
were carried out directly inside the conditioning vessel.
The experimental procedure consisted in stopping the
impeller at the end of the conditioning time and let the
flocs settle directly inside the conditioning tank, thereby
leaving flocs totally undisturbed. Floc settling was captured
by video with a standard 640 x 480 CCD camera. Settling
velocity measurements were obtained from analysis of the
videos.

Figure 4(a) and (b) shows turbidity and floc settling rate
measurements for both plant and laboratory scales. It is
found that clarified water turbidity results obtained in the
laboratory agree with those measured on site. Controlled
laboratory tests do therefore yield satisfactory prediction of
full-scale water clarification of quarry slimes within the
range of G and 7 values achieved industrially. _

At conditioning settings corresponding to G > 230s7!,
the predictions of floc settling velocity obtained in the
laboratory matched those measured on site. This confirms
that hydrodynamic conditions that impact floc formation do
match for the two systems for the same doublet (G; 7).
Below 23057/, it is found that laboratory conditioning test
results no longer match those obtained at full scale. Even
though there is one single measurement point at full-scale at
180 s_l, the confidence intervals leave no doubt about the
significance of the discrepancy. The origin of this discre-
pancy is not yet explained, however it is attributed to the
dynamic nature of quarry slimes conditioning and its high
sensitivity to other hydrodynamic parameters such as the
maximum shear rate G,,,.

Insights into the Dynamic Nature of Quarry
Slimes Conditioning

A series of conditioning tests, at a flocculant dosage of
168 gt™!, were carried out in the 41 conditioning vessel at
constant G, constant T and constant G X t for a power input
of 43 W. Floc size distributions were obtained using a
Master Sizer S (long bed) equipped with a 10 mm inner
width glass cell. Using low angle scattered intensity, the
high focal length can analyse floc sizes from 4 pm up to
3500 um. The cell is gravity fed so as to reduce shear
stresses applied to the flocs. Experimental measurements
of supernatant turbidity, maximum floc size dyy and normal-
ized density size distributions of the flocs are represented in
Figures 5 and 6. Deconvolution of multimodal density size
distributions yielded two or three log—normal subpopulations

Table 2. Conditioning results obtained at full-scale for three operating feed rates.

Conditioning properties

Conditioning tank feed rate m>hhH

between points A and B

(cf. Figure 3) 186 222 270
Flocculant dosage (gt ") 202 168 139
Solids content (kgm ) 8 8 8

Py, (W) 43 73 131
GGsh 177 228 298

7 (s) 17.8 15.3 13.2
Floc settling velocity (mmin~")* 1.961£0.570 0.845+0.308 0.338+0.084
Clarified water turbidity (NTU) 100 105 150

“Precision equals twice the experimental standard deviation.



Table 3. Conditioning settings used in the laboratory conditioning experiments.

Conditioning properties

Equivalent conditioning tank feed rate (m>hh?

between points A and B

(cf. Figure 3) 161 173 186 198 210 222 238 254 270 285 301
Flocculant dosage (gt™") 233 216 202 189 178 168 157 148 139 131 124
Solids concentration (kgm ™) 8 8 8 8 8 8 8 8 8 8 8
P (W) 28 35 43 52 62 73 90 109 131 155 182
GG 144 160 177 195 210 228 251 274 298 322 347
N (rpm) 92 98 105 112 118 124 133 141 149 157 165
7 (s) 20.1 19 18 17 16 15 14 14 13 13 12

“talic columns correspond precisely to the conditions tested at full scale.

of flocs whose characteristics reflect the dynamics of floc
growth and floc breakage.

Above all, these results demonstrate that the short condi-
tioning times used in the quarrying industry imply fast
kinetics and conditions far remote from those that can
lead to a stable maximum floc size in a stress field governed
by G. Hence, quarry slimes conditioning is an utterly
dynamic process. This means that using a given value of
G cannot be sufficient for the laboratory system to comple-
tely match the performance of the full-scale conditioning
system, nor is it a reliable basis for designing full-scale
conditioning systems.

Together, Figures 5 and 6 highlight most of the mechan-
isms involved in slimes conditioning. Before proceeding
further, it is important to note that Figure 6 reveals the
existence of two basic populations of flocs whose mode size
and volume fraction are totally inter-connected and extre-
mely sensitive to changes in hydrodynamic conditions. The
analysis of the interactions between these two distinct
populations reveals interesting features about the dynamic
nature of quarry slimes conditioning.

In the range of G and t values achieved in full-scale
conditioning systems, it can be observed that the evolution
of these populations of flocs follows antagonistic mechan-
isms of the flocculation process:

e the first mechanism is the aggregation of particles then of
small flocs for which medium values of G yield a
monotonic increase in the rate of both particle capture
and floc growth;

e the second mechanism involves both breakage and
erosion of large flocs. This floc degradation process
increases with G, t and floc size. If the value of G
exceeds the detachment shear strength for particles or

for small flocs from the surface of large flocs, or if G is
higher than the shear strength of large flocs, the maxi-
mum floc size decreases with both G and G, .

At a constant conditioning time (t = 15.35s), the conco-
mitant increase in the mode size of the population of large
flocs, their maximum size dgo, their volume fraction and the
decrease in supernatant turbidity and volume fraction of
small flocs when G goes from 100 to 600s~! clearly
illustrate this mechanism. The second mechanism is
revealed by the finer mode size of the small flocs’ popula-
tion at higher G values. This reduction in the mean size of
the small flocs corresponds to the birth of a second popula-
tion of small flocs whose mode is less than that of the single
primary floc population formed at short conditioning times.
Indeed, Figure 6(a) clearly shows that a short condition-
ing time (t =55 for G = 228s~!) that is close to the theore-
tical mixing time yields a single population of small flocs. It
is only for longer conditioning times that large floc forma-
tion is observed. The second small floc population is the
probable result of erosion of the large floc population. The
measured increase in both dgg and the mode size for the large
floc population with G is indicative of an aggregation mechan-
ism. However, Figure 6(b) shows a reduction of the width of
the large floc population’distribution when it is unique and the
birth of a second population of large flocs whose mode size is
less than that of the population formed at lower G values.
These observations confirm that large flocs are also subjected
to a breakage mechanism at higher G values.

At an intermediate constant G value (228571, the
increase in conditioning time from 5 to 50 s leads to:

e The birth of a population of large flocs generated by
aggregation of small flocs from the unique log-normal
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Figure 4. Comparison between full-scale (solid symbols) and laboratory conditioning systems (empty symbols). (a) Supernatant turbidity; (b) floc settling rate

distribution.
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Figure 5. Sensitivity of quarry slimes conditioning to variations
() G x T=3500 (100s~! < G < 600s™'; 65 < 7 < 355).

population (mode=171pum in Figure 6a) obtained by
aggregation of the initial particles and micro-flocs. The
reduction of the small flocs’ volume fraction and the
increase in the volume fraction of the large floc popula-
tion are clearly connected, large flocs growing at the
expense of small flocs. Globally, the increase in dgo,
large floc volume fraction and size of the large floc
population indicate a continuous aggregation process
with conditioning time at a moderate G value. However,
the relatively low increase in the mode size between
30 and 50s, combined with the birth of a second popula-
tion of large flocs, are further proofs of the competing
effects of breakage and erosion mechanisms for the
large flocs. Compared with the effect of G, the moderate
reduction in the mode size of the small floc population
indicates that less erosion is taking place, which is a
consequence of the moderate G value used to test the
effect of conditioning time.

e A reduction in supernatant turbidity. This trend confirms
an aggregation process for the residual initial particles
and the micro-flocs responsible for water turbidity.

At a moderate constant value of the dimensionless
product G x 1 (=3500), conditioning times are very short

in G, v and G x 7. Flocculant dosage: 168gt™!. (a) G = 228s~"';

(b) T=15.3s;

at high values of G (400 and 600 sfl). These short condi-
tioning times are not sufficient for residual particles and
micro-flocs to aggregate and form small or large flocs. This
effect is particularly significant given the low solids concen-
tration (8 glfl) typical of quarries and the significant
proportion of colloidal clayey minerals with high structural
charge (e.g. montmorillonite). As a result, supernatant
turbidity increases with G. The lower maximum floc size
for G =228s"! and t = 15.3 s indicates that G = 100s™!
and T = 355 is a more efficient combination of G and 7 in
terms of turbidity and floc size. For G = 100 s~ G has
a purely positive effect on dgg, whereas © has a purely
negative effect on turbidity and a positive effect on dgg. With
G =1228s7! and ©=15.3s, the increase in G is not
sufficient to compensate for the reduction in dog caused by
the relatively short conditioning time. For other combina-
tions of G and t, the increase in G is sufficient to offset the
lower conditioning times, leading to a moderate increase in
dgo. Overall, these experimental observations highlight the
complex interaction between G and .

More experimental work is necessary to fully characterize
the interaction between G and t. However, the complexity of
the interactions brought to light by this work is enough to
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Figure 6. Sensitivity of floc size distribution to variations in G and t (values shown represent the mode and volume fraction of the small and large
floc populations). Flocculant dosage: 168 gt™!. (a) G =228s~!; t variable. (b) T = 15.3s; G variable.



conclude that the dimensionless product G X t does not
make a suitable design criterion for slimes conditioning
system design.

This work has shown that laser sizing, given an appro-
priate design and a carefully controlled experimental proto-
col, is capable of providing measurements of floc size
distributions that are extremely sensitive to changes in
hydrodynamic conditions. Additional work is currently
under way to unravel the effects of other important hydro-
dynamic parameters on conditioning efficiency such as the
maximum shear rate G, .

DISCUSSION AND CONCLUSIONS

This paper forms part of an ongoing research program on
quarry slimes management. The work focuses on slurry
conditioning systems used in European quarries. It has
shown that industrial conditioning systems that use weir-
based configurations can be characterized to a large extent
with a small set of well-known hydrodynamic parameters.
From this basic analysis, the authors have highlighted some
basic notions about conditioning tank design, including the
significance of the connecting pipe section on conditioning
efficiency.

From a direct comparison between controlled laboratory
conditioning tests and full-scale measurements, it was
shown that average shear rate and conditioning time
govern slimes conditioning performance to a large degree.
However, the work has also shown that these basic hydro-
dynamic parameters are not sufficient for designing efficient
conditioning systems.

Indeed, with the relatively short conditioning times and
high dilution used in quarries, fine measurements obtained
with a dedicated laser sizer have highlighted the fact that the
industrial conditioning process is utterly dynamic, with
evidence of rapid competing mechanisms of floc formation,
breakage and erosion. The complexity of slimes conditioning
was clearly shown through examination of the interactions
between small and large floc populations detected by the
laser sizer. This fine analysis has revealed that slimes
conditioning, which uses short conditioning times, does
not operate near equilibrium conditions. As a result, it
is extremely sensitive to changes in hydrodynamic condi-
tions. In order to derive robust schemes for designing and
operating quarry slimes conditioning systems, more
in-depth characterization of the hydrodynamic parameters
that affect this dynamic process is necessary.

NOMENCLATURE
\% conditioning volume, m>
O¢ volumetric flow rate, m>s™*
N impeller rotational slpeed, rpm
G (or G) mean shear rate, s
Grax maximum shear rate, s~
h head loss, m
g gravitational acceleration, ms™>
dgo 80% passing size, m
doo 99% passing size or maximum size, m

Greek symbols

A macro-turbulence length, m

T residence (or conditioning) time, s
Pp slurry density, kgm™>

Hy slurry viscosity, Pas

A micro-turbulence length, m
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