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Abstract — In this present work, we propose a new method to 

remove the parasitics contribution to the VCSEL chip response, 

in order to obtain the intrinsic transmission behavior. It has 

been observed that the S11 reflection coefficient of the chip is 

only due to the electrical access to the chip composed by the 

transmission line and cavity contacts. This allows us to 

decompose the chip into two cascaded subsystems representing 

the electrical access and the optical cavity respectively. An 

equivalent electrical circuit is developed for the electrical access 

behavior and, combined with the transfer matrix formalism, it 

becomes possible to remove the parasitics contribution from the 

measured S21 response. In this way, the intrinsic 3-dB 

bandwidth of the VCSEL can be determined. 

I. INTRODUCTION 

Long-wavelength Vertical-Cavity Surface-Emitting Lasers 
(VCSELs) operating in the 1.3µm – 1.6µm wavelength band 
are becoming available with high single-mode output power, 
high modulation frequency and large temperature range 
operation [1]. These devices appear to be low cost solutions 
for local-area and metropolitan optical fiber networks. Their 
characterization is then an important tool which can be used to 
optimize the fabrication process in order to obtain the best 
performance. Regarding the dynamic properties of VCSELs, 
we can notice that the frequency modulation response is not a 
classical second order system defined by the rate equations, 
even if coplanar access structures are used. The frequency 
modulation response is often limited by parasitics attributed to 
package, bonding and transmission line used to carry the 
electrical signal to the laser cavity. Several techniques have 
been investigated, to eliminate the parasitics contribution 
which limits the 3-dB bandwidth. Morton et al. [2] have 
presented a method using the frequency response subtraction, 
Majewski et al [3] have suggested the measurement of the 
relative intensity noise (RIN) and Söderberg et al. [4] have 
used a three-pole transfer function to model the device 
behavior under parasitics influence. 

We propose a new method to remove parasitics to the 
measured dynamic response of any VCSELs chip. Our method 

[5] defines the VCSEL chip as a cascaded two-port subsystem 
that allows the separation of the VCSEL optical cavity 
response measurement from the total chip response. The 
electrical access is modeled using an electrical equivalent 
circuit that gives the parasitics response in terms of S-
parameters. This contribution is removed from the measured 
S21 of the chip by applying the transfer matrix formalism and 
the intrinsic modulation 3-dB bandwidth can be determined. 

 

II. EXPERIMENTAL SETUP 

A. VCSELs structure 

The devices used in our experiments are double intra-
cavity contact VCSELs at 1.3µm [6] and 1.55µm [7] 
wavelengths. Their fabrication consists of an InGaAlAs 
quantum wells active region, a tunnel junction and AlGaAs-
GaAs DBRs bonded to the active region by wafer-fusion. This 
fabrication approach is very useful because current passage is 
not provided through Bragg mirrors which allows to avoid 
VCSEL over heating problems. The threshold current for both 
wavelengths is around 2.2mA at room temperature and single-
mode operation is achieved. 

B. Experiments 

Measurements of the S11 and S21 responses have been 

performed using an HP8510-C vector network analyzer 

(VNA) with an integrated optical rack. This rack allows the 

calibration of the integrated optical detector and isolates its 

contribution from the measurement process. The bias current 

and the high frequency signal were combined in the VNA 

bias-T and sent to the devices through RF probes. All 

parasitics not associated to the device under test are removed 

for stable and accurate measurements. The optical beam is 

then collected by a ball-lensed multimode fiber with AR-

coating, tilted to avoid optical feedback. Finally, no 

temperature control was applied so all the measurements 

were carried-out at room temperature (≈23°C). The measured 
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S21 response of VCSEL chips emitting at 1.3µm and 1.55µm 

is presented in Fig. 1. The response slope is -18dB/octave 

which corresponds to a third-order system. Moreover, it can 

be observed that the response of the 1.55µm chip is strongly 

influenced by parasitics associated to the electrical access 

which diminishes the 3-dB bandwidth even before the 

resonance frequency. It is therefore difficult to obtain a good 

characterization of the intrinsic VCSEL behavior. 

 

 
Figure 1: S21 responses of 1.3µm (blue curve) and 1.55µm (red curve) 
VCSEL chips. 

 

III. THE DE-EMBEDDING PROCESS 

The electrical access of the chip can meanwhile be 
separated from the measurements following the de-embedding 
method. The concept of this method is based on the electrical 
modeling of the VCSEL chip. Even if the electrical model of 
the active region is known [8], that of the entire chip is more 
complex to determine because of parasitics related to the 
electrical access. The equivalent electrical circuit defining the 
electrical access of the VCSEL chip is presented in Fig. 2. 

 

 

Figure 2: Electrical Equivalent Circuit of the electrical access for both 1.3µm 
and 1.55µm chips. 
 

Impedances ZA and ZB correspond to the transmission line 

and intra-cavity contacts whereas RS represents the series 

resistance between intra-cavity contacts and the active region 

[9]. The equivalent circuit parameters of the electrical access 

(EA) are gathered into the Z−Matrix as follows: 
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where Z0 is the characteristic impedance of the VNA. 
Parameters of the electrical circuit are fitted to S11 
measurements using non-linear regression. Comparison 
between measured and simulated S11 are presented in Fig. 3 
for both 1.3µm and 1.55µm wavelengths at a bias current of 
9mA.  

 

 

Figure 3: S11 comparison between measured (dots) and simulated (line) 
responses for both wavelengths. 

 

Values of the circuit elements for simulations presented in 

Fig. 3 are summarized in table 1. 

 
TABLE 1 

Circuit element 1.3µm VCSEL 1.55µm VCSEL 

Le (pH) 49.6 35.5 

Re (Ω) 14.1 11.6 

Ce (pF) 0.88 2.5 

Rp (Ω) 61.5 95 

Cp (pF) 0.64 0.78 

Rs (Ω) 57.2 58 

 

Results presented in Fig. 3 show that the chip S11 and the 

parasitics S11 are essentially the same which means that the 

incoming signal is not influenced by the VCSEL optical 

cavity (VOC). It then becomes possible to obtain all the S-

parameters for the electrical access subsystem. The intrinsic 

response of the VCSEL could be extracted from the chip 

response using transfer function matrices, or T-Matrices, 

since S-Matrices are not commutative. 
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The general formula for the transformation of an S-Matrix to 

a T-Matrix is given by [10]: 
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The transfer matrix of the optical cavity is defined as follows: 

 

totEAVOC TTT .1−=      (4) 

 

where TEA, TVOC and Ttot are T-Matrices of the electrical 

access, the VCSEL optical cavity and the complete chip 

respectively. Ttot is calculated with the entire S-Matrix of the 

system Stot. Out of the four matrix elements of Stot, only the 

S11 and S21 are known as these two parameters were measured 

using the VNA. 

The two other parameters S12 and S22 obey the following 

rules: 

• The VCSEL is an active unilateral device so the 

S12=0 (optical feedback is avoided using AR coated 

fibers); 

• The VCSEL is a transducer that converts electrical 

current into optical power hence it is not 

bidirectional and does not respond to an electrical 

input at the optical output ports. The electrical S22 

parameter, therefore, is taken equal to 1; 

 

 
 

Figure 4: Comparison of S21 responses with (Extracted) and without 

(Measured) the de-embedding method for the 1.3µm VCSEL chip. 

 

 

 

 

The resulting S-parameters matrix of the total chip is defined 

as: 
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Using (1) to (5), the electrical parasitics are removed from 

measurements and results are presented in Fig. 4 for the 

1.3µm chip and in Fig. 5 for the 1.55µm chip. 

 

 
Figure 5: Comparison of S21 responses with (Extracted) and without 
(Measured) the de-embedding method for the 1.55µm VCSEL chip. 

 

As is evident from Fig. 4 and 5, the measured S21 

responses of the chips have a -60 dB/decade slope. This slope 

represents the response of the totality of the VCSEL chip 

which includes the electrical access and the VCSEL optical 

cavity, showing a system having an order greater than two. 

Furthermore, the order of the system can be observed by the 

dip in the S21 curve below the resonance frequency which 

demonstrates that the transmission line and intracavity 

contacts influence the overall VCSEL response. 

 

With the method investigated, chip parasitics are 

removed from measurements and the intrinsic response of the 

VCSEL cavity is found following a classical second-order 

system with a -40 dB/decade slope. The resulting curve 

appears as if measurements were carried out directly at the 

cavity terminals. 

 
This method also demonstrates that the S11 response of 

the VCSEL chip and the electrical access are essentially the 
same, implying that the incoming electrical signal is not 
influenced by the VCSEL optical cavity parameters. 
Moreover, this method has been applied to the entire current 
range and shows that the resistance RS is the only bias current 
dependent element. This resistance decreases as the bias 
current increases because the current flow into the active 
region through the tunnel junction aperture becomes more 
intense. 
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The extrinsic and intrinsic 3-dB modulation bandwidths 

are also presented in Fig. 6. Results show that the extrinsic 

bandwidth is lower than the intrinsic bandwidth and tends to 

saturate toward a limit defined by the electrical access of the 

chip. Finally, this method can be applied to any device if the 

electrical access could be properly modeled. 
 

 

Figure 6: 3-dB bandwidth evolution as a function of bias current for the 
overall chips (dotted lines) and with the de-embedding method (solid lines) for 
both 1.3µm and 1.55µm wavelength. 

 

IV. CONCLUSION 

We have presented a new method to separate the VCSEL 

optical cavity S21 response from the VCSEL chip response by 

removing the electrical access contribution. It has been shown 

that this electrical acces influences the transmission response 

and is responsible for the limitation of the 3-dB bandwidth. 

Our approach has been applied to two different VCSELs, one 

emitting at 1.3µm and the other at 1.55µm with different 

electrical access geometries. With an electrical equivalent 

model of the parasitics, we have shown that the chip S11 

represents in fact the electrical access S11. Therefore the chip 

could be considered as a cascaded two-port system. Since S-

matrices are not commutative, T-matrices are used to extract 

the intrinsic VCSEL optical cavity response which represents 

a classical second-order system, characteristic of laser 

cavities defined by the rate equations. This method allows 

then to determine the intrinsic 3-dB bandwidth of the VCSEL 

chips investigated and finally gives a useful tool to model the 

input stage of coplanar VCSELs. 
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