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Abstract

The objective of this paper is to compare the Masing and modified Dahl mdigeerty regarding the
prediction of the hysteretic behavior of a belt tensioner used for autoenetigines. A first experimental
study with deflection imposed on the tensioner is carried out to identify hgsdomp parameters for the
two models. The models are then implemented in the general motion equations mdiuelpahavior of a
belt - tensioner - mass system. The comparison beteen numerical andrexygat results show that these
two models perform satisfactorily and that the modified Dahl model is a little méodeet.

1 Introduction

The hysteretic behavior of components permits efficient passive caritroechanical systems but makes
response prediction delicate due to their high non linearity [1, 2]. VestodiNoori in [2] and Visintin in
[3] established an overview of hysteresis models. Rheological modelesiwling force models are the two
main categories widely used in mechanical engineering to predict those centpdiehavior. The former
provide damping and stiffness parameters, while the latter provide a restorge to be introduced in the
second member of the equations.

Here, the Masing model [4, 5] and the modified Dahl model [6, 7] areextsly the rheological and
restoring force models selected for the current analysis. The clab&saihg model composed of a spring
parallel to a spring - dry friction system is modified in this study by adding aousacamping element.
The modified Dahl model originates from the Dahl and Duhem models ands&dlan a first differential
equation that provides the time derivative of the restoring force fromelaxity of the deflection and from
the envelop curves of the hysteresis loop. The Masing model is govbyreedon-smooth differential equa-
tion containing a multi-valued function while the Dahl model is governed by a #muanlinear dynamic
eqguation. Consequently, the numerical integration schemes have to takedatmathese two typical char-
acteristics to obtain a convergence. The efficiency of these two hyistaredels have to be tested to predict
the hysteretic behavior of a belt tensioner.

Tensioners used in belt drive systems act as passive controllers btamizig nominal tension in the slack
span and reducing transverse vibration levels, see [8].

Satisfying technological challenges often leads to complicated design sdlatitensioners, and involve
considerably nonlinear behavior mainly due to stick-slip motion see for exdfde].

The Masing and modified Dalh models are described in detail in Section 2 andppied to a belt tensioner
of an automotive engine in Section 3, where an initial experimental set-updsfasidentifying the model
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parameters. Section 4 concerns the numerical and experimental inveasgagiformed on a belt-tensioner-
mass system in which tensioner behavior is either predicted by the two modbédstlihis section permits
comparing the predicted and measured harmonic responses in ordeussdise models efficiencies.

2 The Models

In this section, two models describing the hysteretic behavior of a onealefjieeedom mechanical system
are presented. The behavior of the mechanical system studied caalipeeginvia the progression of the
restoring force versus the deflection.

The objective is to find the relation between a restoring fdfand a deflection. It is assumed that after a
transient phas@, to|, the pair(u(t), F(t)) belongs to a periodic curve called hysteresis loop.

The modified Dahl model (see Section 2.1) and the Masing model with vis@mupidg (see Section 2.2)
are used in the present investigation for modeling such behavior.

2.1 Theory of modified Dahl model

2.1.1 Modified Dahl model

The model governed by Eq. (1) is presented and used in [6, 7] or JnifiLthis last reference, Eq. (1) was
used to simulate the behavior of a belt tensioner.

Ad(t) sign(hy(u(t)) — F(1)) |hu(u(t) = FE)[",  ifwt) >
Ad(t) sign(hy(u(t )) F@©) [mu) = F@)|",  ifat) <

Vt € [to, ty], F(t) = { 8’ 1)

In this study, the authors consider the simple case whgendh,; are of polynomial form. Let, b, d ande
be real numbers, it is assumed that, for any R,

hy(u) =au+b, hy(u)=du+e. 2

2.1.2 Analysis of hysteresis and identification of parameters hu, hy, wand A.

Parameter\ characterizes the transient velocity betwégrand h; while exponenfu plays a predominant
role in the loop orientation.

Figure 1: The force-deflection lodpfor the modified Dahl model.



For a general casg,belongs taR ., as the analytical expression Bfis not known and the identification of
h., hy, A andp is not possible. Howeveh,, andh; remain asymptotes of the hysteresis loop which makes
their determination possible. The analytical determination ahdy is not possible, but they are identified
by successive comparisons between measured and predicted loopatisfalctory concordance is obtained.

2.2 Theory of the Masing model
Multivalued friction models have been studied in [12] and in the survey [N8merous works have founded

on the Masing model (without damping) (see for example [5]). More el&sttip models with finite numbers
of degrees of freedom are presented in [14, 4].

2.2.1 Description of the Masing Model with viscous damping
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Figure 2: The Masing model with viscous damping.

The Masing model is often used in the case of elastoplastic behavior. Itnpas®d of two springs and a
dry friction element (St-Venant element) connected together, wherenpsgesk andk, are the stiffnesses
of the two springs and. the threshold of the dry friction element. A viscous damping eleméstadded
in the previous model, as shown in Fig. 2, its reaction force is ngted he aim is to establish a relation
between loadr and deflection:. Letus andu; be the deflections of sprinigand the dry friction elemeny,
and fj the forces exerted by springsandkg, andl andl, the spring free lengths.
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Figure 3: The two used multivalued maximal monotone graphs.



Considering the graph of the multivalued operatqisee Fig. 3(a)) and its inverse gragh{see Fig. 3(b)),

we obtain:
1) if x €] — oo, —1[U]1, +o0],

(0} ifaee-11]
R_ ifz=-1,

3)

The graphg? ando are maximal monotone (see for example [15]). The maximal monotone gsaghgj
are sub-differentials of proper semi-continuous convex functiopands/_; ;; defined by

wem we={0, 1120 g
Setting
w=us — I, (59)
Fo = kolo, (5b)
n=". (5¢)

First, several equations similar to those presented in [4] are recalledcoRsétutive law of the dry friction
element is given by
_{TmmrepaﬂLihh:a )
—aSign(uy) , if u; # 0.
Then, by using the multivalued operawdefined by ??) (see Fig. 3(a)), it is possible to write (6) in the
form of the following differential inclusion:f € —ao (4;). By considering the constitutive laws of the
springs, the dry friction element and the viscous damping element providelltheing forces:

Jo=—ko(u —lo), (7a)

f=—k(us = 1), (7b)

f€—ao (i), (7c)

f1 = —cu. (7d)
The system equilibrium leads to

f+fo+fi+F=0, (7e)
and the geometrical relation gives

Us + U = u. (71)

By consideringw, Fy, , defined by Eq. (5)wo = w(to) € [—n,n] andg defined by (3), it can be proved
that system (7) is equivalent to

w+ﬁ<?>9u, (8a)
w(to) = wo, (8b)
F = kw + kou + ct — Fo. (8c)



2.2.2 Analysis of hysteresis and parameter identification.

As in [4], it is assumed that functiof, defined by Eq. (8c), is also periodic; under this assumption, it is
proved that the loou, F) permits determining mechanical parameters of the Masing model with viscous
damping.

Eqg. (8c) can be rewritten as

Fepl(t) = kw(t) + kou(t) — Fo, (9a)
Fu(t) = cu(t), (9b)
F(t) = Fep(t) + Fu(t). (9c)

The termsFep andF, correspond to the elastoplastic part and to the viscous part of the megettively.

It is now assumed that
u is T-periodic; (10a)

there exists, 7 and7s3 = 7 + 7, such that is strictly increasing offiry, 7]
and strictly decreasing dmy, 73];

(10b)
u € C*([to, ty]), (10c)

and setting
Umin = MIn(u), Umax = max(u). (11)

If no damping is considered, thef, is nil and we can prove under assumption (10a), as in [4], that the pair
(u, F) versus time plots a hysteresis loop. This loop represents a clockwise drjgarilelogram asis
increasing on the intervaty, t¢]. A direct correspondence exists between the six parallelogram paramete
and the six system parametess:,, umax, ko, k, @ andFy, thus permitting their identification.

On the other hand, when damping is considered, the (paiF) does not plot a hysteresis loop, in the
classical sense of [3]. Indeed, the pénilr, j’-"ep) plots a hysteresis loop called the dry skeleton. However,
since the second terth, depends on the deflection history, the gairF,) does not draw a hysteresis loop.
Moreover, withc # 0, the identification of the mechanical parameters is still possible due to georhetrica
data of the loop .

The loop studiedu(t), F(t)) for t belonging tqto, t ¢] is symmetric and only the upper half part of this curve
is studied, as in [4]. In this last pdrt;, 72|, u is strictly increasing and there is a bijectign such that, for
anyt € [r, ], t = ¥4 (u(t)); moreoveru(ri) = umin aNdu(m2) = umax. By consideringg, = w0y,
we obtain

vt € [m, ], a(t) = Gy (u(t)), (12)
and Eqg. (9) can be rewritten as
Yu € [Uminy umax]7 fv(u) = Cg—i—(“)v (13)
and
Yu € [umina umax]7 ‘7:(“’) = fep(u) + fv(u)a (14)
where
Fep(u) = kw(u) + kou — Fo, (15)

wherew depends only om via the differential inclusion (8a).



If the deflection amplitude is large enough, then it exigts [, 72| so that

w(r) = =1, w(ra) = . (16)
Henceforth, we consider
ta=11, tp=m, tc=ry, (17a)
ua =u(r1), up=u(r), uc=u(r), (17b)
.7'-,4:.7'—(11,4), fB:f(uB), fC:f(uC). (17¢)

On the intervalr, 74, the dry friction element sticks and the model sketched in Fig. 2 is identical to the
association of a spring with stiffnegs+ ko and a damping viscous element. After computation, thanks to
Eq. (16), we obtain

Vu € [ua,up], F(u) = (k+ ko)u—Fo—k(ua +n)+ cG4(u). (18a)

On the contrary, on the intervty, 72, the dry friction element slips and the model sketched on Fig. 2 is
identical to the association of a spring with stiffnégsand a damping viscous element. After computation,
we obtain

Vu € [up,uc], F(u)=kou+ kn— Fo+ cG+(u). (18b)

Figure 4. The force-deflection loap for the Masing model with viscous damping (solid line), the dry
skeleton (dot-dashed line), and the cornérs3, C andD.

By using Egs. (18), the shape of the loap F) is given in the Fig. 4, where the dry skeleton corresponds to
the pair(u, Fep). CornersA andC represent slip stick state change whereas the cofmiensd D represent
stick slip state change.

Foru = uy, @ is equal to zero and theh, (u4) is equal to zero; thus, Egs. (18) gives
Fa=(k+ko)ua—Fo—k(ua+mn). (19a)
and
Fo = kouc + kn — Fo. (19b)
With Eq. (18a), foru = u4 andu = up, we obtain

up —uag = 2n. (19c)



By definition,
UgA = Umin, UC = Umax- (19d)

Let pg andp, be the right and left derivatives of according tou at pointuz; According to Eq. (18) and
sinceu is of classC'!:

pJBr, = ko + cgﬁr(uB). (20a)
pp =k + ko + Gl (up). (20b)

Thanks to assumption (10gJ;_is continuous in:p and we obtain
P — pg = k. (22)
Moreover,

Point B is the unique point of the upper part of the logp F)
where the derivative is not continuous. (22)

Similarly, on the decreasing part of the loop, the same approach is degteldf@econsider, ifu is strictly
decreasing; = ¥ _(u(t)) and we obtain

Vu € [up,uc], F(u)=(k+ko)u— Fo— k(uc —n) — cG_(u). (23a)
Vu € [ua,up|, F(u)=kou—kn—Fo—cG_(u). (23b)

As in [4], the following equations remain true and permit parameter identification

Umin = UA, (248)

Umax = UC, (24b)

k=pg— vk, (24c)

a = g(uB—uA), (24d)
— -2

ko = 2= FA 20 (24e)
Uc — up

Fo = koug —a— Fyu. (241)

These equations are obtained by Egs. (19) and (21).

However, the value af must be determined. A similar method to that of [11] is used to estimate the value of
A for 4 = 1. By equaling the calculated and measured energies dissipated by thesvisgoping element,
i.e. the inside area of the loogs, cu), we can write Eq. (9) as:

]—"_(k;w-|-k:0u—]-"0):f—fep:f\,:cu:cg+,

or thanks to Egs. (18) and (23),

Vu € [ua,up], F(u)— ((k+ ko)u—Fo—k(ua+n)) =cGi(u), (25a)
Yu € [ug,uc], Fu)— (kou+ kn— Fo) = cG+(u), (25b)
Yu € [up,uc], F(u)— ((k+ko)u—Fo—k(uc —1n)) = —cG_(u), (25¢)
Yu € [ug,upl, F(u)— (kou —kn—Fo) = —cG_(u). (25d)



(b)

Figure 5: Tensioner schemes and pictures: (a-b).

The two functions7; andG_ are known and the energy dissipatétias the following expression:

Umax tc ta
E=c / Gi(u) — G_(u)du=c / w?(t)dt — / w?(t)dt | . (26)
Umin t t
u incréasing U decrceasing

If uis defined by
Vt, u(t) = xo+ x18in(QU + ¢), (27)

Eq. (26) yields
£ =1z Qe. (28)

The value of damping is determined for pulsatiofl. In Section 4, the value efwill be used, but pulsation
Qo will be equal tof2. It is now assumed that the shape of the I¢opF) does not depend on pulsation.
In Section 4, valuey will be used:

o 6 (29)

wherec is given by (28).

3 Experimental investigation and parameter identification

The tensioner is composed of three parts, see Fig. 5: Part 1 is a solidpldey) that rotates around axis
A = (AB) of part 2; part 2 is the tensioner atdBC, that rotates around the fixed axs of part 3, bolted
to the reference part 4 (i.e an engine for automotive applications). Alldtte pre considered as rigid bodies.
The pin joint of axisA’ between parts 2 and 3 includes a torsion spring and friction componentsaties
dry and lubricated contact forces, and a moment between parts 2 arite Hh€nomena involved result in
highly non linear behavior of the joint.

An experimental set up has been designed for identifying the belt temgioodel parameters. The idler
pulley is removed and segmeAB is connected to a rigid bar that subjects a vertical alternative displacement
on pointA. The vertical components of poiat, displacement(t), and of forceF are considered positive
when oriented toward the ground, since in use, the tensioner is alwagpaged. Forcg remains positive.

The displacements are measured using laser optical sensors, whilecib® doe measured with load cells.
Data acquisition is performed simultaneously with a sample frequéiey 5000 Hz. The measurements
can be filtered to remove measurement noise.

3.1 Experimental set-up for identifying the parameters of th e models

An alternative vertical displacement is imposed on pdintefined by Eq. (27), with

Q=094radls ¢=48rad z20=5410"*m, z;=5210"*m. (30)
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Figure 6: Measured loofu, F), small deflection amplitude.

After a transient state (start from initial position), a steady hysteretic loopserved as shown on Fig. 6
and the measured forcE versus time is periodic.

In [11], the authors have shown that the Dahl modified model parame&dependent omy and to a lesser
extent on(2. This dependency is not considered here: The valueg ahdx, given by Eq. (30), have been
chosen so that th@ax(u) — min(u) range, observed on Fig. 6 should be similar to that observed in Section
4. Moreover, it is supposed that the characteristics of the models stuefiethd on thenax(u) — min(u)
range but do not depend on frequency forcing

3.2 Identification of the model parameters

3.2.1 Modified Dahl model

In order to identify the parameters definihg and h;, the method of Section 2.1.2 is used: as in [11], we
use the fact thak,, andh; represent the upper and lower envelop curves of the hysteretidldopvhich
the pair(u(t), F(t)) belongs whert describest, t;]. For the next development it is considered thas
defined by Egs. (27) and (30).

From the analysis of the measured loop represented in Fig. 6, the enueleg/c, andh; can be considered
as straight lines and therefore the values,@f d ande are determined using the mean squares approximation
method (see Fig. 7):

a=7.14610" N/m, b=9.59610°N, d=5.32210*N/m, e =3.97210%N. (31)
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Figure 7: Identification of the envelop curvies (dot-dashed line) ankl; (dashed line), measured loop (solid
line).



In order to use the modified Dahl model, the initial conditigng ;) are determined by choosing an
arbitrary point of the loop:

to=1.98810"1s, Fy=1.00910% N. (32)

Moreover, using the results of Section 2.1.2 and after several numéecations, the optimal values of
parameterg. andy are determined:

A =117355, p=0,3T. (33)

3.2.2 Masing model with viscous damping

In order to identify the parameters of the Masing model with viscous dampin@ings, tmax, k, ko, o, Fo, ¢},
the results of section 2.2.2 are applied to the experimental loop represeriégl 6.
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Figure 8: Predicted (Masing model with viscous damping, dashed line) aasumesl (solid line) loops and
the cornersd, B, C'andD.

As shown on Fig. 8, the numerical valuesof, ug, uc, Fa, Fc. g, andpjg are determined, and thanks to
Egs. (24) and (28) we obtain the following:

Umin = 2107° M, Umax = 1.051073 m, (34a)
k=4.8410° N/m, ky=2.3410°N/m, «=16310>N, Fy=—5.7310>N. (34b)
¢ =1.9310* Ns/m (34c)

As in Section 3.2.1, the initial conditiortg,, wo = w(tp)) are determined choosing an arbitrary point of the
loop:
to=15510"2s,  w(ty) = —3.2410"* m. (35)

3.3 Comparison of the results obtained with the modified Dahl and Masing models
and with the experiment

The previous identification permits predicting the force for an imposed diefled®Numerical and analytical
computations were performed for the modified Dahl model and the Masing model.

The force deflection loop — F is plotted on Fig. 9. By comparing the force deflection loops, it appears
that the stick slip state transition is modeled differently. Indeed, for the Datieimthe stick slip transition
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Figure 9: Identification part: loa#& versus deflection measured (solid line) and predicted with the modified
Dahl model (dashed line) and with the Masing model (dot-dashed line).

is continuous through it is not for the slip stick transition. This is the contraryife Masing model with
viscous damping. In addition, the higher the viscous damping, the smooth&iptiséick transition will be.

Both experimental and numerical results are presented in PRjand 9. Good agreement can be observed
between the two theoretical models and also between each model and thimerpeerformed to validate
the models used and their identification.

4 Comparison, validation and prediction

In the previous section, the Modified Dahl and Masing models were forntulatehe belt tensioner. The
tensioner is now a part of a mechanical system subjected to a variableximtatien. The purpose is to test
the models efficiency considering a multi-degree of freedom system agxpanmental investigation. Each
tensioner model is implemented in the system motion equations that are solvedaaligjn@he predicted
and measured results are compared.

4.1 Equations of motion for the system

4.1.1 System description

The dynamic system considered is composed of the previously studiednensigoly-V belt and a mass
(see Fig. 10). The tensioner base is fixed on a rigid frame. Its idler pulleyaesms has a belt wrapped
around it. The two adjacent belt spans are joined at their other end andated to a mass;. The massn;

is excited by the imposed forgegenerated by an electro-dynamic shaker (see Figs. 10). Two Displateme
up and us (see Fig. ??) of the two masses are measured with laser-optical displacement seff$ws.
transmitted forcef is measured with a piezo-electric load sensor, and the belt tension is neasiran
S-shape load sensor. In this two degrees of freedom systemyma&saised both for the tensioner preload
and for the system dynamics.

4.1.2 System equations

Let u; anduy be the vertical displacements of masgeand 2, along thex axis, both positive oriented
downward. As in section 3F is the force exerted by the tensioner, it is positive oriented upwardefasc
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Figure 10: Experimental set-up: Belt-tensioner-mass system.

positive oriented downward. L&t/2 be the tension in each belt span. Due to the ratio between the radius of
the pulley and the belt span lengths, it is assumed that tefisisoriented vertically.

The gravity constant is noted gasind equations governing the complete system are given by:

e The belt behavior law, by considering the belt as a spring-damper ofegtiff{ and equivalent viscous
dampingC:
T(t) = K(u1(t) —ua(t)) + C (tn(t) — ua(t) + 7o, (36a)

where7; is related to the initial belt tension.

e The dynamic equilibrium of the tensioner pulley projected along the vertidgalagxby neglecting
effects on the horizontal axis:

mytia(t) = T(t) — F(t) + mag. (36b)

e The dynamic equilibrium of the lower mass projected along the verticalzgXiy neglecting effects
on the horizontal axis:
matis (1) = =T'(t) + f(t) + mag. (36¢)

e Initial data att, for uq andus:
ui(to) = u10, Ui(to) =10, u2(to) =wuz0, u2(to) = 1tap. (36d)
e The relation between forcg and displacement; is written formally as:
F = ®(us), (36€)
where® is an operator.

Belt stiffnessK and damping”' are obtained by using an experimental model analysis non presented here
The parameter values of the system are fixed:

my = T73.84Kg, ms =0.15kg, K =560000N/m, C =160Ns/m g¢=0981m/$.  (37)

The initial conditions are chosen arbitrarily

to=1,610"% w10=0, 110=0, ugo=0, dgg=0, (38)
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Figure 11: Measured curv@s(a),u; (b, solid line) and:, (b, dot-dashed line) versus time (on time interval
[3,3.3]).

4.1.3 Application of the modified Dahl model

Applying the modified Dahl model for the tensioner implemented in the systemist®msreplacing: by
ug in Egs. (1):

F(t) = {Auﬂt)sign(hu(uz(t)) — F(t)

~—

Y ’ (39)
— N (t)sign(hy (uz(t)) — F(t)

Flto) = Fo. (40)

Finally, it is necessary to solve the system formed by Eqgs. (36a), (8889), (39) and initial conditions
(36d) and (40). It is admitted that, ue, T" andF exist and are unique.

4.1.4 Application of the Masing model with viscous damping

For the Masing model with viscous damping, replacinigy u, transforms Eq. (8) in:

w+ 3 <1:7)> S o, ON [to,tf] (41&)
w(to) = wo, (41b)
F = kw + kgus + ctio — Fp, On [to, tf}. (41¢c)

Finally, we obtain the system of Eqgs. (36a), (36b), (36c¢), (41a})(4hd initial conditions (36d) and (41b).
These equations are written as a differential inclusion of the first otddiesl in [4, 15].
4.2 Predicted and measured responses

In this section, the predicted and measured responses of the multi defjfesedom system are presented
and compared (see Figs. 11). No transient phase is observed for disene responses.

The value of forceF is reached using Eq.(36b) which gives

T(t) = F(t) = ma(iia(t) — g).



and sincen, defined by (37) is negligible comparedsiq, it leads to:

T(t) ~ F(t). (42)

The two theoretical models give satisfactory results. The short time deviatida due to the unknown
initial conditions. For the same reason, there are also shifts and Aus between the experimental and
computed curves; andus; Au; and Ausy are determined so that the mean values.ofinduy are nil.
Finally, displacement shiftdu;, Auy and At are introduced in the model and functighis plotted versus
the deflectionu, (see Fig. 12).
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Figure 12: Validation part: forcé versus deflectiom, predicted with the modified Dahl model (dashed
line) and with the Masing model (dot-dashed line), and measured (solid line).

4.3 Global behavior
The comparisons of the results on Fig. 12 shows that there is a small diféebetween the measured and
predicted loops. This is probably due to the fact that the mechanical panoé the two models studied

depend on thenax(uz) — min(u;) displacement range. According to Section 3.1, the parameters of the
modified Dahl and Masing models with viscous damping depeng,@nd the analysis can be improved.
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Figure 13: Prediction part: Amplitudenax(7") — min(7)| versus pulsatiof for several values of; for
the experiment (a), the modified Dahl model (b) and the Masing model witlhwssdamping (c) forf;
defined by (43c) (solid curves) and fgr defined by (44) (dot-dashed curves), withincreasing in the
direction of the arrow.

Finally some values dinax(7") — min(7")| versus forcing pulsatioft are measured for several valuesfof



(and with fy and¢ fixed). For each value d®, ¢ is defined by (29). We choose

to=17s, t;=20s, h=10"s (43a)
fo=0, ¢=0, (43b)
f1 €13, 27, 41, 54, 67, 79, 90, 100, 110, 120], (43c)
Q € [10, 125] (with 116 values arranged linearly) (43d)

Measured and predicted responses are plotted in Fig. 13. The compdedricy response represented in
this figure is obtained after a series of calculations in the time domain: eachgbairfitequency response
curve corresponds to the tension fluctuation amplitude calculated whely stiedel is reached for a given
frequency and excitation amplitude. The dot-dashed curves corrspdime predicted results obtained for
higher excitation force amplitudes not obtained experimentally:

f1 € [140, 160, 200, 230, 260, 300]. (44)

It can be observed experimentally that even if the excitation force amplitwileases, the resulting belt
tension variation is bounded within a frequency range. This phenomempoedited better if the tensioner
is modeled with the modified Dahl model rather than with the Masing model with \ésgaonping.

The system behavior observed in Figs. 13 is similar to that described ib{lLBor small forcing amplitudes,
the tensioner is stuck. For high forcing amplitudes, it mainly slips.

5 Conclusion

This paper has described in detail two different models usually usedrmduge hysteretic behavior.

It has been shown that the stick-slip behavior exhibited of a belt tens@@amebe modeled either by the
Masing model or the modified Dahl model.

Model parameters have been identified experimentally with an imposed deflaciiba low forcing fre-
guency. The numerical and experimental investigations carried out @ft-tehsioner-mass system in a
larger forcing frequency range have shown that the use of these taelsie satisfactory in the time history
and frequency domains.

It should be noted that particular attention must be given to the use of thericalrschemes in order to
make the predicted responses reliable.
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