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Abstract

It has already been shown that spectral estimation can be improved when applied to subband outputs of an adapted

filterbank rather than to the original fullband signal. In the present paper, this procedure is applied jointly to a novel

predictive autoregressive (AR) model. The model exploits time-shifting and is therefore referred to as time-shift AR (TS-

AR) model. Estimators are proposed for the unknown TS-AR parameters and the spectrum of the observed signal. The

TS-AR model yields improved spectrum estimation by taking advantage of the correlation between subseries that arises

after decimation. Simulation results on signals with continuous and line spectra that demonstrate the performance of the

proposed method are provided.

Keywords: Subband decomposition; AR modeling; Spectral estimation
1. Introduction

Spectral estimation has been for a long time one
of the main field of interests in signal processing
theory and applications. During the past 10 years,
subband decomposition has been shown to be a
powerful tool for spectral analysis and data coding.
Indeed, past and recent audio-coding standards are
based on subband decomposition [1,2]. Among all
existing standards, MP3 may be the most famous
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one but more recent works, such as [3,4] can also be
of interest. Within the field of spectral analysis, and
more precisely of parametric modeling, benefits of
subband decomposition for order selection are
illustrated in [5] in the case of two separate narrow
peaks. Although some authors use subband decom-
position to improve classical spectral estimation
(based on the Fourier transform) [6], subband
decomposition is more efficient when it is applied
in combination with parametric spectral estimation
methods [7,8]. In these papers, subband spectral
estimation is shown to yield better performance
than applying spectral estimation on the original
fullband process. This has been shown for a bank of
ideal infinitely sharp bandpass filters. However,
some experimental results have highlighted that
the improvements brought by subband spectral
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estimation still remain in the case of non-ideal
filterbanks such as modified quadrature-mirror
filters (QMFs) or cosine modulated filterbanks [8].

Thus, the performance of traditional or para-
metric spectral estimation methods can improve
when applied to signals filtered by an appropriate
filterbank rather than applied to the corresponding
fullband signal. Some of the benefits provided by
subband decomposition can be given as follows:
(B1)
 Model order reduction and consequently con-
dition number decreasing for autocorrelation
matrices [9].
(B2)
 Frequency spacing and local Signal to Noise
Ratio (SNR) increase by the decimation ratio
(for signals composed by a sum of sinusoids
corrupted by additive noise) [10].
(B3)
 Whitening of noise in the subbands [10].

(B4)
 Linear prediction error power reduction for

AR estimation [7].
Obviously, subband spectral estimation has also
some drawbacks, mainly
(D1)
 Spectral overlapping (aliasing): when using
non-ideal filterbanks, the same harmonic
component may appear in two contiguous
subbands at two different frequencies.
(D2)
 Relative variance increase for autocorrelation
estimators (due to decimation).
The first drawback (D1) has already been addressed
in two recent papers [11,12]. All simulation results
of the present paper have been conducted using the
procedure described in [12] using an uniform
filterbank with M subbands and a decimation ratio
of M as shown in Fig. 1. The main subject of this
paper is to tackle the second drawback (D2) of
subband spectral estimation. In order to decrease
Fig. 1. Uniform filterbank with M subbands.
spectral estimation variance, a new subband spec-
tral estimator is proposed. This method, based on
AR modeling, exploits the existence of M different
subseries available after decimation on each sub-
band.

The paper is organized as follows. Section 2 states
the problem of subband decomposition. The pro-
posed model is defined in Section 3. Estimation of
the model parameters and properties of the model
error are outlined in Section 4. Section 5 derives the
model power spectral density (PSD) and Section 6
discusses the benefits of this new method. Practical
implementation and performances of the proposed
model are highlighted in Section 7. Concluding
comments are given in Section 8.

2. Subband decomposition

Let us consider one branch of the analysis
filterbank of Fig. 1. For sake of simplicity, the
subband’s subscript is omitted. Let fuðnÞ; n 2 Zg

denote the input signal to be analyzed. This input
signal is assumed to be a wide stationary random
sequence. It is first filtered by a bandpass filter with
a transfer function HðzÞ to isolate the frequency
band of interest. The resulting bandpass signal
fvðnÞ; n 2 Zg is then directly reduced in sampling rate
by an M-sample compressor giving the final output
fxðnÞ; n 2 Zg.

This scheme is common in subband processing.
However, the main idea of the present paper is to
take advantage of a specific way of down-sampling.
Indeed, depending on the decimator initialization,
M different realizations of the random sequence
fxðnÞ; n 2 Zg can be obtained. These realizations are
denoted x0ðnÞ,y, xM�1ðnÞ in what follows and can
be expressed as

xmðnÞ ¼ vðMn�mÞ; m ¼ 0; . . . ;M � 1. (1)

These M subseries can be viewed as different
sampling results of the same random sequence
fxðnÞ; n 2 Zg. Therefore, all these subseries fxmðnÞg

have the same autocorrelation function and the
same PSD.

3. Time-shift AR (TS-AR) model definition

Usually, when parametric spectral estimation is
performed in a subband decomposition context,
parametric model estimation is applied on one of
the subseries of (1). Among all parametric models,
AR-based ones are the most widely used. These



models may have various forms but all require
autocorrelation estimation. Therefore, when apply-
ing such methods directly on subseries of the form
of (1), the performance of spectral estimation
depend on the estimation of the autocorrelation
function:

rxðkÞ ¼ E½xðnÞx�ðn� kÞ� ¼ rvðMkÞ; k 2 Z, (2)

where E½:� denotes mathematical expectation, the
superscript � holds for complex conjugate and rx

denotes the autocorrelation function of the station-
ary random process xðnÞ.

Thus the complete knowledge of the autocorrela-
tion function of fvðnÞ; n 2 Zg is not used. Moreover,
the estimation of rxðkÞ is done on the observed
samples xðnÞ. Obviously, due to decimation, the
length of the random sequence xðnÞ is M times
shorter than the original signal vðnÞ. Therefore,
classical autocorrelation estimators on xmðnÞ result
in an increase of the autocorrelation variance by a
factor of M. Anyway, even if the autocorrelation
estimation is done directly on vðnÞ, only the lags
which are multiples of M are estimated. Therefore,
the drawback on the increase of estimation variance
remains.

These considerations have lead us to propose
another subband spectral estimator. It is based on
the idea of using the M subseries of (1) in decreasing
the variance of the estimated PSD.

The principle of the proposed method is depicted
in Fig. 2. Rather than modeling one of the subseries
xmðnÞ as a linear combination of xmðn� 1Þ, xmðn�

2Þ; . . . ;xmðn� pÞ as classical AR modeling does, the
model studied in the present paper predicts xmðnÞ as
a linear combination of xmþdðnÞ, xmþdðn� 1Þ; . . . ;
xmþd ðn� pþ 1Þ. Due to its obvious link with AR
modeling, we call this model a TS-AR model. More
precisely, the TS-AR prediction of a subband for a
given subseries m and a given time shift d can be
Fig. 2. Principle of the proposed method: the sample ‘‘þ’’ is

modeled as a linear combination of the past samples ‘‘&’’.
written as

bxmðnÞ ¼ �
Xp

k¼1

ak;dxmþdðn� k þ 1Þ

8m 2 f0; . . . ;M � 1g, ð3Þ

where p is the model order. This predictor is causal
provided dX1. Note that the prediction coefficients
do not depend on the subseries index m. This will be
shown in the next section. The prediction error is
defined as follows

em;dðnÞ ¼ xmðnÞ � bxmðnÞ

¼ xmðnÞ þ
Xp

k¼1

ak;dxmþd ðn� k þ 1Þ. ð4Þ

It should be noted that (3) allows to derive many
models depending on the value of the time-shift d.
For d ¼M, the TS-AR model is equivalent to the
classical AR model. It is also interesting to highlight
that the TS-AR prediction (3) leads to consider a
specific prediction model of the filtered (and non-
decimated) random sequence fvðnÞ; n 2 Zg. Indeed,
using (1), (3) can be written as

bvðMnÞ ¼ �
Xp

k¼1

ak;dvðMn� d � ðk � 1ÞMÞ. (5)

As in the case of classical AR modeling, an extra
assumption must be made on the prediction error
em;dðnÞ to define a TS-AR process. Therefore, a set
of decimated stationary random sequences fxmðnÞ;
m 2 f0; . . . ;M � 1g; n 2 Zg is defined as ideal TS-
AR process with parameter d40 if and only if
�
 It exists a set of p time-independent coefficients
fak;d ; k ¼ 1; . . . ; pg such that xmðnÞ follows the
time recursion:

xmðnÞ ¼ �
Xp

k¼1

ak;dxmþdðn� k þ 1Þ þ em;dðnÞ. (6)
�
 The error em;dðnÞ is decorrelated with all past
signal samples xmþdðn� k þ 1Þ for all k40, i.e.

rem;d xmþd
ðsÞ ¼ 0 8s40. (7)

Note that in the classical case of an AR process, this

definition is quite the same [13], except that the
assumption (ii) states that the AR model error is an
ideal white noise. However, in the case of an AR
process, the whiteness of the error can be shown to
be equivalent to the decorrelation between the error
and the past AR samples. The TS-AR definition
involves only a decorrelation assumption since this



property is necessary to derive parameter estimation
as it will be shown in the next section. Moreover, it
will be shown that, even with this decorrelation
assumption, the TS-AR error is not white as in the
classical AR case.

In order to illustrate the interest of this model, it
can be remarked that typical examples of signals
following (3) with null error (special case of TS-AR
processes) are pure sinusoids. Indeed, if vðnÞ is a
sinusoidal signal, the set of decimated signals xmðnÞ

matches the following equations:

xmðnÞ ¼ B sinð2pn0ðMn�mÞ þ FÞ

8m 2 f0; . . . ;M � 1g, ð8Þ

where B is the amplitude, n0 is the normalized
frequency and F is the corresponding phase,
uniformly distributed between 0 and 2p for instance.
Then, if n0 is not multiple of p=M, xmðnÞ is a true
TSAR signal of order 2 with null error for all
parameters d because 8d and 8m 2 f0; . . . ;M � 1g:

xmðnÞ ¼ �
sinð2pn0ðM þ dÞÞ

sinð2pn0MÞ
xmþd ðnÞ

þ
sinð2pn0dÞ
sinð2pn0MÞ

xmþd ðn� 1Þ. ð9Þ
4. Model parameter estimation

4.1. Pseudo Yule– Walker equations

In order to estimate the prediction coefficients of
(3), a natural criterion is the least square error
minimization. Thus, minimizing the model error
power (4) yields the following p equations:

8s 2 f1; . . . ; pg; E½em;dðnÞx
�
mþd ðnþ 1� sÞ� ¼ 0.

(10)

Using (4) and (2), one obtains

8s 2 f1; . . . ; pg; rvðMsþ d �MÞ

þ
Xp

k¼1

ak;drvðMðs� kÞÞ ¼ 0. ð11Þ

These equations correspond to the p first pseudo
Yule–Walker equations for TS-AR signals. The use
of (7) allows to demonstrate it for all s40:
multiplying each side of (4) by x�mþd ðn� sþ 1Þ ¼
v�ðMðn� sþ 1Þ �m� dÞ and taking the mathe-
matical expectation yields

rvðMsþ d �MÞ þ
Xp

k¼1

ak;drvðMðs� kÞÞ

¼ E½em;d ðnÞx
�
mþdðn� sþ 1Þ� 8s40. ð12Þ

Either for a true TS-AR signal or for an unspecified
random sequence modeled as a TS-AR signal, the
error is orthogonal to past signal samples (7) thus

rvðMsþ d �MÞ þ
Xp

k¼1

ak;drvðMðs� kÞÞ ¼ 0

8s40. ð13Þ

For a given time-shift dX1, the set of equations (11)
can be written in a matrix form. In order to estimate
the prediction coefficients fak;d ; k ¼ 1; . . . ; pg, the
autocorrelation function rvðkÞ is first estimated and
the following equation is solved:

bR:bad ¼ �brd (14)

with

bR ¼

brvð0Þ brvð�MÞ . . . brvð�Mðp� 1ÞÞbrvðMÞ brvð0Þ

�

� �

�brvðMðp� 1ÞÞ brvð0Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
,

(15)

where brd ¼ ½brvðdÞ brvðM þ dÞ . . . brvðMðp� 1Þ þ dÞ�T,bad ¼ ½ba1;d ba2;d . . . bap;d �
T, brvðkÞ and bak;d denote re-

spective estimates of rvðkÞ and ak;d .
Note that bR and brd are independent of the

subseries index m, which ensures that the ak;d

coefficients and their estimates bak;d are also inde-
pendent of m, as it was set in the model (3). This is
also shown by the equivalent model in (5).

Moreover, the correlation matrix bR has a Toeplitz
structure, which allows the use, for example, of the
Levinson–Durbin algorithm for a fast inversion of
the system (see [13, p. 213]). Note also that this
matrix does not depend on d. Actually, bR is the
classical autocorrelation matrix of AR estimation
from xmðnÞ. This yields two advantages. First, the
computation of its inverse will be done only once,
even if several time shifts are used. Second, the
solving of (14) can be achieved using any AR
algorithm. Thus, several TS-AR models can be
defined, each characterized by a shift dX1.



In order to build a spectral analysis tool,
statistical properties of the prediction error em;dðnÞ

are studied in the next section.
4.2. Prediction error statistical properties

The mean of the linear prediction error can be
derived using (4). If the input random process U ¼
fuðnÞ; n 2 Zg is assumed to be zero-mean, obviously,
the linear prediction error of the TS-AR model is
zero-mean. For sX0, using (4), its autocorrelation
function is of the form

rem;d
ðsÞ ¼ E½em;dðnÞe

�
m;dðn� sÞ�

¼ rvðMsÞ þ
Xp

k¼1

ak;drvðMðs� k þ 1Þ � dÞ

þ
Xp

q¼1

a�q;drvðMðsþ q� 1Þ þ dÞ

þ
Xp

q¼1

a�q;d

Xp

k¼1

ak;drvðMðsþ q� kÞÞ. ð16Þ

Eq. (13) yields

8sX0;
Xp

k¼1

ak;drvðMðsþ q� kÞÞ

¼ �rvðMðsþ q� 1Þ þ dÞ. ð17Þ

Finally, (16) can be written in a simplified manner,
8sX0,

rem;d
ðsÞ ¼ rvðMsÞ þ

Xp

k¼1

ak;drvðMðs� k þ 1Þ � dÞ.

(18)

Eq. (18) shows that this error autocorrelation
function does not depend on the subseries index
m. Therefore, in what follows, it will be denoted by
red
ðsÞ. By replacing the theoretical autocorrelation

samples rvðkÞ by their estimates brvðkÞ, we obtain the
expression for estimation of red

ðsÞ. Contrarily to the
case of classical AR modeling, the prediction error
of TS-AR modeling is no longer white, even if the
modeled signal is a pure TS-AR signal matching (7)
(except in the case d ¼M which is equivalent to AR
modeling). In all other cases, for d 2 f1; 2; . . . ;M �
1g and dXM þ 1, the autocorrelation red

ðsÞ can be
estimated until at least lag p using (18). This allows
to estimate the PSD of any subseries xmðnÞ (all
subseries have the same PSD), as it is shown in
Section 5.
4.3. Autocorrelation estimation

The TS-AR coefficient estimation, like in classical
AR modeling, is based on the estimates of the
autocorrelation samples of rxðkÞ. Within the frame
of subband processing, several estimators may be
used. Considering one branch of the filterbank
depicted in Fig. 1, there are a priori at least three
different ways to estimate the autocorrelation
function rxðkÞ.

A first estimator can be derived, based on a two-
step procedure. First, bruðkÞ is estimated from the N

available samples, using a traditional autocorrela-
tion estimator (biased or unbiased). Second, con-
sidering that the subband filters are of finite impulse
response (FIR) type, the autocorrelation of the
filtered signal vðnÞ is of the form:

rvðkÞ ¼
XL�1

s¼�ðL�1Þ

rhðsÞruðk � sÞ,

with

rhðsÞ ¼
XL�1
n¼0

hðnÞh�ðn� sÞ, (19)

hðnÞ; n ¼ 0; . . . ;L� 1 being the impulse response of
the considered filter. Note that the non-overlapping
procedure proposed in [11,12] induces FIR filters.
This leads to the first estimator:

r
_

xðkÞ ¼
XL�1

s¼�ðL�1Þ

rhðsÞbruðMk � sÞ. (20)

A second estimator can be proposed, based on the
classical estimation of brvðkÞ from vðnÞ samples:

r
^

xðkÞ ¼ brvðMkÞ. (21)

A third estimator can also be considered. It consists
of estimating M autocorrelation functions, brxm

ðkÞ,
from the M available subseries xmðnÞ, using a
classical estimator and then averaging them out,
that is,

erxðkÞ ¼
1

M

XM�1
m¼0

brxm
ðkÞ. (22)

Obviously, all three estimators have the same mean.
To compare them, a variance study is done in
Appendix A which shows that in the case of
Gaussian processes

Var½erxðkÞ� ¼ Var½r
^

xðkÞ�. (23)



However, no interesting expression of the variance
of r
_

xðkÞ can be found in order to compare it with the
variance of the other two estimators. Therefore, the
choice between these three estimators is based on
the aliasing-free condition in the center of the
subbands, which is strictly satisfied by the first
estimator (see [12]) and only approximately by the
other two estimators. For this reason, the first
estimator r

_

xðkÞ has been used in this work.

5. Spectral analysis based on TS-AR modeling

In this section, the analysis filterbank of Fig. 1 is
assumed to be ideal, i.e. composed of infinitely
sharp bandpass filters. For dX1, the TS-AR model
is given by 8n 2 Z, 8m 2 f0; . . . ;M � 1g,

xmðnÞ ¼ �
Xp

k¼1

ak;dxmþdðn� k þ 1Þ þ em;dðnÞ. (24)

To remain coherent with (1), the index mþ d should
be less than M. Note that if m and d are such that
mþ dXM, there exists a unique couple ðq; rÞ 2 N2

such that mþ d ¼Mqþ r with 0prpM � 1.
Therefore, in this case, (24) can be modified using

xmþd ðnÞ ¼ xrðn� qÞ. (25)

(This comes directly from (1).) Then (24) leads to
the PSD of the TS-AR model, denoted by
STS�ARðf Þ:

STS�ARðf Þ ¼
Sed
ðf Þ

j1þ
Pp

k¼1ak;de�i2pf ðkþðd�1Þ=MÞj2
, (26)

where Sed
ðf Þ denotes the PSD of the model error.

This PSD Sed
ðf Þ can be estimated using (18).

Therefore, TS-AR modeling can be applied on each
branch of the analysis filterbank of Fig. 1. Each of
these TS-AR models leads to an estimation of the
PSD of fuðnÞ; n 2 Zg within the considered subband.
A specific processing, such as the one proposed in
[11,12], has to be applied in order to avoid any
overlapping between the different subbands. Then,
the whole PSD Suðf Þ can be estimated subband after
subband, from the estimates of STS�ARðf Þ in each
subband. Obviously, the procedure can be imple-
mented in parallel, allowing the PSD estimation on
the M subbands simultaneously.

6. Main benefits of the method

It is well-known that the variance of the auto-
correlation estimators increases when the lag tends
to the available number of samples N. Since
rxðkÞ ¼ rvðMkÞ, there are several ways to interpret
the second drawback (D2) of subband parametric
spectral estimation when compared to the fullband
estimation.

Let pfull and p denote the model orders chosen for
the fullband process and for the subband processes,
respectively. Note that in AR-based spectral estima-
tion methods, these generally correspond to the
number of autocorrelation samples to be estimated
(except for least-square based algorithms). Then, if
p ¼ pfull, there is an increase of the global variance
of the estimated autocorrelation vector,

kVar½brsub�k4kVar½brfull�k
wherebrsub andbrfull represent the respective estimated
autocorrelation vectors of the subband and fullband
processes. However, if p ¼ pfull=M, the estimation
variance will be the same. But, in this case, there is
information reduction due to the fact that the vector
rsub has a size M times smaller than the vector rfull.
Eq. (11) shows that TS-AR method allows the use
of autocorrelation samples of signal vðnÞ with
indices Mk þm, ma0, contrarily to classical sub-
band AR estimation. Note that these vðnÞ auto-
correlation samples (for m 2 f1; . . . ;M � 1g)
correspond to the intercorrelation between two
decimated subseries in the same subband:

rxm1
xm2
ðkÞ ¼ E½xm1

ðnÞx�m2
ðn� kÞ�

¼ rvðMk þm2 �m1Þ. ð27Þ

Therefore, the TS-AR spectral estimation may help
in reducing drawback (D2) by finding a way to use
this additional information.

Moreover, as the number of available autocorre-
lation samples is often limited by the number of
signal samples N, it seems better to use an order
p ¼ pfull=M for a fair comparison of fullband and
subband parametric spectral estimation. This is the
reason of our choice in the present paper.

Classical parametric spectral estimation from
subbands has already been shown to be beneficial
for several reasons, as stated by properties B1–B4

(see Section 1) and these benefits are preserved with
this new time-shift procedure.

Considering property B1, TS-AR modeling leads
to a decrease of the condition number since the
matrix bR is the same as in the case of classical AR
modeling in subbands (see Section 4).

The B2 property is still verified with TS-AR
modeling because frequency spacing and local



signal to noise ratio (SNR) increases are only due to
the decimation and filtering operations.

Property B3 concerns PSD of signals and not
PSD of the modeling error. When a given signal
yðnÞ satisfies the Paley–Wiener condition
(
R 1=2
�1=2 j logSyðf Þjdfo1: see [14]), a realistic spec-

tral flatness measure can be used as in [15]

Fy ¼
exp½

R 1=2
�1=2 lnSyðf Þdf �

s2y
, (28)

where s2y is the signal variance. When using an ideal
filterbank (uniform or not), it can be shown that
subband signals have a flatter PSD than the original
one in geometric mean [10]. As this property does
not depend on the kind of modeling, it remains valid
with TS-AR modeling.

Property B4 has been theoretically shown by Rao
and Pearlman in [7]. More precisely, the analyzed
fullband signal uðnÞ is assumed to be a real AR(q)
process decomposed with an ideal filterbank (in-
finitely sharp bandpass filters). Let ru denote the
linear prediction error power associated to the
fullband classical AR modeling and rj the one
associated to each of the M subband AR modelings.
Then the following inequality is verified:

ruX

XM�1
j¼0

rj for ppq (29)

with equality if and only if uðnÞ is a white noise. In
the asymptotic case (M !þ1), this means that the
linear prediction error powers rj must tend to 0
whatever j for the series to stay convergent. This
result shows the advantage of subband decomposi-
tion for AR modeling when a linear prediction error
power criterion is considered. The result has been
obtained for an ideal filterbank and for classical AR
modeling. Since the TS-AR model is equivalent to
the classical AR modeling for d ¼M, this property
will be investigated in the next section. The next
section presents simulation results that compare the
TS-AR spectral estimation with that of classical
fullband and subband AR spectral estimation.

7. Simulation results

7.1. Simulation context and time-shift d selection

TS-AR modeling has been presented without any
filter implementation consideration. However, it is
well-known that non-ideal filters result in spectral
overlapping. In order to avoid this problem, a
specific procedure has been proposed in [12]. The
solution is composed of a warping device, placed
before the filterbank which is chosen as a bank of
FIR modulated comb filters of order L. The squared
modulus of the transfer function of the jth filter is
given by

jHjðe
i2pf Þj2 ¼

1

L

sin2 pðf � FjÞL

sin2 pðf � FjÞ
if faF j ;

L if f ¼ F j ;

8><
>:

(30)

where j is the subscript of the considered subband
(j 2 f0; . . . ;M � 1g) and Fj ¼ jð0:5=MÞ þ 0:25=M is
the center of the jth subband Bj. Thus, the transfer
function is periodically equal to zero around F j with
period 1=L. This is the alias-free condition for
spectral estimation from subbands when using the
procedure described in [12]. For sake of clarity, a
short description of the method is given hereafter.

Let n 2 ½0; 1� be the frequency to which the PSD
SuðnÞ is to be estimated. In Fig. 1, the filterbank is
preceded by a warping device (complex exponential
ei2pDfn with Df ¼ F j � n). The choice of Df allows to
warp the spectral estimation at frequency n to the
center of its corresponding subband Fj , where
aliasing is canceled by the properties of the analysis
filterbank. Thus, the algorithm used to lead simula-
tions presented in this paper is summarized below:

For dX1 and for each frequency n:
1.
 Subband selection j ¼ Int½2Mn� (with Int½:� the
integer part operator).
2.
 Autocorrelation estimation brxðkÞ using the first
estimator presented in Section 4.3.
3.
 TS-AR parameter estimation using classical AR
algorithm to solve (14).
4.
 Error spectral estimation using (18) to derive the
error spectrum at MF j: Sed

ðMF jÞ.

5.
 TS-AR spectral estimation using (26) to derive

STS�ARðMFjÞ.

6.
 Reconstruction of the spectral estimate of the

input signal:

bSuðnÞ ¼MSTS�ARðMF jÞ.

This last result comes from the particular proper-
ties of the comb filterbank and is valid for filter
order L multiple of M (see [12]).
While varying the above frequency n between 0 and
1 (or 0.5 for real signals) with a given frequency
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step, the whole PSD of the original signal uðnÞ can
then be reconstructed.

The main parameters of this TS-AR algorithm
are the number of subbands M, the subband
modeling order p and the time-shift d. In practice,
the selection of M and p can be done in the same
way than classical subband AR modeling:
1.
 Fullband order selection: find the best order pfull

(using classical criterions as MDL or AIC for
example) for fullband AR modeling. As ex-
plained previously, M and p are then linked by
the following relationship:

Mp ¼ pfull.
2.
 Find the larger decimation ratio M for which the
subband order p ¼ pfull=M is sufficient for
modeling the subband signal well (in the sense
of the same criterion as above).

The choice of the time-shift d if of great importance
because, from the simulations below, it is clear that
it affects the performance. It is difficult to choose
because its optimal value (under a given criterion)
depends on the spectrum of the analyzed signal uðnÞ.
The first thing to consider for the choice of this
parameter is that d must not be too large for signals
with continuous spectrum. Indeed, in this case, the
autocorrelation rvðkÞ tends to 0 when k!þ1. As
a consequence, when d !þ1, rd ¼ ½rvðdÞ rvðM þ

dÞ . . . rvðMðp� 1Þ þ dÞ�T tends to null vector. From
(14), the following result is obtained:

ad ! 0 when d !þ1. (31)

In practice, when dbM, the TS-AR coefficients
vanish and the spectrum of the error Sed

ðf Þ tends to
the signal spectrum: the TS-AR modeling becomes
inefficient.

The proposed solution is to derive the TS-AR
estimate for d ¼ 1; 2; . . . ;M þ 1 and then to choose
d so that the variance of the estimator is minimum
(requires several realizations). Also, in the case of
signals with line spectrum, it is not useful to choose
a large time-shift d because the TS-AR estimate will
have a periodic behavior, depending on the fre-
quencies.

All simulations presented in what follows are
driven within this context. The next section presents
the performance of the TS-AR method on two kinds
of signals, with continuous and with line spectra.
Comparisons between fullband, classical subband
and TS-AR spectral analysis are given. In particu-
lar, the LPE behavior is studied for the three kinds
of spectral analysis. Dealing with this, a remark has
to be done. For fullband spectral estimation, there is
only one autocorrelation matrix whatever the
frequency of interest and therefore, the LPE power
is not frequency dependant. However, subband and
TS-AR spectral estimations are made using the non-
overlapping procedure of [12], as detailed above.
This results in a specific spectral estimation for each
frequency of interest. This is the reason why the
LPE power is frequency dependent in the case of
TS-AR and classical subband spectral estimation.

7.2. Signals with continuous spectrum

Simulations are done in the case of a pure MA
signal with continuous spectrum. For each realiza-
tion, the simulated signal is obtained by finite
impulse response (FIR) filtering of a white noise

UðzÞ ¼ BðzÞWðzÞ, (32)

where wðnÞ is a white noise with power s2w ¼ 1:2 and
the MA coefficients are given by

½1:0000;�0:1837; 0:5373,

� 0:3252; 0:4351; 0:1419; 0:0174�.

These coefficients are chosen so that the theoretical
spectrum is neither too peaky nor too flat. The
chosen model order for fullband spectral estimation
is pfull ¼ 16 and p ¼ 4 for subband spectral estima-
tion (for AR and TS-AR modeling). The filterbank
is uniform with M ¼ 4 subbands and a decimation
ratio of M.

The simulations presented below are obtained
using 100 Monte-Carlo runs with the above para-
meters. In order to compare the performance of TS-
AR as well as the standard subband and fullband
AR spectral estimations, linear prediction error
(LPE) spectra are plotted in Fig. 3. In the case of
TS-AR modeling, the error spectrum for the
different considered time-shifts d, Sed

ðMFjÞ, is
displayed rather than the LPE power since it is a
better measure of the performance (see (26)). In
Table 1, these LPEs are averaged on each subband
and averaged spectrum variances are also included
to demonstrate how the chosen delay affects final
performances.

As can be seen in Table 1 and Fig. 3, the TS-AR
method provides better results in terms of LPE
power than the fullband and standard subband
spectral estimation methods for short time-shifts
(doM). The reason is the following: in Fig. 2, it can



be seen that d represents physically the prediction
lag: equidistant samples xmþdðn� kÞ for different k

are used to predict sample xmðnÞ which is separated
by d samples from the others. As it is more difficult
to predict something far away, TS-AR provides
lower LPE than classical subband method
(d ¼M ¼ 4) for doM. On the other hand,
Table 1 and Fig. 3 also show that the parameter
giving minimum variance for the spectral estimator
(for the considered MA signal) is d ¼ 5 and not 1
(which gives minimum LPE power). When dealing
with continuous spectrum signals, it is often
desirable to get low variance estimates and this
makes variance a good performance criterion. This
Table 1

Linear prediction error powers (continuous spectrum)

Subband Subb

j ¼ 0 j ¼ 1

Fullband s2

Var½S�

TS-AR, d ¼ 1 s2 0.0306 0.025

Var½S� 0.3765 0.208

TS-AR, d ¼ 2 s2 0.0848 0.077

Var½S� 0.3396 0.187

TS-AR, d ¼ 3 s2 0.1766 0.129

Var½S� 0.3338 0.178

TS-AR, d ¼ 4 s2 0.3462 0.264

(Classical subband) Var½S� 0.3235 0.169

TS-AR, d ¼ 5 s2 0.3301 0.198

Var½S� 0.3282 0.170
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Fig. 3. Linear prediction error spectra.
raises an apparent inconsistency between the
optimization criterion and the final performance
measure which comes from the fact that these two
criteria are equivalent in the case of classical AR
modeling (fullband or subband) but not in the case
of TS-AR modeling. Rather than the LPE power, a
better optimization criterion for TS-AR parameter
estimation would be the whiteness of the modeling
error. However, this would result in a high
computational cost of the algorithm. Using LPE
power minimization allows to use classical algo-
rithms to solve (14) and reduces the cost of the
overall algorithm which is anyway complex (for
each frequency n, (14) has to be solved).

In the following, parameter d ¼ 5 is chosen to
illustrate TS-AR performances versus classical full-
band and subband ones since it minimizes the
estimation variance. The bias and mean square errors
(MSE) of the spectral estimates are displayed in the
next figures. The aim is to compare the three different
spectral estimators: the classical fullband and subband
AR estimations and the TS-AR estimator for d ¼ 5.
More precisely, knowing the true spectrum Sðf Þ and
naming bSiðf Þ; i ¼ 1; . . . ; 100 the different realizations
of a given spectral estimator, the means and variances
are obtained as follows:

bSðf Þ ¼ 1

100

X100
i¼1

bSiðf Þ,

Var½bSðf Þ� ¼ 1

100

X100
i¼1

ðbSiðf Þ � bSðf ÞÞ2. ð33Þ
and Subband Subband Means on

j ¼ 2 j ¼ 3 all Subbands

1.1918

0.3431

9 0.0189 0.0353 0.0277

7 0.0987 0.9489 0.4082

8 0.0805 0.1679 0.1027

4 0.0885 0.9118 0.3818

9 0.1759 0.4106 0.2233

9 0.0855 0.8925 0.3727

9 0.2884 0.7413 0.4102

9 0.0824 0.8726 0.3621

6 0.2185 0.9364 0.4209

4 0.0819 0.8668 0.3618
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Fig. 4. Spectrum biases versus frequency.

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

10

20

Normalized frequency

M
S

E
 (

dB
)

Fullband Subband

TS-AR, d=5

Fig. 5. Spectrum MSE versus frequency.

0 100 200 300 400 500
0

0.5

1

1.5
x 10-4

Realization number

B
ia

s

Subband

Fullband

Averaged TS-AR

Fig. 6. Bias of bf 0 versus the realization number.
Using 100 Monte-Carlo runs, the bias Sðf Þ � bSðf Þ
and the MSE MSEðf Þ ¼ ðSðf Þ � bSðf ÞÞ2 þ Var½bSðf Þ�
are plotted in Figs. 4 and 5.

Even if the TS-AR and classical subband biases
are quasi-superimposed, the variance is smaller in
the case of TS-AR modeling than in the case of
fullband or subband AR modeling. These results
show the advantage of the TS-AR method in
reducing the estimation variance of continuous
spectra, even if this improvement is weak.

7.3. Signals with line spectrum

In this section, the analyzed signal is assumed to
be a pure sinusoid embedded in white noise with a
random phase f uniformly distributed between 0
and 2p.

uðnÞ ¼ A sinð2pf 0nþ fÞ þ bðnÞ, (34)

where A ¼ 1, f 0 ¼ 0:1 (normalized frequency) and
bðnÞ is a white noise with power s2b ¼ 0:05
(SNR ¼ 10 dB). In the case of line spectrum signals,
the final performance measure is the variance of the
frequency estimate. Therefore, a specific frequency
estimator based on TS-AR modeling, is proposed
for this kind of signals.

The idea is to use all the TS-AR spectral
estimators and compute an averaged TS-AR fre-
quency estimate. More precisely, the frequency
estimate bf 0d of the sinusoid frequency f 0 is
determined on each separate spectral estimate for
d ¼ 1; . . . ; 5, given by the maximum of the esti-
mated spectrum or more simply, zeroing the
denominator of (26). Then these estimations bf 0d ,
d ¼ 1; . . . ; 5 are averaged to form the final TS-AR
estimate bf 0. Indeed, in the case of line-spectrum
signals, the frequency estimate is the one zeroing the
denominator of (26) and is therefore independent of
extra errors coming from the estimation of the error
spectrum Sed

ðf Þ. This is not the case when estimat-
ing the spectrum of a MA signal using (26) as in the
previous subsection.

The bias and variance of bf 0 are plotted versus the
realization number in Figs. 6 and 7 using 500
Monte-Carlo runs. The goal is still to compare the
three methods (classical AR fullband and subband
and TS-AR). As in the case of continuous spectra,
the variance and bias of the frequency estimates are
smaller with TS-AR modeling.
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Moreover, this idea of using all TS-AR models
with different values of d can be extended to
propose a spectral estimator. Rather than choosing
one value of d, which is a non-trivial task as we have
shown in the previous section, we propose to form
an averaged TS-AR spectral estimator defined as
the average of all TS-AR spectral estimators (26) for
different values of d. The improvement brought by
TS-AR modeling is shown in Fig. 8 where fullband
AR, subband AR and averaged TS-AR spectra are
displayed, showing that the TS-AR spectral esti-
mator has much smaller variance.

8. Conclusion

The aim of this paper was to propose a spectral
estimation improvement within the field of subband
estimation. A new AR-based model was proposed
as a way to exploit the a priori information
provided by the knowledge of the autocorrelation
samples of the filtered signal vðnÞ on one branch of
the filterbank, or, which is equivalent, by the
knowledge of the intercorrelation between the
different subseries xmðnÞ obtained after the M-fold
decimator.

After the definition of this new modeling, TS-AR
parameter estimation has been presented, using a
classical minimum error power criterion. It should
be noted that this criterion is not optimal in the
sense of the error whiteness as for classical AR
modeling. However, this criterion allows the use of
classical AR parameter estimation algorithms for
TS-AR parameter estimation.

Moreover, different ways to estimate the auto-
correlation function of the decimated sub-signals
have been presented and studied, showing that two
out of them are equivalent at first and second order.
Simulations were performed both in the case of
signals with continuous spectrum and in the case of
signals with line spectrum. They compared the TS-
AR spectral estimation and the classical subband
and fullband AR methods. In the case of signals
with continuous spectra, the improvement brought
by TS-AR modeling is weak. Moreover, selection of
the time-shift d is difficult in this case as it requires
several realizations of the studied signal. The real
interest of TS-AR modeling appears for frequency
estimation (case of line spectra): the use of an
averaging of the TS-AR estimates with different
parameter d values reduces significantly the bias and
variance of the frequency estimate and no time-shift
selection is necessary.
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Appendix A. Variance of the autocorrelation

estimators

The aim of this appendix is to study the
autocorrelation estimators r

^
xðkÞ and erxðkÞ defined,

respectively, in (21) and (22). Obviously, both
estimators have the same mean.
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The variance of the first estimator is

Var½r
^

xðkÞ� ¼ Var½brvðMkÞ�. (A.1)

Assuming the process to be Gaussian allows to
derive simplified expression of the variance of
classical autocorrelation estimators [16]:

Var½brxm
ðkÞ� ¼ C

Xþ1
l¼�1

ðr2xm
ðlÞ þ rxm

ðl þ kÞrxm
ðl � kÞÞ

¼ C
Xþ1

l¼�1

ðr2vðMlÞ

þ rvðMl þMkÞrvðMl �MkÞÞ, ðA:2Þ

where C ¼ 1=Ns for the biased estimator and C ¼

Ns=ðNs � kÞ2 for the unbiased estimator, Ns being
the number of available samples for signal xmðnÞ.
Let JM ðlÞ denote the following function:

JM ðlÞ ¼
1 if l is multiple of M;

0 else.

�
(A.3)

As JMðlÞ is periodic, another expression can be
derived by writing its Fourier series expansion

JM ðlÞ ¼
1

M

XM�1
s¼0

eið2pls=MÞ. (A.4)

Eq. (A.2) can be rewritten as

Var½brxm
ðkÞ�

¼ C
Xþ1

l¼�1

ðr2vðlÞ þ rvðl þMkÞrvðl �MkÞÞJMðlÞ

¼
XM�1
s¼0

C

M

Xþ1
l¼�1

½ðrvðlÞe
iðpls=MÞÞ

2

þ ðrvðl þMkÞeiðpðlþMkÞs=MÞÞ

�ðrvðl �MkÞeiðpðl�MkÞs=MÞÞ�. ðA:5Þ

Introducing wsðnÞ ¼ vðnÞeiðpns=MÞ, yields

Var½brxm
ðkÞ� ¼

XM�1
s¼0

C

M

Xþ1
l¼�1

½r2ws
ðlÞ

þ rws
ðl þMkÞrws

ðl �MkÞ�. ðA:6Þ
Signal wsðnÞ, constructed from non-decimated signal
vðnÞ has MNs samples, so that in both cases:

Var½brws
ðMkÞ�

¼
C

M

Xþ1
l¼�1

½r2ws
ðlÞ þ rws

ðl þMkÞrws
ðl �MkÞ�.

Hence

Var½brxm
ðkÞ� ¼

XM�1
s¼0

Var½brws
ðMkÞ�. (A.7)

Moreover, Var½brws
ðkÞ� ¼ Var½brvðkÞ�, 8k indepen-

dently of s, so

Var½brxm
ðkÞ� ¼MVar½brvðMkÞ� (A.8)

and

Var½erxðkÞ� ¼ Var½brvðMkÞ�. (A.9)

Finally, using (A.1) and (A.9) the variances of
both estimators r

^
xðkÞ and erxðkÞ are shown to be

identical:

Var½erxðkÞ� ¼ Var½r
^

xðkÞ�. (A.10)
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