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ABSTRACT

Performing Direct Numerical Simulation (DNS) of turbulence on large-scale sys-
tems (offering more than 104 cores) has become a challenge in high performance
computing. The computer power increase allows now to solve flow problems on
large grids (with close to 109 nodes). Moreover these large scale simulations can
be performed on non-homogeneous turbulent flows. A reasonable amount of time is
needed to converge statistics if the large grid size is combined with a large number
of cores. To this end we developed a Navier-Stokes solver, dedicated to situations
where only one direction is heterogeneous, and particularly suitable for massive par-
allel architecture. Based on an hybrid approach spectral/finite-difference, we use a
volumetric decomposition of the domain to extend the FFTs computation to a large
number of cores. Scalability tests using up to 32K cores as well as preliminary results
of a full simulation are presented.

INTRODUCTION

Successful attempts of DNS on large-scale systems have been made recently us-
ing fully spectral codes with a 2D domain decomposition, referred to as the volumet-
ric decomposition (See for example [7, 13]). Compared to the traditional slabwise
decomposition, this method, initiated by Eleftheriou et al. [8], increases the number
of usable cores for a problem of size N3 from N to N2 . This highly scalable way
to perform three dimensional FFTs has been improved and implemented recently
in the open source library P3dfft, by Pekurovsky [12] at the San Diego Supercom-
puter Center. An other advantage of the 2D decomposition is the degree of freedom
added in the grid management. It gives the opportunity to use unequal number of
grid points (Nx,Ny,Nz) without affecting the overall scalability [6]. Thus the grid can
be chosen in better agreement with the physics of the flow. We propose to take ad-
vantage of the volumetric decomposition in situations where one direction is treated
with finite-differences schemes. Such schemes give the possibility (i) to solve non-
periodic boundary directions such as those encountered in jet or channel flows for
instance (ii) to use nonuniform grids in order to study non-homogeneous turbulence,
while keeping the spectral accuracy in two directions.
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Figure 1. Numerical set up.

With the aim of investigating the interaction between turbulence and a solid wall,we
have designed a configuration, where the turbulence self diffuses from a plane source
towards a rigid wall as presented Figure 1. The resulting turbulent flow field is homo-
geneous with respect to x and y, and invariant under rotation about the z axis, which
justifies the implementation of such a Navier-Stokes solver. Therefore, the x and y di-
rections are treated using the same number of Fourier nodes Nxy, while the z direction
use a different number of grid points Nz, and a non-uniform distribution.

The coupling between the possible number of grid points in each directions and
the processor distribution is studied and tested on the Blue Gene/P architecture. Scal-
ability of the algorithm is presented using up to 32768 (32K) cores. Finally, pre-
liminary results of a complete simulation using almost 109 grid points on 8K cores
is presented. From the author’s knowledge, it is one of the largest DNS simulation
using (i) only two homogeneous directions (ii) a volumetric decomposition in a hy-
brid spectral/finite difference solver. In this situation where the turbulence is not fully
homogeneous, 3 millions CPU hours are required to obtain converged statistics.

FLOW CONFIGURATION UNDER STUDY

In the configuration presented in Figure 1 the turbulence diffuses from a plane
source towards a rigid wall. The turbulence production does not rely on the presence
of mean shear, but it is instead synthesized inside a bounded layer using a random
force. The effects induced by the generation of turbulence by mean shear are therefore
not present. The viscous as well as the kinematic blocking effects can be fully isolated
in the near wall region as first demonstrated by Campagne et al. [3].

The forcing field is implemented as a source term in the Navier-Stokes equations.
It is non-zero only in the central region of the domain (dark-blue on Figure 1), where
it appears in the momentum equation as:
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It has been designed in the physical space in order to show several properties which
are being (i) random in time (ii) divergence-free (iii) localized in space. This kind of
forcing demonstrates good abilities to synthesize a plane source of turbulence [2].

The computations are started with a flow at rest. During a transient, the amount of
turbulent energy contained in the whole domain grows under the action of the forcing
field. A statistically steady state is reached when the power induced by the random
force field is statistically balanced by the viscous dissipation. This numerical setup
can be seen as an analogue of the oscillating-grid experiments (see for example [5]).

PARALLEL PERFORMANCES OF THE NAVIER-STOKES SOLVER

The Navier-Stokes equations are solved in the hybrid Fourier/physical space. The
present solver is pseudo-spectral, based on the use of Fourier modes in the two pe-
riodic directions, finite-differences with a sixth-order compact scheme [11] and a
staggered arrangement in the wall-normal direction. The parallel implementation is
performed in the same way as in a fully spectral solver. In the latter, the parallel ef-
ficiency is strongly conditioned by the three dimensional FFT implementation. This
algorithm requires two or three different data distributions with the following charac-
teristics: the arrays are distributed over one or two directions in such a way that 3D
data with the same array index in the third direction is kept (i) local on a CPU core and
(ii) contiguous in memory. Thus, the FFT computation in each direction and/or the
finite-difference resolution is performed locally on a single core and does not require
any parallel communications. Therefore, the implementation efforts must concentrate
on the data transposition from one domain to the other, in order to minimize the cost
of the communications involved.
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Figure 2. Slab decomposition versus volumetric decomposition.

The slabwise decomposition involves a single transposition and is the most effi-
cient implementation in many cases. With this method however, a problem of size
N3 can be distributed over N cores only, which is a strong limitation on nowadays
supercomputers.

Recently, Pekurovsky developed the open-source library p3dfft to perform 3D
FFT using a volumetric decomposition, meaning that the data are distributed over
two instead of one single direction, thus involving n = p×q cores. This library, writ-
ten in fortran, calls optimized FFT libraries such as ESSL or FFTW . Its scalability
has been demonstrated on a Blue Gene/L architecture [6]. We use a slightly modified
version in our C code to perform 2D FFTs only and solve finite-difference equations



1 node = 4 SMP cores

Figure 3. Blue Gene supercomputer and its torus network architecture.

with the optimized Blas/Lapack libraries at the last stage. If p = q = N the number
of usable cores increases from N to N2 for a problem of size N3. In Figure 4, the
data distribution is performed using 4 cores (p = q = 2) marked with different colors.
We observe that yellow/green and blue/red blocks constitute two independent sets
of cores where the parallel communications remain internal during the first transpo-
sition. The n MPI processes define a 2D virtual p× q grid where communications
are performed independently inside each line/column during the first/second trans-
position. The Blue Gene/P physical topology is a 3 dimensional torus (X ,Y,Z) of
quad-cores processors, where each processor can directly communicate with its near-
est neighbor in each of the three directions, as presented in Figure 3 (left). In the fully
distributed mode (VN), the 4 SMP cores generate a fourth dimension in the topology
(X ,Y,Z,T ), in which the communications times are the fastest. To achieve the best
performance during the computation of 2D FFTs, two classes of parameters need to
be set to their optimal values:
• the couple (p,q);
• the mapping of a 2D virtual process topology on the physical cores.
Using the VN mode, selecting the predefined mapping T XY Z and maximizing

the slowest varying index p in the processor grid gives the best results. In this op-
timal configuration, processors are numbered using the T direction in the 4D torus
as the fastest varying index. Different 2D mappings were tested on a static config-
uration, with a negligibly smaller restitution time obtained in best cases. In fact,
building such a 2D optimized mapping is worthwhile in situations where the parallel
communications are mostly of neighbor-to-neighbor type. However, the semi-global
communications involved by the transpositions induce many communication types
and reach their maximum efficiency in the predefined mapping available on the Blue
Gene/P.

LOAD BALANCING

Classically, the data packing chosen in p3dfft transform an array with Nx×Ny×Nz
points in the physical space to a set of Nx+2/2×Ny×Nz Fourier modes in the spec-
tral space (assuming that Nx is even). This data packing introduces a slight load
unbalance. Indeed, an optimal distribution of the Nx points over p processors in the
physical space will usually result in an unbalanced and non optimal distribution of
the Nx+2/2 Fourier modes over q processors in the spectral space. Although this is not



Contiguity in memory 1st direction 2nd direction
1st stage (Nz,Ny,Nx/2) Nz = k1q Ny = k2 p
2nd stage (Nz,Nx/2,Ny) Nz = k1q Nx/2 = k3 p
3rd stage (Ny,Nx/2,Nz) Ny = k4q Nx/2 = k3 p

TABLE I. VOLUMETRIC DECOMPOSITION: COUPLING BETWEEN THE NUMBER OF CORES
AND THE NUMBER OF GRID-POINTS.
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Figure 4. Possible combination of (Nxy,Nz) when using the volumetric decomposition: left-
For n = 1K cores. right - For n = 16K cores. Red circles indicate the slabwise decomposition
(p = 1). Blue lines indicate isovalues of the total number of grid-points.

crucial in terms of data exchange between processors, it affects the loop sizes when
working locally on a processor at the finite-difference stage. The related extra cost
can reach 20% in some cases. To avoid unnecessary operations, we take advantage
of the dealiasing method needed to compute the non-linear terms of the momentum
equation in the spectral space. The phase-shift method used to this end should be
coupled with a spherical truncature [4] which removes in any cases the aforemen-
tioned modes k(Nx+2/2,y,z). Consequently, these modes can be safely ignored at the
finite-difference stage while preserving the desired accuracy.

GRID DEFINITION

Using the volumetric decomposition, we gain a degree of freedom in the grid gen-
eration. It gives the possibility to use different grid-points numbers in different direc-
tions, contrasting with the N3 size imposed by the slabwise decomposition. The grid
definition has to fulfill constraints of different kinds in homogeneous/inhomogeneous
directions. In the homogeneous directions, it is mandatory to satisfy the spatial decor-
relation and resolve the smallest length scale (uniform), whereas in the second case
the main issue is to map the grid according to a varying smallest length scale. The
new degree of freedom brought by relaxing the constraint Nz = Nx = Ny is particularly
useful when the calculation domain should minimize the CPU cost generated by the
transient, or when the different directions of the problem are decoupled as in jet flows
for instance. In our configuration, the total number of grid points is set as a function
of Nxy and Nz, corresponding to the dimension x or y, and z. During the different steps
of the volumetric decomposition (i.e. between the two transpositions), a perfect load
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Figure 5. Execution time in several parts of the code.

balancing induces a coupling between the number of grid points and the number of
cores. We summarize the resulting constraints in table I using a “C” convention to
express the contiguity in memory: (m1,m2,m3) means that m3 is the fastest varying
index, whereas m1 and m2 refer to the number of grid-points in the directions split-
ted using q and p cores respectively. Following these constraints, it follows that an
optimal load balancing requires that

q ∈ D(Nz,Ny) p ∈ D(Ny,Nx/2), (2)

where D(a,b) is the set of common factors of a and b. On Figure 4, we show all
the (Nxy, Nz) couples satisfying the constraints for both decompositions if the number
of cores is set to n = 1K or n = 16K. Although this degree of freedom decreases
with the number of cores, it considerably extends the meshing possibilities compared
to the classic slabwise decomposition, which offers only a few number of possible
arrangement (red dots on Figure 4).

PARALLEL PERFORMANCES

In order to evaluate the global scalability of the application, several computations
based on different mesh sizes have been ran on a Blue Gene/P computer. The number
of grid-points in the different cases, summarized in table II allows to establish two
types of diagnostics:

1. Test case A is small enough and requires a modest amount of memory which is
compatible with a run using a number of cores confined between 256 and 16K.
It offers the opportunity to evaluate the speed-up using a large range of cores
number.

2. With the B test cases, we evaluate the performances of the code with respect
to the couple (Nxy, Nz). Theses computations involve a total number of grid-
points (109) which is of the same order of magnitude in all cases, and need at
least 2K cores to fit in memory.

In order to evaluate precisely the parallel performances of the application, it is manda-
tory to measure separately the execution times induced by the different parts of the
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Figure 6. Parallel scaling (1K=1024cores): left-Overall scaling, right-2D FFT scaling

solver, in such a way to highlight potential bottlenecks in the algorithm. The timing
function gettimeoftheday, with its low latency compared to the MPI_Barrier func-
tion, is particularly adapted for such a measure. On Figure 5, we report the time
spent in different isolated parts of the code. These results, extracted from the case
B3, clearly identify two costly parts of the code: the FFT computation and the reso-
lution of linear systems brought on by the finite-difference approach used in the third
direction. Thanks to the transpositions, the linear systems are solved locally on each
core. Therefore, the most expensive step does not involve any parallel communica-
tions. Conversely, a complete FFT computation which include several transpositions,
requires data exchange between processors and should limit the scalability of the ap-
plication. We therefore present two sets of results on Figure 6, one being related
to the overall computation while the other being restricted to the FFT computations
and data transpositions. As expected, the second part does not scale perfectly (right),
while demonstrating very good performances with up to 16K cores. As a conse-
quence, the whole application scales almost perfectly (left), as most of the work is
done locally on each core. Furthermore, modifying the values of the couple (Nxy,
Nz) does not appear to significantly affect the performance, as it does not change the
slope of the curves between the B cases. The hybrid spectral/finite-difference for-
mulation coupled with a volumetric decomposition is therefore perfectly adapted to a
massively parallel architecture.

Test case A B1 B2 B3
Nxy 512 1024 896 1024
Nz 512 1024 1280 1280

TABLE II. TEST CASES PRESENTED TO ESTIMATE THE SOLVER OVERALL SCALABILITY.

APPLICATION USING A 896×896×1024 GRID.

The above implementation has allowed to run a direct numerical simulation of
the flow on a 896×896×1024 grid, and to perform a statistical analysis of the con-
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cut, normal to the wall. ηm express the value of the Kolmogorov length scale in the midplane
(dashed line).

figuration presented in Figure 1. We present here the partial results to illustrate the
developed algorithm. More in depth analysis of the configuration can be found in [3]
or [1].

An overview of the configuration is presented in Figure 7. The turbulence agita-
tion is qualitatively described using the Q criterion [9] applied on an instantaneous
flow field. Negative values should be linked to coherent rotating structures. In this
plane normal to the walls we identify (i) the central region where the turbulence is
produced (ii) the pure diffusion region on both sides. In the second region, the inten-
sity of the agitation decreases, while the characteristic length scale of the structures
increases. According to the Kolmogorov’s similarity hypothesis, the turbulence en-
ergy density spectrum should exhibit a −5/3 slope, which can be observed if the
length scale separation between the large (energy containing) and the small (dissipa-
tive) length scales is sufficiently high. The latter condition is obtained if the turbulent
Reynolds number, Ret = K2/νε1 reaches a sufficiently large value, which is directly
linked to the turbulent agitation the grid size can support. Only very large direct
simulations allow to observe this “inertial subrange”. The evaluation of the Kol-
mogorov’s constant is even more difficult [10]. In our study, only two directions are
homogeneous, which leads to introduce a 2D energy-density spectrum instead of the
traditional 3D spectrum used in the context of fully homogeneous turbulence. The
2D FFTs performed in each homogeneous plane (xy) gives access to a 2D spectrum
E2D which satisfies:

K and ε being respectively the averaged turbulent kinetic energy and the averaged dissipation rate
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∫∫
∞

0
E2D(κ,z)dκ = K(z), (3)

where κ refers to the modulus of the two-dimensional wavenumber (k1,k2). The
shape of the Kolmogorov spectrum being established from dimensional considera-
tions only, the −5/3 slope still holds with E2D. In Figure 8, we restrict our obser-
vations to the midplane, where the turbulent agitation reaches a maximum. We also
consider three different simulations characterized by different values of their turbu-
lent Reynolds numbers in the midplane. The higher value corresponds to the grid size
discussed above, while the other computations require much less grid points. The
inertial subrange is remarkably obtained at the higher Reynolds number value, even
if the configuration is anisotropic at the largest scales. Thus, the forced turbulence
exhibit realistic physical properties aside the bump at the largest scales which reflects
the action of the forcing term at these scales. Besides, we demonstrate a perfectly
similar behavior at the smallest scales with a Reynolds number value increased by a
factor of ten.

CONCLUSION

The volumetric decomposition is shown to be particularly adapted to a mixed
hybrid/finite-difference solver, as demonstrated by the large-scale scalability test pre-
sented here. Furthermore it provides an additional degree of freedom in the grid
generation, which is particularly adapted when studying non-homogeneous turbulent
flow fields. The proposed implementation has been used to perform a large-scale
direct simulation which involve close to 109 grid points and 3 millions CPU Hours.
The turbulent Reynolds number in this simulation is of the order of 104, allowing the
development of a convincing inertial subrange in the energy-density spectrum, which
makes the physical analysis more meaningful with respect to practical applications.
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