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A B S T R A C T

The study concerns surfactin and/or fengycin batch production by immobilized cells of Bacillus subtilis

ATCC 21332. Light carriers designed for a three phase inverse fluidized bed biofilm reactor (TPFIBR) were

used. With respect to the biofilm reactor development, a new support based on iron grafting onto

polypropylene foams has been proposed. A suspension solid-state grafting process was applied to graft

ferric acetylacetonate onto polypropylene (PP) foams with a density of 0.3–0.7 g/cm3. The iron contents

grafted onto PP increased with the reaction time and then it tended to level off. The iron contents at 7.5

and 10 h are 0.74 and 0.75 wt%, respectively. It was specified that the equilibrium was reached at 7.5 h.

Influence of particles on lipopeptide production was analyzed in two kinds of experiments: preliminary

colonization step of particles, followed by production step in modified culture medium (named in this

work colonization step) or direct addition of pellets in culture medium (named production step). All PP+

iron pellets promoted biomass enhancement. The production yield was modified for all types of PP

supports, containing respectively 0, 0.35 and 0.75% of iron. The immobilized cultures produced 2.09–4.3

times more biosurfactants than planktonic cells. In production experiments addition of carriers seemed

to modify the ratio between surfactin and fengycin with an enhancement of the fengycin production. The

highest concentration of fengycin was obtained with addition of pellets containing 0.35% of iron.

� 2009 Published by Elsevier Ltd.
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1. Introduction

In literature, numerous studies concerning free cells productiv-
ities of biosurfactants have been reported. Several parameters such
as carbon sources, temperature, amount of inorganic ions, and
addition of solid carriers may trigger both strain growth and
lipopeptide synthesis. In the present work, we focused on
evaluating various bioreactor parameters and systems with
respect to efficient lipopeptide production by Bacillus subtilis ATCC
21332 immobilized bacteria on light carriers designed for use in
three phase inverse fluidized bed biofilm reactor (TPFIBR). The B.

subtilis ATCC 21332 is known to produce a single surfactin
lipopeptide [1,2], but this strain was recently proved to be a co-
producer of surfactin and fengycin [3]. However, the lipopeptide
surfactin is one of the most powerful biosurfactants, while
fengycins show more strong antifungal activity in combination
with surfactins [4]. The use of immobilized bacteria, leading to
high cell concentrations within the reactor, seemed a promising
method for improving reactor performance and selectivity [5,6–8].
With respect to the cell’s immobilizing performance various
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parameters such as solid supports, culture medium, oxygen
transfer and ions concentrations of metals are object of analysis.
According to Wei and Chu [9,10], surfactin concentration was
enhanced when iron concentration in the medium raised 4 mM and
when Mn2+ was added. Wei et al. [11] determined with
experimental design plan that Mg2+, K+, Mn2+ and Fe2+ were the
more significant factors affecting production of surfactin. Yeh et al.
[12], Davies et al. [1] and Lee and Kim [13], studied the influence of
oxygen concentration on the synthesis of the biosurfactant. Yeh
et al. [14] found that the oxygen volumetric mass transfer
coefficient (KLa) was highly correlated with the performance of
surfactin production. For planktonic cultures, limitation of O2

enhances the production while surfactin is no more produced
under static conditions. The highest surfactin productivity was
achieved when the fermentation was carried out at a KLa value of
0.0132 s�1. The focused inverse fluidized bed reactor shows high
mass transfer at relatively low gas flow rate (KLa > 0.016 s�1

[15,16]). This type of reactor has found a privileged place in
biotechnology and various industrial-scale applications do exist:
ethanol production, aerobic and anaerobic wastewater treatment
[17–19]. The main difficulty during the production process in
aerated and stirred bioreactors lies in the high foaming properties
of the surface-active compounds. Yeh et al. [12] showed that
activated carbon or expanded clay added to the liquid medium led
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Fig. 1. SEM micrographs of foamed PP.
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to increase of surfactin production up to 2150 and 3300 mg L�1,
respectively (22- and 33-fold increase when compared to the
control experiment). Diimitrov et al. [7] were tested different
solids surfaces, including polypropylene (PP), with respect to
propose a method to improve the biofilm growth on different
polymer materials by modifying their surface properties. The
ability of two aerobic bacteria strains: Pseudomonas aeruginosa O1

and B. subtilis CIP 5265 to grow on various non-coated and coated
polymer materials were investigated also. It was found that
supports with modified surface show higher biofilm development
rate and better surface colonization. The influence of the surface
free energy on the detachment force and correspondingly on the
biofilm formation was demonstrated.

According to these previous results, we choose in this work to
study the effect of light PP solid carriers coated with Fe2+. A batch
stirred tanks reactors were used as a model and also a control. The
particles have densities lower than the liquid phase, generally for
TPFIBR, between 0.3 and 0.7 g/cm3. Moreover, the particles should
support a temperature of 130 8C which permit sterilization.
Polypropylene, one of the general plastics, is capable of being
used at high temperature repeatedly but the mass density of
original PP pellets is 0.9 g/cm3, higher than the required densities
of the biofilm carriers. Xu et al. [20] showed that the mass densities
of polypropylene could be regulated easily to 0.3–0.7 g/cm3 by
using a supercritical CO2 assisted foaming process while retaining
the thermal stability of polypropylene.

2. Materials and method

2.1. Bacterial strain and culture conditions

B. subtilis ATCC 21332 from the collection of ProBioGem Laboratory and the same,

recently obtained from the American Type Culture Collection, was used. The strain

ATCC 21332, was recently proved to be a co-producer of surfactin and fengycin [3]

The strain was cultivated in modified Landy base medium at pH 7 [21] buffered with

MOPS 100 mM without or with glutamic acid (respectively named Lm1 and Lm2

media). Cells were cultivated overnight in Lm2 medium at 30 8C then washed and

concentrated 10 times by centrifugation. The main cultures were inoculated into

1000 mL flasks containing 200 mL of Lm1 (colonization experiment) or Lm2

(production experiment) medium, in order to obtain 0.5 as initial optical density (at

600 nm) In colonization experiments, Lm1 medium was first used to avoid the

synthesis of lipopeptides. Particles were allowed to be coated by the strain at

40 rpm for 48 h. The supernatant was then discarded and both free cells and coated

beads were put in 200 mL of Lm2 medium for 48 h at 140 rpm, 30 8C to produce

biosurfactants. In production experiments, pellets were directly added in Lm2

medium and lipopeptides were produced as explained above during 48 h. All

experiments were achieved in batch conditions. With respect to reproduce

hydrodynamic and mass transfer conditions of TPIFB [5,15], the concentration of

particles was equal to 1 g per 15 mL of culture medium and the aerobic

fermentation, namely the production of surfactin, was realised under O2-sufficient

conditions using 1000 mL flasks containing 200 mL of medium. All samples were

triplicate.

2.2. Quantitative analysis of biomass

At the end of the production, pellets were sonicated with 4 mL of NaOH (0.1 M)

during 5 min at 20 kHz, and proteins were quantified by Lowry method. After

centrifugation, planktonic biomass was quantified by the same method.

2.3. Quantitative analysis of lipopeptides

Preliminary tests showed that B. subtilis ATCC 213332 produced two kinds of

lipopeptides, surfactin and fengycin. At the end of the culture, 1 mL of supernatant

was purified on C18 column (Extract - clean SPE 500 mg, Altech) and eluted in

methanol.

The surfactin concentration was determined by reverse phase C18 HPLC (600 s,

Waters, USA) equipped with a Merck C18 column (5 mm, Merck, Germany) as

previously described [8,21,22]. The standard of surfactin was purchased from Sigma

(USA). The Fengycins were eluted during 40 min under a gradient ACN/H2O/TFA

from 45/55/0.1 to 55/45/0.1 at 0.6 mL/min. The standard of fengycins was kindly

provided by Dr M. Deleu from the Agricultural University of Gembloux (Belgium)

and gave peaks between 10 and 25 min. Peaks were selected through calibration

and spectra were analyzed using values of second derivative which give two major

peaks at 213 and 236 nm associated with a minor peak at 290 nm [21,23].
2.4. Biofilm carriers

Foamed polypropylene pellets were used as biofilm carriers in this work.

2.4.1. PP foaming process using supercritical carbon dioxide

The polypropylene (PP) pellets with an average diameter of 3–4 mm and a mass

density of 0.9 g/cm3 were supplied by Shanghai Petrochemical Company. The mass-

average molar mass of the PP was 188,700 g/mol. Its polydispersity index and

crystallinity were 5.1 and 47%, respectively.

In order to reduce the mass density of original PP pellets (from 0.9 to 0.3–0.7 g/

cm3), an environmental-friendly technique previously described was used to

prepare PP microcellular foams using supercritical carbon dioxide (scCO2) as a

foaming agent [20]. The CO2 (purity 99.9%) was obtained from Air Product Co.,

Shanghai, China. Briefly, a high-pressure stainless steel vessel with internal volume

of 100 cm3 was used. About 20 g PP pellets were placed in the high-pressure vessel

and then washed with low-pressure CO2. Thereafter, the high-pressure vessel was

immersed in a oil bath with a controlling accuracy of �0.2 8C and rapidly heated to

157 8C. A given amount of CO2 was charged to a pressure of 15 MPa, which was

measured with accuracy of �0.01 MPa by a pressure transducer of Shenzhen MSI/JL

Electronics Co., China. The CO2 loading was achieved by a DZB-1A syringe pump of

Beijing Satellite Instrument Co., China, with an accuracy of 0.01 cm3. After the sorption

of CO2 into the PP pellets reached at equilibrium, the CO2 in the high-pressure vessel

was released from the foaming pressure to the ambient one. The average

depressurization rate was controlled at 15 MPa/s. The foamed PP pellets were then

taken out for subsequent analysis and application.

2.4.2. Physical–chemical characterization of carriers

The cell morphologies of the foamed PP samples were characterized by a JSM-

6360LV scanning electron microscopy (SEM, Fig. 1). The samples were immersed in

liquid nitrogen for 10 min and then fractured. The SEM scanned fractured surfaces.

The average cell size and cell density was calculated through the analysis of the SEM

photographs by the software Winroof.

The mass densities of foamed PP samples rf were measured according to

ASTMD792-00 involving weighing polymer foam in water using a sinker. And rf

was calculated as follows:

rf ¼
a

aþw� b
rwater (1)

where a is the apparent mass of specimen in air without sinker, b the apparent mass

of specimen and sinker completely immersed in water and w is the apparent mass

of the totally immersed sinker.

2.4.3. Grafting process of ferric acetylacetonate onto PP

Three types of particles were used containing 0, 0.35 and 0.74% of iron (w/w)

benzoyl peroxide (BPO) (chemical-grade) was purchased from Shanghai Chemical

Co. and purified twice in chloroform before use. Ferric acetylacetonate

{[CH3COCH55C(O–)CH3]3Fe} with a purity of 97% was purchased from Sigma–

Aldrich Co.

A suspension solid-state grafting process was applied by using water as a

dispersion medium, BPO as an initiator and a small amount of toluene as a swelling

agent. In the typical procedure, reaction was carried out in a 250-mL three-necked



Table 1
Biomass obtained when lipopeptides were quantified, in mg of proteins per litre of

medium (96 h in colonization experiments, 48 h in production experiments).

Colonization Production

Planktonic 397 � 12 672 � 35

+ PP Fe 0% 414 � 10 572 � 41

+ PP Fe 0.35% 936 � 40 819 � 37

+ PP Fe 0.74% 1041 � 100 870 � 55
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glass flask, where the total volume of reactive was about 150 mL. The reactor was

equipped with a reflux condenser and a helix stirrer. This flask was immersed in a

homemade electronically controlled temperature oil bath. The temperature of the

latter was measured with a calibrated mercury thermometer with accuracy of

�0.02 8C and was controlled with an accuracy of �0.2 8C. The foamed PP pellets,

water (120 mL) and toluene (1 mL) were charged to the flask.

The reactor was heated to 90 8C and kept at the temperature for swelling PP for

1 h. Then, the reaction was continued during 7 h. The ferric acetylacetonate (2 g)

and BPO (0.4 g) were divided into three equal parts and added into the reactor after

0, 1.5 and 3 h, respectively. After filtration, PP particles were purified by Soxhlet

extraction in acetone for 24 h and dried in a vacuum oven at 80 8C for 10 h in order

to eliminate unreacted ferric acetylacetonate and other small molecules.

2.4.4. Grafted PP samples

Iron content in the grafted PP was determined by Inductively Coupled Plasma

(ICP, TJA IRIS 1000) analysis. The percentage of grafted ferric acetylacetonate in the

PP was then deduced.

2.4.5. Quantitative analysis of iron onto particles

PP powder was used to verify how much ferric acetylacetonate or iron could be

grafted onto pellets. The PP powder with particles smaller than 0.15 mm in

diameter was prepared by grinding the above pellets with liquid nitrogen as a

coolant.

The grafting process was carried out with powder as described above. After

purification, the iron content grafted onto PP was determined by using Inductively

Coupled Plasma (ICP).

Foamed PP pellets surface was also submitted to iron content analysis. For each

sample, the iron content was tested for three times and the average value was

adopted.

3. Results and discussion

Fig. 1 shows the cell morphology of foamed PP. According to the
SEM micrograph, the average cell diameter was calculated to be
7.2 mm and cell density 2.5 � 108 cells/cm3. The density tests
showed that the mass densities of foamed PP were about 0.5 g/cm3,
which obviously fits the requirement for pellets used in an inverse
fluidized bed (mass densities between 0.3 and 0.7 g/cm3.

In order to introduce iron on the surface of pellets, ferric
acetylacetonate {[CH3COCH55C(O–)CH3]3Fe} was chosen as a
component to be grafted by using a suspension solid-state grafting
process. Fig. 2 shows the evolution of the iron content as well as
ferric acetylacetonate content grafted onto the PP powder as a
function of the time. During the first hours, the iron and ferric
acetylacetonate contents grafted onto PP both increased with the
reaction time and then it tended to level off. The iron content at 7.5
and 10 h are 0.74 and 0.75 wt%, respectively. It was specified that
the equilibrium was reached at 7.5 h. The percentage of grafted
Fig. 2. Evolution of iron content as well as ferric acetylacetonate content grafted

onto PP powder as a function of time.
ferric acetylacetonate was subsequently calculated to be 4.7%.
However, ferric acetylacetonate was difficult to penetrate into
foamed pellets and the component can only graft on the surface of
the PP pellets. The final product is heterogeneous: the colour of the
outer surface appeared red whereas inner polymer remained
white. The surface of grafted PP foamed pellets was cut and
submitted to ICP analysis and the average iron content was
determined to be also 0.74 wt%. Considering that only the outer
surface of the PP pellets was used as the biofilm carriers, the
grafted PP foamed pellets prepared in this way were suitable for
the biofilm carriers. In Fig. 2, PP powder was used to investigate the
kinetics of the grafting reaction. However, in practice, foamed PP
pellets were grafted onto ferric acetylacetonate and used as the
carriers. The grafted content of ferric acetylacetonate on the
outside surface of the foamed PP pellets was determined as
following: the outside surface of the foamed PP pellets was cut and
was subject to ICP for analyzing the grafted content of the ferric
acetylacetonate. The grafted content of ferric acetylacetonate on
the outside surface of the grafted foamed PP pellets was equal to
that of the grafted PP powder at the same reaction conditions.

Three types of particles containing 0–0.74 iron mass % were
used in this study. The results obtained for total biomass (free and
immobilized cells) are summarized in Table 1. The growth in Lm1
medium, at low agitation rate (40 rpm), restricted the final
biomass in planktonic cultures and when no iron was present in
pellets. The strain was not able to coat pure hydrophobic PP
particles (biomass reached the planktonic cultures level), whereas
iron PP pellets promoted the biofilm formation. In fact, all PP+ iron
pellets promoted biomass enhancement. The colonization seemed
to be useless as final biomass obtained with iron containing
particles were the same in production and colonization experi-
ments.

The maximal production, for each experimental condition, was
reached after 48 h of fermentation (data not shown). Lipopeptides
syntheses obtained at this time, in Lm2 medium, are shown in
Table 2. In planktonic culture, the colonization step decreased the
lipopeptides synthesis. In the production experiments, the three
types of PP particles both enhanced surfactin and fengycin. The
production yield was modified for all types of PP supports,
Table 2
Lipopeptides synthesis in mg/L after 48 h in Lm2 medium. In colonization

experiments pellets are allowed to be coated by the strain in Lm1 medium then Lm2

medium was added. In production experiments, pellets are directly added in Lm2

medium.

Surfactin Fengycin

Colonization

Planktonic culture 50 166

PP+ iron 0% nd nd

PP+ iron 0.35% 215 609

PP+ iron 0.74% 183 336

Production

Planktonic culture 143 326

PP+ iron 0% 300 310

PP+ iron 0.35% 390 680

PP+ iron 0.74% 310 510
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containing respectively 0, 0.35 and 0.75% of iron. The immobilized
cultures produced 1.75–3.8 times more biosurfactants than
planktonic cells. In production experiments addition of carriers
modified the ratio between surfactin and fengycin. The highest
concentration of fengycin was obtained with addition of pellets
containing 0.35% of iron.

4. Conclusion

Three types of particles with different iron concentration were
tested. The results showed that addition of solids carriers in media
increased the lipopeptide production from 3.67 to 4.3 times in
colonization experiments and 2.09 to 2.7 times in production
experiments. The ratio between surfactin and fengycin remained
constant in planktonic cultures and colonization experiments (25–
75%). In production experiments, the production yield and ratio
between fengycin and surfactin were modified. When cells were
immobilized on PP particles+ iron 0.35%, the surfactin and fengycin
production were increased respectively 2.7 and 2.09 times in
comparison to the free cells culture. In conclusion, the results
obtained in this study suggest that by using immobilized cells and
various ratio of iron we can control the selectivity of the
bioreaction concerning the fengycin or surfactin production.
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