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Reply to comment of Legates et al.

D. Labat *, Y. Godderis, J.L. Probst, J.L. Guyot

Laboratoire de Mécanisme de Transferts en Géologie, UMR CNRS/UPS 5563, 14 Avenue Edouard Belin, 31400 Toulouse, France
In the previous comment, Legates et al. [12] express

concern about the statistical reliability of the positive

runoff–temperature relationship presented by Labat

et al. [10]. We are grateful for this opportunity to respond

to these concerns. As Legates et al. [12] correctly points

out, the effect of temperature on runoff is a complex rela-
tionship, which involves precipitation, evaporation,

anthropomorphic affects, among others. As such, the ef-

fect of increased temperature on runoff is strongly depen-

dent on the identity of the watershed of interest. For

example, a watershed located in a glaciated region, such

as Iceland, exhibits a strong positive correlation between

runoff and temperature, whereas a watershed located in a

arid climate, such as the Sahara desert, exhibits a nega-
tive correlation; often there is no run off at all during

the summer months in such watersheds.

These differences make it extremely challenging to

estimate the relationship between temperature and run-

off at the global scale. What these differences tell us,

however, is that any studies limited to a single wa-

tershed, or even a single continent are inadequate to

determine the global affects of temperature on runoff.
Labat et al. [10] presented the first attempt to deter-

mine the relationship between temperature and runoff

at a global scale. They observed a small positive correla-

tion; runoff was found to increase 4% for each increase

in 1 �C of temperature increase. If true, this result has

major implications on the feedback between tempera-

ture and continental weathering in global geochemical

models. It is important to emphasise, as pointed out
by Legates et al. [12], that the correlation presented by

Labat et al. [10] has a significant uncertainty and de-

pends strongly on the quality of the database; a change

in the data considered in the correlation could either in-

crease or decrease the computed effect of temperature on
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runoff (although which would remain positive as we dis-

cussed below in the technical reply). This observation

illustrates the critical need for improved data on the

connection between temperature and runoff, that is not

limited to a single watershed or continent, but on a glo-

bal scale. Such data are essential to refine this correla-
tion to better constrain this important relationship at a

global scale.
1. Technical reply

1.1. Use of discharge records that reflect

non-climatic trends

We refute the assertion that ‘‘Labat et al. [5] specify

only the rivers for which data were acquired, rather than

the specific streamgauging stations that were used’’.

Effectively, all gauging stations are clearly identified by

latitude and longitude in Tables 1–3 and Fig. 1.

Indeed, they are located at the mouth of the water-

sheds, thus integrating all the climatic and anthropo-
genic effects over the watersheds. Legates et al. [12]

insist in general on the Assam Dam influence on Nile

discharges whereas this example has been clearly identi-

fied and clarified by Labat et al. [5].

Ref. [1] in Legates et al. [12] deals only with high

streamflow events in relation with high precipitation

events. This cannot be compared to our study since we

deal with complete annual runoff timeseries. We also
note that Ref. [9] in Legates et al. [12] argues that the

United States are getting wetter, in agreement with our

conclusions based on a large watershed study with gaug-

ing station located at the mouth.

Legates et al. [12] claim that ‘‘Labat et al.�s use of

such records violates a long-accepted and well-docu-

mented practice in hydroclimatic research’’. Labat

et al. [10] is the first study dealing with global runoff.
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Fig. 1. Top: Runoff–temperature relationship with the positive slope.

Bottom: Value of the slope as a function of the starting year of the time

series. We show, using this statistical approach, that the slope is

maximum when series start around 1925 and then decreases to 1.5–2%

but remains positive. The up and down lines corresponds to the

confidence interval of the slope value for each starting years.
Of course, small catchments (i.e. below 20,000 km2) may

be strongly perturbed by anthropogenic activities, and

should not be used for studies that attempt to link global

climate and runoff. But, a quick overview of the litera-

ture supports the idea that large watershed hydrological

response allows an identification of climatic oscillations
([1–9,11,13,15,18–20]; among others).

In conclusion, Legates et al. [12] suggest that the lar-

ger the watershed, the larger will be the anthropic ef-

fects on the hydrologic signal. We argue that the

larger watershed, the most clear will be the climatic sig-

nal (as previously demonstrated by Probst et al.

[16,17,15]).

1.2. Documented lack of a relation between streamflow

and air temperature in previous studies

We note that the entire discussion in Legates et al.

[12] focuses on the United States, where they argue that

no climatic signal can be observed in the streamflows.

The systematic extrapolation of these results obtained

for the US to all continents is clearly doubtful.
We never claim that precipitations are not the main

driving force of change in runoff. The relationship iden-

tified between air temperature and runoff was found at

global scale, but this do not preclude any cross relation-

ship between air temperature, precipitations and runoff.

Furthermore, the study of Karl and Riebsame [8] deals

with much smaller watershed than Labat et al. [10],

working at continental scale. As we have shown in the
paper [10], the relationship between air temperature

and runoff at continental scale differs from the relation-

ship identified at global scale.

1.3. Inappropriate estimation of data to fill gaps

in long-term streamflow records

Concerning the data-reconstruction method, Legates
et al. [12] claim that wavelets are inappropriate (1) to

isolate climatic effects from anthropogenic effects; and

(2) to estimate data when missing for long time periods.

Nakken [14] shows that wavelets have already been

used to isolate climatic effects from anthropogenic

effects.

In Labat et al. [10], most time series extend over more

than 10 years. We acknowledge that short time series
have been used for some minor rivers. Extrapolating

10- or 20-year hydrological time series to centenial scales

is statiscally correct since the longest climatic oscilla-

tions correspond approximatively to 30 years. There-

fore, the original 10- to 20-year series already reflects

the long-term climatic response.

Furthermore, the method used in Labat et al. [10] is

proved to be correct, since we show that the correlation
coefficients between observed and reconstructed annual

runoff are equal to 0.8 (which is quite significant).
Then, Legates et al. [12] also argue that removing a

single point of the runoff-temperature relationship tends

to unvalidate the statistical validity of this relationship.

First, our study deals, for the first time with global data,

and large dispersion of the points is of course expected.

But, this is not by itself a justification for removing out-
liers. All available data must be considered.

Furthermore, the outlier corresponds to the year 1926

and removing this point i.e. calculating slope starting in

1927 leads to a 0.25 slope coefficient but in no way to a

null coefficient (Fig. 1).

The important point is that the slope significantly dif-

fers from 0 and is positive. We show in Fig. 1 the value

of the slope as a function of the starting year of the time
series. Using this correct statistical approach, the slope

is maximum when series start around 1925 and then de-

creases to 1.5–2%, but remains positive. We acknowl-

edge that the 4% slope claimed in Labat et al. [10]

must be considered as a maximum but we refute the Le-

gates et al. [12] assertion of a null-slope relationship be-

tween runoff and temperature.



1.4. Selection of the time period analyzed and lack

of explanation for relationships before 1925

The 1925–1994 period was selected so that our results

may be directly compared to the study [16], which is up

to now the only data-based study of global runoff
change linked to global climatic change.

Legates et al. [12] indicate that ‘‘Fig. 4 is inconsis-

tent with the IPCC and confounds their argument of

a strong air temperature/runoff relation’’. Fig. 4 in

Labat et al. [10] is certainly consistent with the IPCC.

Legates et al. [12] refers to the behaviour of the

continental air temperature alone, which displays a dis-

tinct behaviour for the 1890–1925 period. In fact, we
used global averaged temperature shown in Fig. 2.8,

p. 115, 2001 IPPC report (Jones et al. 2001). This ser-

ies include both continental air temperature and sea

surface temperature. The global averaged temperature

is the only reliable global temperature measurement

when dealing with changes in the global hydrologic

cycle.

1.5. Regression and the presence of an influence point

The 15 year shift observed between temperature and

runoff response was based on a visual observation,

mainly focusing on the peak observed in the 50�s for run-
off, while an apparent similar peak is observed in tem-

perature 15 years earlier. We think that this shift

might be insignificant.
Legates et al. [12] claim that ‘‘there are 69 years of

pairwise comparisons, but it is inappropriate to assume

that there are 68(n � 1) degrees of freedom because the

data are temporally autocorrelated’’. The T-student

test is commonly applied in hydrological studies, de-

spite the existence of correlations, as long as this corre-

lation is rather weak. Indeed, we are not working with

the 3 year mobile average of the temperature signal (as
probably suspected by Legates et al., and which dis-

plays a strong auto-correlation), but with the annual

average. This annual average is characterized by a

lag-1 correlation coefficient equals to 0.4, and a lag-3

correlation coefficient reaching 0.18. This demonstrates

a weak autocorrelation of the signal, validating the use

of the T-student test and the use of 68 degrees of free-

dom in the T-student test.
The T-test clearly shows the statistical significance

of the runoff-temperature relationship. We also men-

tion in Fig. 1 the up and down bounds of the confi-

dence interval of the slope regression coefficient. As

we already mentioned earlier, we acknowledge that

the 4% slope claimed in Labat et al. [10] must be con-

sidered as a maximum but refute the Legates et al. [12]

assertion of a null-slope relationship between runoff
and temperature.
2. Conclusion

Legates et al. [12] argue that no climatic signal can be

observed in the streamflows which is clearly wrong (see

Section 1). They systematically extrapolate results ob-

tained over the United States continent to all continents
which is clearly doubtful.

We think that Legates et al. [12] are wrong when dis-

cussing the anthropogenic impact on the continental

runoff. Of course, small catchments (<20,000 km2) may

be strongly perturbed by anthropogenic activities, and

cannot be used for studies that attempts to link global

climate and runoff. But, a quick overview of the litera-

ture demonstrates that this is not true for large scale
catchments, but are able to record global climatic

changes despite anthropogenic disturbances. We also

systematically refute all the statistical issues mentioned

by Legates et al. [12].

For all these reasons, we strongly claim that we effec-

tively provide the first data-based positive relationship

of the runoff-temperature relationship and that this po-

sitive relationship has profound implications in our
understanding of climate changes.
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