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The vestibular section of the inner ear is parthynprised of three semicircular canals that
detect head angular acceleration. This systemlled fiwith a Newtonian fluid and its
functioning pertains on fluid-structure interacsormhe aim of the present paper is first to
present a two-dimensional model of a single seputar canal using fluid-structural finite-
elements simulations. Second, this two-dimensiormalel is extended to 3-D space and to the
case where the entire set of canals is consid@dchieve this goal, we first develop a two
dimensional finite-elements model of a single catiding a strong coupling between the
fluid flow and the structural displacements anadas Arbitrary Lagrangian Eulerian (ALE)
approach for the moving mesh, we analyze displanesnaf the cupulae and fluid velocity
during head rotation. Second, this 2-D model imrdéd to a three-dimensional case by
considering the entire set of canals. Preliminasgults showing cupula deformation as well as
fluid flow highlight a good correlation with the2-model.
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I ntroduction

Daily human activity includes complex orientatioppstural control, and movement
coordination. All these tasks depend upon his pi@e of motion. The non-auditory section
of the human inner ear, the vestibular systemetognized as the prime motion sensing
center. It represents an inertial measuring dewicieh allows us to sense, in the absence of
external sensory cues (vision, etc) self motiorhweéspect to the six degree of freedom in
space. The vestibular system, which constitutesrg small fluid-filled system the size of a
pea, is comprised of two primary sense organsetiBenicircular canals which detect head
angular acceleration and two otolith organs whitpond to linear accelerations of the head
and to gravity. In particular, when our head exgreare a movement of rotation, the fluid in
the canal lags behind due to its inertia and preslucforce across a thick diaphragm called
the cupula. Therefore this diaphragm, which conabyebccludes the canal, experiences a
deflection in the opposite direction of head moveine

The cupula covers a transverse ridge of sensophadpim called the crista that contains
thousand of sensory hair cells. When the cupuldefiected, hair cell sensory cilia bend as
well. This initiates a complex transduction procasshair cells and vestibular afferent
neurons, and a nervous signal is finally transmittethe brain so as to provide a sensation of
motion.

In the present paper, we are concerned with theetimgdof the entire set of semicircular
canals. Since the 30’s, numerous models of thecsmmiar canal macromechanics have been
suggested using different approaches. W. Steinha{(i€#83) formulated a classical torsion
pendulum model for the dynamic behavior of a sirff&C. This model, which has been the
benchmark for subsequent works, consists of aesidggree of freedom overdamped spring-
mass-damper system subject to mass-proportiondlarfercing. Several notable extensions
have then been made to enhance this original mmdedlating the geometry and structure of
the SCC to mass, stiffness, and damping paramefgpearing in the model (e.g. Van
Egmond et al., 1949; Groen et al., 1952; Van BksKiB76; Oman et al. 1987; Rabbitt et al.,
2004). Other models were based on the resolutigheofluid flow equation within the canal
(Van Buskirk, 1977; Van Buskirk, 1988; Steer, 19&man et al., 1987; Damiano et al.,
1996; Rabbitt et al., 1999). The three-dimensionatiel of Oman et al. (1987), in which the
non-uniform geometry of a single canal was considemprobably constitutes the most
compatible biophysical single-degree of freedom ehad the SCC. Among all these models,
some are formulated in one dimension, while fewtledm consider a three-dimensional
geometry. Moreover, all of these models considangle canal and most of them do not take
into account the fluid-structure interaction butex consider the influence of the cupula by a
punctual elasticity.

The aim of this paper is to model the entire setashircircular canals by taking into account
fluid-structure interactions in order to investigdluid flow and cupula motion during head
rotation. To achieve this goal, we use the finlveent Comsol Multiphysics software as it
permits to deal with different physics, and mordipalarly with FSI problems. The modeling
strategy is as follows: first, we model a two-dirse@mal cross-section of the lateral
semicircular canal using geometry and dimensiorisaeted from measured human data by
Curthoys and Oman (1987); second, we extend thim@Bel to a three-dimensional model of
a single semicircular canal; and third, we devebgdully three-dimensional model by
considering the three SCCs.



2. 2D model
2.1. Geometry of the 2D model

We here consider a two-dimensional cross-sectiorheflateral semicircular canal. The
geometry and all the associated dimensions (Fi®)2are extracted from measured human
data by Curthoys and Oman (1987). The canal cengidhree main regions: the semicircular
canal, the ampulla, and the utricle. The canalilledf of a water-like fluid, known as
endolymph. The model also considers the cupulaidjsdébcated in the ampulla which
completely seals the canal.

2.2. Governing equations

We now present the governing equations descritdiegbehavior of the cupula and of the
endolymph. Typically, these equations are solved displacement and for velocity and
pressure respectively. We model the endolymph as@mpressible Newtonian fluid. The
typical governing equations of fluid flow are debed in terms of the following two
dimensional Navier-Stokes equations:
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where p; is the fluid density,F is the volume force affecting the fluidi; is the Cauchy
stress tenso) ; =(u;,V; ) is the velocity field, andp is the pressure. The first equation is

the momentum transport equation, and the seconthds equation of continuity for
incompressible fluids. These equations describe ti@welocity, pressure, and density of a
moving fluid are related.

The structural deformations of the cupula are sbluging an elastic formulation and a
nonlinear geometry formulation to allow large defiations that may occur due to its very
low stiffness. Neglecting body forces, the Naviguation of motion for the cupula can be
written in terms of displacement vectdg = (u,, vy as:
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We consider an elastic isotropic material for thpua so that the generalized Hooke’s law is
obtained:

O, = 2uE + Atr (&) (4)

where ¢4 and A are Lame’s coefficients, which are related to Ygiamrmodulus of elasticity
and Poisson’s ratio, by the following equations:
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Regarding the question of exchanging informatioypically in the form of boundary
conditions at the interface, we adopt a two-way f(dly) coupled FSI. In this case, the
response of the solid is strongly affected by #rsponse of the fluid, and vice versa. In other
words, fluid flow causes deformation of the strueturhis deformation, in turn, changes the
boundary conditions for the fluid flow. In additiodue to this coupling, conditions are needed
to ensure that the fluid and structural domaind mok detach or overlap during the motion
(Fig. 2.13). For a viscous fluid, the coupling beém fluid and structure requires that
velocities coincide along the interface. In paticythe time derivatives of the structural
displacements define the fluid’s velocity so that:

_du

f dts (7)

In addition, the force exerted by the fluid on #wdid boundary must be considered and is the
negative reaction force on the fluid given by:
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wheren is the outward normal vector to the boundary. Tbégl represents a sum of pressure
and viscous forces.

2.3. Boundary conditions

The aim of the model is to investigate fluid flown@mics as well as cupula motion during
head rotations. Therefore we apply a step in anguddocity to the semicircular canal.

However, in order to avoid problems with disconiipwand to improve numerical reliability

as well as convergence, we use smoothed Heavisilgidns with a continuous second
derivative that emulates the step of angular veloci

Regarding the boundary conditions of the solid donfaupula), we prescribe a rotational

displacement at the top and bottom of the cupuththa fluid load is applied on the wetted

surfaces of the cupula. As regard the fluid domasm impose an angular velocity at the wall
of the canal. Consequently the fluid in contacthwilie wall of the duct rotates at the same
angular velocity of the canal, which is locally eqlent to a no-slip condition. We also

consider an open boundary at the common crux cslehe nodal velocities are left free to
accommodate inflow and outflow of endolymph betwdle® horizontal semicircular canal

and the other canals. Finally, at the interfaceogmdph/cupula we apply the structural

velocity of the cupula as well as the fluid load.

2.4. Moving mesh



In order to model effectively the FSI problem wensioler an Arbitrary Lagrangian-Eulerian
(ALE) method which is a common application in erggiring used to solve problems
pertaining to structure and fluid mechanics analyBlonea et al., 2003). The ALE method
employs the use of reference frames to representcldssical Lagrangian and Eulerian
systems. The Lagrangian reference frame is usesdutty the structure problem while the
Eulerian reference is used to study the fluid probl Hence, the model combines the fluid
flow with structural mechanics by using a movingsiméo make sure the fluid flow is

deformed along with the cupula.

The model is divided into different subdomains sota specify precisely how the mesh
displacement is computed (Fig. 2). The imposed itiomd of mesh displacement are as
follows:

» Solid domain (cupula}he displacementéu,,v,) provided by the computation of the

structure mechanics equations are imposed. In atoeds, a Lagrangian method is
used where the mesh movement follows the mateéiom

* Fluid domain near the cupulaas cupula deformation may affect fluid flow in its
vicinity we define two subdomains on both sideshaf cupula where the mesh is free
to move. This means that the mesh is constraingdbynthe boundary conditions on
the surrounding boundaries.

* Rest of the fluid domairthe displacement of rotation imposed to the wistiacture
is also applied to this subdomain. In other wortth® mesh is not deformed and
follows the rotation of the canal.

3. Simulations

Numerical solutions of the governing system of dedmonlinear system partial differential
equations (PDEs) are generated using finite-elermealysis software (Comsol Multiphysics
3.5a) on a 2-D mesh with 2663 quadratics triangeleaments that represent 16985 degrees of
freedom. We consider a rotation of the structura abnstant angular velocity @f 2 rad/s
around a vertical axis passing through the cenfethe canal (Fig. 3). Note that this
consideration does not exactly mimic a head ratatas each inner ear is located
approximately 3 cm away from head vertical axiswideer, as stated by many researchers [],
we consider that the SCCs are only stimulated lad fegular accelerations and thus we do
not take into account tangential as well as norcakleration components that appear during
any rotation of the head. The imposed rotation asntained during 15 s and the computation
is performed tillt =30s in order to investigate fluid dynamics and cupuration after the
deceleration phase. We consider a Young's modwushe cupula of 5 Pa and a Poisson’s
ratio of 0.48 (Selva et al., 2009).

3.1.Results at the onset of the imposed rotatiomion

The displacement of the cupula is shown in figurdt £an be observed that displacement
begins at the base of the cupula close to theacrghich involves that initial movements of
the cupula produce a shear type deformation riglave the sensory epithelium. Thus,
sensory hair cells are presumably stimulated aa aschead motion starts which highlights



the hypersensitivity behavior of the sensor. Aftecertain limit is reached, about 0.1 s,
maximal displacement spreads toward the centehefcupula. This behavior is consistent
with previous studies of McLaren (1977) who meadutee positions of oil droplets, which

were injected in the cupula of the bullfrog, folliogg the compression of the canal wall.

Velocity profiles of the fluid flow in the slendgrart of the canal are plotted in figure 5. In
about 0.04 s — 0.05 s the fluid flow is analogousatPoiseuille flow. Indeed, the velocity
profile tends to a parabola, with the fluid in &enter of the canal having the greatest speed.
This result is consistent with previous analytistidies. For instance, Groen (1952) assumed
a fully developed Poiseuille flow in a straight éuto investigate the dynamics of semicircular
canal flow and cupula motion, while Van Buskirkaét(1976) shown that endolymph volume
displacement resulting from a step change in angcity under the non-steady state flow
assumption can be approximate by the Poiseuilidgtstate flow relation.

3.2.Dynamic behavior of the structure during theased rotational motion

We now study the response of the sensor during thetlacceleration and deceleration phase
of the imposed rotational motion. Figure 6 presehts fluid flow in the canal and cupula
motion at the onset of the simulation. At the begig of the rotation of the canal, the fluid
lags behind due to its inertia. Therefore, fluioMrelative to the wall of the canal is oriented
in the opposite direction of the imposed rotationadtion during about 0.25 s (Fig. 6).
Meanwhile, this flow, represented by the arrowsfigure 6, exerts a pressure across the
cupula, and thus deflects it in the opposite dioecof rotation as well. The deflection of the
cupula reaches a maximum value close to 15 pmhioseét of elastic properties retained. At
time t=0.3 s, even though the canal still expemsna rotational motion, the cupula starts to
return to its rest position due to its elastic mmjes. In addition, because of the small
diameter of the duct and the viscosity of the flufgk latter tends to catch up with the rotation
of the canal, eliminating little by little the réilee movement between the fluid and the canal.
One can notice that the maximum fluid velocity eckased by a factor 20 between time
instants 0.3 s and 0.6 s.

Figure 7 shows the dynamic behavior of the sens$mmwits rotation is suddenly stopped. The
canal experiences a constant angular velocity twith s, and then the movement of rotation
is stopped in 0.3 s. At time t=15.1 s, the fluidstdl in motion within the canal due to its
inertia. As a consequence, the cupula, which wasrred to its rest position, is deflected in
the opposite direction than previously (Fig. 7) c®magain, we can note that cupula deflection
starts near the sensory epithelium and then spi@adrd its center. Finally, the cupula
returns to its initial position which provokes &bt counter clockwise fluid flow.

Figure 8 shows the time-dependent displacemenpoira located at the center of the cupula.
It can be seen that the cupula experiences twedefhs in opposite directions that are due to
the acceleration and deceleration phase of theomoflhis behavior is consistent with
previous analytical models such as the classidgaimrgendulum model (Steinhausen, 1933;
Groen et al., 1952; Mayne, 1974). Indeed, cupuspldcement is traditionally described by
two times constant: a short time constant whichegas the fast deflection of the cupula at the
onset of the rotational motion, and a long timestant which governs the slow return of the
cupula to its rest position.



4. Preliminary results of the entire 3-D model

The final goal of the work presented in this pajgeto obtain a complete fluid-structural
finite-element model of the entire set of semidmcwcanals + cupulae + utricle. Thus we
extend the previous 2-D model of a single canahtee-dimensional space by taking into
account all the angular sensors.

The geometry of this 3-D model has been developigd the CAD software CATIA V5.
Then, using the STEP file exchange format, the mbds been imported into Comsol
Multiphysics in which meshing, simulations, andadptocessing have been performed (Fig.
9). Note that dimensions of the vertical canalsenbeen taken identical as the horizontal
canal, and that all the canals are assumed ortlahgon

Figure 9b shows the mesh of this model which is pised of 45,408 quadratic tetrahedral
elements that represent 498,112 degrees of freeddm. large number of elements is
primarily due to the very small diameter of the alatross-sectior~0.32 mm) which is one
order of magnitude lower than the diameter of tineutar path formed by each canal3(2
mm). In addition the connections between each saaad the utricle has to be meshed finely
to improve elements quality and to ensure convergef the simulation. In the present case,
simulations of the model are run on a computerrnivo dual-core processors, 8 Go RAM,
and a 64-bit linux operating system.

Results of the simulation in response to head angudlocity are presented in figure 10. In
particular, field displacement of the cupulae aoétifvelocity at timet=0.1 s are plotted. At
this instant, the fluid flow is in the opposite ettion of the imposed clockwise rotational
motion. The cupula of the lateral is thus deflecasdpredicted by the previous 2-D model.
Note that cupula of the anterior canal also expess a slight deflection due to the gravity
field. Cupula of the posterior canal remains atétst position as there is no fluid flow within
this canal and as this cupula is almost alignetl thié gravity vector.

These results are very promising as they are i goorelation with the previous 2-D model.

This first 3-D model will be used to run furthensilations in order to study various cases of
vestibular disease — such as the Méniere’'s diseaseh is due to an overpressure in the
labyrinth — and to perform parametric analysis s¢oastudy sensitivity effect, for instance of
the mutual orientation of the canal plane.

Conclusion

The present paper deals with fluid-structural érelements model of the angular sensors of
the human inner ear. These models were developed the finite-element analysis software
Comsol Multiphysics 3.5a. The endolymph has beendetenl as an incompressible
Newtonian fluid while the cupula was consideredaaselastic solid. The fluid-structure
interaction problem has been treated with a stroogpling between the fluid flow and
structural displacements.

First, we have considered a two-dimensional modleé single canal and have investigated
fluid flow as well as cupula motion during headatain. Results of this model were in good
agreement with previous analytical studies. We hsa@vn that in about 0.04 s fluid flow in

the slender part of the semicircular canal cangpeaximated by a Poiseuille flow. We have



also demonstrated that for a step change in angalacity cupula displacement begins near
the sensory epithelium and then spreads towardseitser. Finally, displacement of the
cupula through time was in good agreement with diagsic torsion-pendulum model, i.e.
described by two exponential terms defined by atsirad long time constant respectively.

Second, a three-dimensional finite-element modehefentire set of semicircular canals and
cupulae has been proposed. The associated geohstrjpeen constructed using a CAD
software (CATIA V5) which has then been importedoirthe finite-element Comsol
Multiphysics software. For a constant head rotatgmomising results — in good correlation
with the 2-D model previously developed - have bebtained as regard fluid flow and
cupulae displacement. However further simulatiansdifferent profile of head motion need
to be performed to validate this 3-D model. Themmiospect of this work is to use the final
3-D model to simulate different kind of vestibuldisorders such as the Méniere’s disease,
which is caused by an increase in pressure andnelaf the endolymph in the whole
vestibular system.
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Figure 1. (a) Visualization of the inner ear and close-uptsk of the semicircular canals. (b) 2D model haf t
cross-section of the horizontal semicircular cadte that the cupula is modeled by a 400 um théckion.
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Figure 2. Visualization of the model subdomains that haviéerint conditions for mesh displacement. A
prescribed displacement is applied to the meshefluid domain. The computed displacemggtis applied to

the solid domain while the mesh of the fluid subgios on both sides of the cupula are free to move.
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Figure 3. Rotational motion applied to the semicircular can@) Moving mesh. (b) Profile of angular velocity
applied to the structure.
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Figure 4. Evolution of the displacement of the cupula at tleey beginning of the imposed rotational
motion. The displacement of the cupula begins tiearsensory epithelium and then spreads towards the
center of the cupula.

Fluid velocity along the dashed i 35 x10™*
3 ‘
2.5 t=0.04s

t=0.01s

fluid velocity relative to the canal (m/s)

0 0.5 1 1.5 2 2.5 3 3.5
Arc-length (m) 1074

Figure 5. Evolution of the velocity of the fluid in the slengbart of the duct at the beginning of the rotatib
motion. The fluid flow becomes analogous to a Ruliseflow in about 0.05 s.
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the ALE reference frame (moving mesh). Due toéstia, fluid flow relative to the canal wall isiented in the
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direction of rotation as well At time 0.3 s, thepala starts to return to its rest position dueit® elastic
properties and the fluid flow catch up with theatiwn of the canal .
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Figure 7. Fluid velocity (left) and cupula displacement (rghwhen the rotational motion is stopped.
Visualization in the ALE reference frame (movingmeDue to its inertia the fluid is still in motiovithin the
canal when the latter is stopped. Thus, the cupalldeflected in the opposite direction as the fitsflection
experienced at the onset of the rotational motion.
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Figure 8. Displacement of the center of the cupula duringastant angular rotation which ends at time t=15 s.
Because of the angular acceleration the cupulaefedted according to a fast time constarh fns) and then
returns to its rest position according to a longné constant~6 s). The inverse effect is observed when the
rotational motion is stopped, i.e. when the cangdegiences a deceleration.
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Figure 9. (a) Three-dimensional CAD model of the three SCCs ielatr-cupulae. (b) Mesh of the final three-
dimensional model which consists of 45,408 quadsatlements representing 498,112 degrees of freedom
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Figure 10. Results provided by the simulation of the final@bdel of the semicircular canals. (a) Field of dlui
velocity at time t=0.1s. (b) Field of cupulae depement at time t=0.1 s. The cupula of the lateaal is
deflected because of the imposed motion of rotadfotihe canals. The cupula of the anterior canaslightly
deflected at the beginning of the simulation beeaafsthe gravitational field. Note that cupula b&tposterior
canal does not experience any deflection as thermifluid flow within this canal and as this cupis almost
aligned with the gravity vector.



