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Abstract
The objective of this paper is to compare the Masing and modified Dahl model efficiency regarding the
prediction of the hysteretic behavior of a belt tensioner used for automotive engines. A first experimental
study with deflection imposed on the tensioner is carried out to identify hysteresis loop parameters for the
two models. The models are then implemented in the general motion equations modelingthe behavior of a
belt - tensioner - mass system. The comparison beteen numerical and experimental results show that these
two models perform satisfactorily and that the modified Dahl model is a little more efficient.

1 Introduction

The hysteretic behavior of components permits efficient passive controlof mechanical systems but makes
response prediction delicate due to their high non linearity [1, 2]. Vestroniand Noori in [2] and Visintin in
[3] established an overview of hysteresis models. Rheological models andrestoring force models are the two
main categories widely used in mechanical engineering to predict those components behavior. The former
provide damping and stiffness parameters, while the latter provide a restoring force to be introduced in the
second member of the equations.

Here, the Masing model [4, 5] and the modified Dahl model [6, 7] are respectively the rheological and
restoring force models selected for the current analysis. The classicalMasing model composed of a spring
parallel to a spring - dry friction system is modified in this study by adding a viscous damping element.
The modified Dahl model originates from the Dahl and Duhem models and is based on a first differential
equation that provides the time derivative of the restoring force from the velocity of the deflection and from
the envelop curves of the hysteresis loop. The Masing model is governedby a non-smooth differential equa-
tion containing a multi-valued function while the Dahl model is governed by a smooth nonlinear dynamic
equation. Consequently, the numerical integration schemes have to take into account these two typical char-
acteristics to obtain a convergence. The efficiency of these two hysteresis models have to be tested to predict
the hysteretic behavior of a belt tensioner.

Tensioners used in belt drive systems act as passive controllers by maintaining nominal tension in the slack
span and reducing transverse vibration levels, see [8].

Satisfying technological challenges often leads to complicated design solutionfor tensioners, and involve
considerably nonlinear behavior mainly due to stick-slip motion see for example[9, 10].

The Masing and modified Dalh models are described in detail in Section 2 and then applied to a belt tensioner
of an automotive engine in Section 3, where an initial experimental set-up is used for identifying the model
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parameters. Section 4 concerns the numerical and experimental investigations performed on a belt-tensioner-
mass system in which tensioner behavior is either predicted by the two models studied. This section permits
comparing the predicted and measured harmonic responses in order to discuss the models efficiencies.

2 The Models

In this section, two models describing the hysteretic behavior of a one degree of freedom mechanical system
are presented. The behavior of the mechanical system studied can be analyzed via the progression of the
restoring force versus the deflection.

The objective is to find the relation between a restoring forceF and a deflectionu. It is assumed that after a
transient phase[0, t0], the pair(u(t),F(t)) belongs to a periodic curve called hysteresis loop.

The modified Dahl model (see Section 2.1) and the Masing model with viscous damping (see Section 2.2)
are used in the present investigation for modeling such behavior.

2.1 Theory of modified Dahl model

2.1.1 Modified Dahl model

The model governed by Eq. (1) is presented and used in [6, 7] or in [11]; in this last reference, Eq. (1) was
used to simulate the behavior of a belt tensioner.

∀t ∈ [t0, tf ], Ḟ(t) =

{

Λu̇(t) sign
(

hu(u(t)) −F(t)
) ∣

∣hu(u(t)) −F(t)
∣

∣

µ
, if u̇(t) ≥ 0,

−Λu̇(t) sign
(

hl(u(t)) −F(t)
) ∣

∣hl(u(t)) −F(t)
∣

∣

µ
, if u̇(t) ≤ 0.

(1)

In this study, the authors consider the simple case wherehu andhl are of polynomial form. Leta, b, d ande
be real numbers, it is assumed that, for anyu ∈ R,

hu(u) = au+ b, hl(u) = du+ e. (2)

2.1.2 Analysis of hysteresis and identification of parameters hu, hl, µ and Λ.

ParameterΛ characterizes the transient velocity betweenhu andhl while exponentµ plays a predominant
role in the loop orientation.
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Figure 1: The force-deflection loopΓ for the modified Dahl model.



For a general case,µ belongs toR+, as the analytical expression ofF is not known and the identification of
hu, hl, Λ andµ is not possible. However,hu andhl remain asymptotes of the hysteresis loop which makes
their determination possible. The analytical determination ofΛ andµ is not possible, but they are identified
by successive comparisons between measured and predicted loops untilsatisfactory concordance is obtained.

2.2 Theory of the Masing model

Multivalued friction models have been studied in [12] and in the survey [13]. Numerous works have founded
on the Masing model (without damping) (see for example [5]). More elastoplastic models with finite numbers
of degrees of freedom are presented in [14, 4].

2.2.1 Description of the Masing Model with viscous damping
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Figure 2: The Masing model with viscous damping.

The Masing model is often used in the case of elastoplastic behavior. It is composed of two springs and a
dry friction element (St-Venant element) connected together, where parametersk andk0 are the stiffnesses
of the two springs andα the threshold of the dry friction element. A viscous damping elementc is added
in the previous model, as shown in Fig. 2, its reaction force is notedf1. The aim is to establish a relation
between loadF and deflectionu. Letus andut be the deflections of springk and the dry friction element,f
andf0 the forces exerted by springsk andk0, andl andl0 the spring free lengths.
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Figure 3: The two used multivalued maximal monotone graphs.



Considering the graph of the multivalued operatorσ (see Fig. 3(a)) and its inverse graphβ (see Fig. 3(b)),
we obtain:

β(x) =























∅ if x ∈] −∞,−1[∪]1,+∞[,

{0} if x ∈] − 1, 1[,

R− if x = −1,

R+ if x = 1.

(3)

The graphsβ andσ are maximal monotone (see for example [15]). The maximal monotone graphsσ andβ
are sub-differentials of proper semi-continuous convex functions|x| andψ[−1,1] defined by

∀x ∈ R, ψ[−1,1](x) =

{

0 if x ∈ [−1, 1],

+∞ if x 6∈ [−1, 1].
(4)

Setting

w = us − l, (5a)

F0 = k0l0, (5b)

η =
α

k
. (5c)

First, several equations similar to those presented in [4] are recalled. Theconstitutive law of the dry friction
element is given by

f =

{

τ with τ ∈ [−α, α], if u̇t = 0,

−αSign(u̇t) , if u̇t 6= 0.
(6)

Then, by using the multivalued operatorσ defined by (??) (see Fig. 3(a)), it is possible to write (6) in the
form of the following differential inclusion:f ∈ −ασ (u̇t). By considering the constitutive laws of the
springs, the dry friction element and the viscous damping element provide thefollowing forces:

f0 = −k0(u− l0), (7a)

f = −k(us − l), (7b)

f ∈ −ασ (u̇t) , (7c)

f1 = −cu̇. (7d)

The system equilibrium leads to

f + f0 + f1 + F = 0, (7e)

and the geometrical relation gives

us + ut = u. (7f)

By consideringw, F0, η, defined by Eq. (5),w0 = w(t0) ∈ [−η, η] andβ defined by (3), it can be proved
that system (7) is equivalent to

ẇ + β

(

w

η

)

∋ u̇, (8a)

w(t0) = w0, (8b)

F = kw + k0u+ cu̇−F0. (8c)



2.2.2 Analysis of hysteresis and parameter identification.

As in [4], it is assumed that functionF , defined by Eq. (8c), is also periodic; under this assumption, it is
proved that the loop(u,F) permits determining mechanical parameters of the Masing model with viscous
damping.

Eq. (8c) can be rewritten as

Fep(t) = kw(t) + k0u(t) −F0, (9a)

Fv(t) = cu̇(t), (9b)

F(t) = Fep(t) + Fv(t). (9c)

The termsFep andFv correspond to the elastoplastic part and to the viscous part of the model respectively.

It is now assumed that
u is τ -periodic; (10a)

there existsτ1, τ2 andτ3 = τ1 + τ , such thatu is strictly increasing on[τ1, τ2]

and strictly decreasing on[τ2, τ3];

(10b)

u ∈ C2([t0, tf ]), (10c)

and setting
umin = min(u), umax = max(u). (11)

If no damping is considered, thenFv is nil and we can prove under assumption (10a), as in [4], that the pair
(u,F) versus time plots a hysteresis loop. This loop represents a clockwise oriented parallelogram ast is
increasing on the interval[t0, tf ]. A direct correspondence exists between the six parallelogram parameters
and the six system parametersumin, umax, k0, k, α andF0, thus permitting their identification.

On the other hand, when damping is considered, the pair(u,F) does not plot a hysteresis loop, in the
classical sense of [3]. Indeed, the pair

(

u,Fep
)

plots a hysteresis loop called the dry skeleton. However,
since the second termFv depends on the deflection history, the pair(u,Fv) does not draw a hysteresis loop.
Moreover, withc 6= 0, the identification of the mechanical parameters is still possible due to geometrical
data of the loop .

The loop studied(u(t),F(t)) for t belonging to[t0, tf ] is symmetric and only the upper half part of this curve
is studied, as in [4]. In this last part[τ1, τ2], u is strictly increasing and there is a bijectionψ+ such that, for
any t ∈ [τ1, τ2], t = ψ+(u(t)); moreover,u(τ1) = umin andu(τ2) = umax. By consideringG+ = u̇oψ+,
we obtain

∀t ∈ [τ1, τ2], u̇(t) = G+(u(t)), (12)

and Eq. (9) can be rewritten as

∀u ∈ [umin, umax], Fv(u) = cG+(u), (13)

and
∀u ∈ [umin, umax], F(u) = Fep(u) + Fv(u), (14)

where
Fep(u) = kw(u) + k0u−F0, (15)

wherew depends only onu via the differential inclusion (8a).



If the deflection amplitude is large enough, then it existsτ4 ∈ [τ1, τ2] so that

w(τ1) = −η, w(τ4) = η. (16)

Henceforth, we consider

tA = τ1, tB = τ4, tC = τ2, (17a)

uA = u(τ1), uB = u(τ4), uC = u(τ2), (17b)

FA = F(uA), FB = F(uB), FC = F(uC). (17c)

On the interval[τ1, τ4], the dry friction element sticks and the model sketched in Fig. 2 is identical to the
association of a spring with stiffnessk + k0 and a damping viscous element. After computation, thanks to
Eq. (16), we obtain

∀u ∈ [uA, uB], F(u) = (k + k0)u−F0 − k(uA + η) + cG+(u). (18a)

On the contrary, on the interval[τ4, τ2], the dry friction element slips and the model sketched on Fig. 2 is
identical to the association of a spring with stiffnessk0 and a damping viscous element. After computation,
we obtain

∀u ∈ [uB, uC ], F(u) = k0u+ kη −F0 + cG+(u). (18b)
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Figure 4: The force-deflection loopΓ for the Masing model with viscous damping (solid line), the dry
skeleton (dot-dashed line), and the cornersA,B, C andD.

By using Eqs. (18), the shape of the loop(u,F) is given in the Fig. 4, where the dry skeleton corresponds to
the pair(u,Fep). CornersA andC represent slip stick state change whereas the cornersB andD represent
stick slip state change.

Foru = uA, u̇ is equal to zero and thenG+(uA) is equal to zero; thus, Eqs. (18) gives

FA = (k + k0)uA −F0 − k(uA + η). (19a)

and

FC = k0uC + kη −F0. (19b)

With Eq. (18a), foru = uA andu = uB, we obtain

uB − uA = 2η. (19c)



By definition,

uA = umin, uC = umax. (19d)

Let p+
B andp−B be the right and left derivatives ofF according tou at pointuB; According to Eq. (18) and

sinceu is of classC1:

p+
B = k0 + cG′

+(uB). (20a)

p−B = k + k0 + cG′

+(uB). (20b)

Thanks to assumption (10c),G′

+ is continuous inuB and we obtain

p−B − p+
B = k. (21)

Moreover,

PointB is the unique point of the upper part of the loop(u,F)

where the derivative is not continuous. (22)

Similarly, on the decreasing part of the loop, the same approach is developed. We consider, ifu is strictly
decreasing,t = ψ−(u(t)) and we obtain

∀u ∈ [uD, uC ], F(u) = (k + k0)u−F0 − k(uC − η) − cG−(u). (23a)

∀u ∈ [uA, uD], F(u) = k0u− kη −F0 − cG−(u). (23b)

As in [4], the following equations remain true and permit parameter identification:

umin = uA, (24a)

umax = uC , (24b)

k = p−B − p+
B, (24c)

α =
k

2
(uB − uA), (24d)

k0 =
FC −FA − 2α

uC − uA
, (24e)

F0 = k0uA − α−FA. (24f)

These equations are obtained by Eqs. (19) and (21).

However, the value ofc must be determined. A similar method to that of [11] is used to estimate the value of
Λ for µ = 1. By equaling the calculated and measured energies dissipated by the viscous damping element,
i.e. the inside area of the loops(u, cu̇), we can write Eq. (9) as:

F − (kw + k0u−F0) = F − Fep = Fv = cu̇ = cG+,

or thanks to Eqs. (18) and (23),

∀u ∈ [uA, uB], F(u) − ((k + k0)u−F0 − k(uA + η)) = cG+(u), (25a)

∀u ∈ [uB, uC ], F(u) − (k0u+ kη −F0) = cG+(u), (25b)

∀u ∈ [uD, uC ], F(u) − ((k + k0)u−F0 − k(uC − η)) = −cG−(u), (25c)

∀u ∈ [uA, uD], F(u) − (k0u− kη −F0) = −cG−(u). (25d)
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Figure 5: Tensioner schemes and pictures: (a-b).

The two functionsG+ andG− are known and the energy dissipatedE has the following expression:

E = c

∫ umax

umin

G+(u) − G−(u)du = c







∫ tC

tA
u increasing

u̇2(t)dt−

∫ tA

tC
u decreasing

u̇2(t)dt






. (26)

If u is defined by
∀t, u(t) = x0 + x1 sin(Ωt+ φ), (27)

Eq. (26) yields
E = πx2

1Ωc. (28)

The value of dampingc is determined for pulsationΩ. In Section 4, the value ofc will be used, but pulsation
Ω0 will be equal toΩ. It is now assumed that the shape of the loop(u,F) does not depend on pulsationΩ0.
In Section 4, valuec0 will be used:

c0 =
Ω

Ω0
c, (29)

wherec is given by (28).

3 Experimental investigation and parameter identification

The tensioner is composed of three parts, see Fig. 5: Part 1 is a solid (Idler pulley) that rotates around axis
∆ = (AB) of part 2; part 2 is the tensioner armABC, that rotates around the fixed axis∆′ of part 3, bolted
to the reference part 4 (i.e an engine for automotive applications). All the parts are considered as rigid bodies.
The pin joint of axis∆′ between parts 2 and 3 includes a torsion spring and friction components thatcause
dry and lubricated contact forces, and a moment between parts 2 and 3. The phenomena involved result in
highly non linear behavior of the joint.

An experimental set up has been designed for identifying the belt tensioner model parameters. The idler
pulley is removed and segmentAB is connected to a rigid bar that subjects a vertical alternative displacement
on pointA. The vertical components of pointA, displacementu(t), and of forceF are considered positive
when oriented toward the ground, since in use, the tensioner is always preloaded. ForceF remains positive.

The displacements are measured using laser optical sensors, while the forces are measured with load cells.
Data acquisition is performed simultaneously with a sample frequencyfsto = 5000 Hz. The measurements
can be filtered to remove measurement noise.

3.1 Experimental set-up for identifying the parameters of th e models

An alternative vertical displacement is imposed on pointA, defined by Eq. (27), with

Ω = 9.4 rad/s, φ = 4.8 rad, x0 = 5.4 10−4 m, x1 = 5.2 10−4 m. (30)
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Figure 6: Measured loop(u,F), small deflection amplitude.

After a transient state (start from initial position), a steady hysteretic loop isobserved as shown on Fig. 6
and the measured forceF versus time is periodic.

In [11], the authors have shown that the Dahl modified model parameters are dependent onx0 and to a lesser
extent onΩ. This dependency is not considered here: The values ofx0 andx1, given by Eq. (30), have been
chosen so that themax(u)−min(u) range, observed on Fig. 6 should be similar to that observed in Section
4. Moreover, it is supposed that the characteristics of the models studied depend on themax(u) − min(u)
range but do not depend on frequency forcingΩ.

3.2 Identification of the model parameters

3.2.1 Modified Dahl model

In order to identify the parameters defininghu andhl, the method of Section 2.1.2 is used: as in [11], we
use the fact thathu andhl represent the upper and lower envelop curves of the hysteretic loopΓ to which
the pair(u(t),F(t)) belongs whent describes[t0, tf ]. For the next development it is considered thatu is
defined by Eqs. (27) and (30).

From the analysis of the measured loop represented in Fig. 6, the envelop curveshu andhl can be considered
as straight lines and therefore the values ofa, b, d ande are determined using the mean squares approximation
method (see Fig. 7):

a = 7.146 104 N/m, b = 9.596 102 N, d = 5.322 104 N/m, e = 3.972 102 N. (31)
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Figure 7: Identification of the envelop curveshu (dot-dashed line) andhl (dashed line), measured loop (solid
line).



In order to use the modified Dahl model, the initial conditions(t0,F0) are determined by choosing an
arbitrary point of the loop:

t0 = 1.988 10−1 s, F0 = 1.009 103 N. (32)

Moreover, using the results of Section 2.1.2 and after several numericaliterations, the optimal values of
parametersΛ andµ are determined:

Λ = 117355, µ = 0, 37. (33)

3.2.2 Masing model with viscous damping

In order to identify the parameters of the Masing model with viscous damping i.e.{umin, umax, k, k0, α,F0, c},
the results of section 2.2.2 are applied to the experimental loop represented on Fig. 6.
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Figure 8: Predicted (Masing model with viscous damping, dashed line) and measured (solid line) loops and
the cornersA,B, C andD.

As shown on Fig. 8, the numerical values ofuA, uB, uC , FA, FC , p−B, andp+
B are determined, and thanks to

Eqs. (24) and (28) we obtain the following:

umin = 2 10−5 m, umax = 1.05 10−3 m, (34a)

k = 4.84 105 N/m, k0 = 2.34 105 N/m, α = 1.63 102 N, F0 = −5.73 102 N. (34b)

c = 1.93 104 Ns/m. (34c)

As in Section 3.2.1, the initial conditions(t0, w0 = w(t0)) are determined choosing an arbitrary point of the
loop:

t0 = 1.55 10−2 s, w(t0) = −3.24 10−4 m. (35)

3.3 Comparison of the results obtained with the modified Dahl and Masing models
and with the experiment

The previous identification permits predicting the force for an imposed deflection; Numerical and analytical
computations were performed for the modified Dahl model and the Masing model.

The force deflection loopu 7→ F is plotted on Fig. 9. By comparing the force deflection loops, it appears
that the stick slip state transition is modeled differently. Indeed, for the Dahl model, the stick slip transition
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Figure 9: Identification part: loadF versus deflectionumeasured (solid line) and predicted with the modified
Dahl model (dashed line) and with the Masing model (dot-dashed line).

is continuous through it is not for the slip stick transition. This is the contrary for the Masing model with
viscous damping. In addition, the higher the viscous damping, the smoother theslip stick transition will be.

Both experimental and numerical results are presented in Figs.?? and 9. Good agreement can be observed
between the two theoretical models and also between each model and the experiment performed to validate
the models used and their identification.

4 Comparison, validation and prediction

In the previous section, the Modified Dahl and Masing models were formulated for the belt tensioner. The
tensioner is now a part of a mechanical system subjected to a variable load excitation. The purpose is to test
the models efficiency considering a multi-degree of freedom system and anexperimental investigation. Each
tensioner model is implemented in the system motion equations that are solved numerically The predicted
and measured results are compared.

4.1 Equations of motion for the system

4.1.1 System description

The dynamic system considered is composed of the previously studied tensioner, a poly-V belt and a mass
(see Fig. 10). The tensioner base is fixed on a rigid frame. Its idler pulley of massm2 has a belt wrapped
around it. The two adjacent belt spans are joined at their other end and connected to a massm1. The massm1

is excited by the imposed forcef generated by an electro-dynamic shaker (see Figs. 10). Two Displacements
u1 andu2 (see Fig. ??) of the two masses are measured with laser-optical displacement sensors.The
transmitted forcef is measured with a piezo-electric load sensor, and the belt tension is measured with an
S-shape load sensor. In this two degrees of freedom system, massm1 is used both for the tensioner preload
and for the system dynamics.

4.1.2 System equations

Let u1 andu2 be the vertical displacements of masses1 and2, along thex axis, both positive oriented
downward. As in section 3,F is the force exerted by the tensioner, it is positive oriented upward. Forcef is
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Figure 10: Experimental set-up: Belt-tensioner-mass system.

positive oriented downward. LetT/2 be the tension in each belt span. Due to the ratio between the radius of
the pulley and the belt span lengths, it is assumed that tensionT is oriented vertically.

The gravity constant is noted asg and equations governing the complete system are given by:

• The belt behavior law, by considering the belt as a spring-damper of stiffnessK and equivalent viscous
dampingC:

T (t) = K(u1(t) − u2(t)) + C (u̇1(t) − u̇2(t)) + T0, (36a)

whereT0 is related to the initial belt tension.

• The dynamic equilibrium of the tensioner pulley projected along the vertical axis x, by neglecting
effects on the horizontal axis:

m2ü2(t) = T (t) −F(t) +m2g. (36b)

• The dynamic equilibrium of the lower mass projected along the vertical axisx, by neglecting effects
on the horizontal axis:

m1ü1(t) = −T (t) + f(t) +m1g. (36c)

• Initial data att0 for u1 andu2:

u1(t0) = u1,0, u̇1(t0) = u̇1,0, u2(t0) = u2,0, u̇2(t0) = u̇2,0. (36d)

• The relation between forceF and displacementu2 is written formally as:

F = Φ(u2), (36e)

whereΦ is an operator.

Belt stiffnessK and dampingC are obtained by using an experimental model analysis non presented here.
The parameter values of the system are fixed:

m1 = 73.84 kg, m2 = 0.15 kg, K = 560000 N/m, C = 160 Ns/m, g = 9.81 m/s2. (37)

The initial conditions are chosen arbitrarily

t0 = 1, 6 10−3, u1,0 = 0, u̇1,0 = 0, u2,0 = 0, u̇2,0 = 0, (38)
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Figure 11: Measured curvesT (a),u1 (b, solid line) andu2 (b, dot-dashed line) versus time (on time interval
[3, 3.3]).

4.1.3 Application of the modified Dahl model

Applying the modified Dahl model for the tensioner implemented in the system, consists in replacingu by
u2 in Eqs. (1):

Ḟ(t) =

{

Λu̇2(t)sign
(

hu(u2(t)) −F(t)
) ∣

∣hu(u2(t)) −F(t)
∣

∣

µ
, if u̇2(t) ≥ 0,

−Λu̇2(t)sign
(

hl(u2(t)) −F(t)
) ∣

∣hl(u2(t)) −F(t)
∣

∣

µ
, if u̇2(t) ≤ 0,

(39)

F(t0) = F0. (40)

Finally, it is necessary to solve the system formed by Eqs. (36a), (36b),(36c), (39) and initial conditions
(36d) and (40). It is admitted thatu1, u2, T andF exist and are unique.

4.1.4 Application of the Masing model with viscous damping

For the Masing model with viscous damping, replacingu by u2 transforms Eq. (8) in:

ẇ + β

(

w

η

)

∋ u̇2, on [t0, tf ] (41a)

w(t0) = w0, (41b)

F = kw + k0u2 + cu̇2 −F0, on [t0, tf ]. (41c)

Finally, we obtain the system of Eqs. (36a), (36b), (36c), (41a), (41c), and initial conditions (36d) and (41b).
These equations are written as a differential inclusion of the first order studied in [4, 15].

4.2 Predicted and measured responses

In this section, the predicted and measured responses of the multi degreesof freedom system are presented
and compared (see Figs. 11). No transient phase is observed for the measured responses.

The value of forceF is reached using Eq.(36b) which gives

T (t) −F(t) = m2(ü2(t) − g).



and sincem2 defined by (37) is negligible compared tom1, it leads to:

T (t) ≈ F(t). (42)

The two theoretical models give satisfactory results. The short time deviation∆t is due to the unknown
initial conditions. For the same reason, there are also shifts∆u1 and∆u2 between the experimental and
computed curvesu1 andu2; ∆u1 and∆u2 are determined so that the mean values ofu1 andu2 are nil.
Finally, displacement shifts∆u1, ∆u2 and∆t are introduced in the model and functionF is plotted versus
the deflectionu2 (see Fig. 12).
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Figure 12: Validation part: forceF versus deflectionu2 predicted with the modified Dahl model (dashed
line) and with the Masing model (dot-dashed line), and measured (solid line).

4.3 Global behavior

The comparisons of the results on Fig. 12 shows that there is a small difference between the measured and
predicted loops. This is probably due to the fact that the mechanical parameters of the two models studied
depend on themax(u2) − min(u1) displacement range. According to Section 3.1, the parameters of the
modified Dahl and Masing models with viscous damping depend onu2 and the analysis can be improved.
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Figure 13: Prediction part: Amplitude|max(T ) − min(T )| versus pulsationΩ for several values off1 for
the experiment (a), the modified Dahl model (b) and the Masing model with viscous damping (c) forf1

defined by (43c) (solid curves) and forf1 defined by (44) (dot-dashed curves), withf1 increasing in the
direction of the arrow.

Finally some values of|max(T ) − min(T )| versus forcing pulsationΩ are measured for several values off1



(and withf0 andφ fixed). For each value ofΩ, c0 is defined by (29). We choose

t0 = 17 s, tf = 20 s, h = 10−5 s, (43a)

f0 = 0, φ = 0, (43b)

f1 ∈ [13, 27, 41, 54, 67, 79, 90, 100, 110, 120], (43c)

Ω ∈ [10, 125] (with 116 values arranged linearly). (43d)

Measured and predicted responses are plotted in Fig. 13. The computed frequency response represented in
this figure is obtained after a series of calculations in the time domain: each pointof a frequency response
curve corresponds to the tension fluctuation amplitude calculated when steady state is reached for a given
frequency and excitation amplitude. The dot-dashed curves correspond to the predicted results obtained for
higher excitation force amplitudes not obtained experimentally:

f1 ∈ [140, 160, 200, 230, 260, 300]. (44)

It can be observed experimentally that even if the excitation force amplitude increases, the resulting belt
tension variation is bounded within a frequency range. This phenomenon ispredicted better if the tensioner
is modeled with the modified Dahl model rather than with the Masing model with viscous damping.

The system behavior observed in Figs. 13 is similar to that described in [16,17] For small forcing amplitudes,
the tensioner is stuck. For high forcing amplitudes, it mainly slips.

5 Conclusion

This paper has described in detail two different models usually used to reproduce hysteretic behavior.

It has been shown that the stick-slip behavior exhibited of a belt tensionercan be modeled either by the
Masing model or the modified Dahl model.

Model parameters have been identified experimentally with an imposed deflection and a low forcing fre-
quency. The numerical and experimental investigations carried out on a belt-tensioner-mass system in a
larger forcing frequency range have shown that the use of these two models is satisfactory in the time history
and frequency domains.

It should be noted that particular attention must be given to the use of the numerical schemes in order to
make the predicted responses reliable.
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