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Abstract—This paper presents new FEC codes for the erasure
channel, LDPC-Band, that have been designed so as to optimize
a hybrid iterative-Maximum Likelihood (ML) decoding. Indeed,
these codes feature simultaneously a sparse parity check matrix,
which allows an efficient use of iterative LDPC decoding, and a
generator matrix with a band structure, which allows fast ML
decoding on the erasure channel. The combination of these two
decoding algorithms leads to erasure codes achieving a very good
trade-off between complexity and erasure correction capability.

I. INTRODUCTION AND RELATED WORKS

For the transmission of data packets on erasure channels,
linear binary FEC codes often offer the best compromise
between fast encoding/decoding operations and a good level of
erasure recovery capability. For example, random binary codes
have a correction capability very close to channel capacity
[1]. Unfortunately, the decoding complexity of random codes
grows fastly with the code size, because the decoding algo-
rithm, named Maximum-Likelihood (ML) decoding, basically
consists in solving a linear system, which can be done by
inverting the associated matrix. This matrix represents the
relations between the set of received symbols and the set
of missing symbols, in our representation a row contains the
coefficient used to build an encoding symbol. If k denotes the
dimension of the code the inversion has a complexity of O(k2)
row operations. In the remaining of the paper the complexity
will be evaluated in terms of row operation. A row operation
includes the sum of two rows of the matrix and the sum of
the corresponding symbols. It is importance to notice that in
pratical applications the size of the symbols can be up to
several hundred bytes.

To reduce this complexity, Studholme and Blake [2] showed
that similar erasure capability can be obtained when the non
zero entries of the generator matrix are located in a band
of length 2

√
k and where each column contains 2 log(k)

nonzero elements. With this improvement, the complexity of
the decoding is reduced to O(k3/2) row operations.

The class of Fountain codes, like LT [3] or Raptor [4]
codes can also obtain very good performances in terms of
erasure correction capability. An estimation of the performance
achieved by Raptor codes with ML decoding is provided in [5].

This work was supported by the French ANR grant No 2006 TCOM 019
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A theoretical analysis of Raptor codes complexity is also led
in [4] but does not give any reference results for comparison
on the decoding speed of Raptor codes, whose algorithm is
provided in [6].

LDPC codes are another class of binary codes providing
good level of decoding performance with extremely fast
encoding/decoding algorithms [7][8]. Indeed, the classical
iterative decoding algorithm for the erasure channel, based on
the work of Zyablov [9], has a linear decoding complexity.
The drawback of this algorithm is that it does not reach the
performance of ML decoding. Moreover, the sparsity of the
matrices also reduces the ML performance compared to full
random matrices.

Recently, two independent works [10][11] proposed a hy-
brid iterative-ML decoding algorithm, where ML decoding is
only used when the iterative decoding does not succeed to
decode a received codeword.

The new codes we introduce in this paper also rely on a
hybrid decoding. Our goal is to build these codes in such a way
that both the parity check matrix and the associated generator
matrix have good properties for the iterative and ML decoding
schemes. More precisely, the parity check matrix should be
sparse in order to yield good performance with the iterative
decoding. At the same time, the generator matrix should
have a banded structure in order to reduce the computational
complexity of the ML decoding scheme, as explained in
[2]. Thanks to a polynomial representation of the rows and
the columns of the generator and parity check matrices, we
introduce a method that enabled us to build such codes.

Pfister and al. [12] have also studied the capacity of non-
systematic Irregular Repeat-Accumulate codes which asymp-
totically achieve the channel capacity with a bounded com-
plexity, whose structure is quite similar to these presented here.
In our paper, we present a structure that can be decoded by
an efficient ML decoding scheme on the generator matrix, in
addition to an iterative decoding on the parity check matrix.
While the asymptotical results of Pfister can achieve the
channel capacity, this work focuses on the performances of
finite length codes.

The idea of window based encoding in LDPC codes has
been proposed by Haken, Luby and al. in patent [13]. However,
a goal of this patent is to minimize memory access during



encoding, by localizing the access in a window that slides
over the input file. Independantly of whether our proposal falls
into the scope of this patent or not, we see that, from a purely
scientific point of view, the goal of [13] completely departs
from the approach discussed in the current paper, as well as
the theoretic tools we introduce to achieve our goals.

The paper is organized as follows: we detail the polynomial
approach for the construction of our LDPC-Band codes in
Section II. In Section III, we analyse the erasure correction
capability of the proposed code and we provide simulation
results. Finally, in Section IV we evaluate the complexity of
the hybrid decoding. Then we conclude.

II. CONSTRUCTION OF THE CODE

A. General structure of the code

Let G be the systematic binary generator matrix of the
banded code:

G = (Id|M)

Let H be its associated parity check matrix:

H = (A|U)

Let k be the dimension code and n the length of the code. It
follows that G is a k × n matrix, A is a (n − k) × k matrix
and U is a (n− k)× (n− k) binary matrix.

Let us define U as a lower triangular Toeplitz matrix
defined by its first column (1, u1, . . . , un−k−1). Since all the
diagonal elements are equal to 1, U is a full rank matrix. In
addition, let us consider the associated polynomial u(x) =
1 +

∑n−k−1
k=1 ukxk. The coefficient of U are the following:

{ui,j} =

 ui−j if i > j
0 if i < j
1 if i = j

U =



1 0 0 . . . 0 0
u1 1 0

u2 u1 1
...

...
... u2 u1

. . .

ui

... u2
. . . 0

... ui

... 1 0

un−k−1

... ui u1 1


The relations between the generator matrix G and its asso-

ciated parity check matrix H : G ×HT = 0 give:

M = (U−1A)
T

UMT = A

Let B be the band width of the band matrix M studied here,
which will have the following form:

M =

m0,0 m0,1 . . . m0,B−1 0 . . . 0 0

0 m1,0

. . . . . . m1,B−1 0 . . . 0
... 0

. . .
. . . . . .

. . . 0
...

...
... 0 mk−1,0 . . .

. . .
. . . 0

0 0 . . . 0 mk,0

. . . . . . mk,B−1


For i = 0, . . . , k− 1, let us define the polynomial mi(x) =∑B−1
j=0 mi,jx

j corresponding to the ith row of M . Since
A = UMT , it can be shown that, for i = 0, . . . , k − 1, the
ith column of A is characterized by the polynomial ai(x)
such that ai(x) = u(x)mi(x) (see Figure 1). This result is
important as it allows to construct banded generator matrices
from particular distributions in the parity check matrix. Let us
define the Hamming weight of a polynomial as the number
of monomials. Then, the number of non-zero elements of a
column of A is the weight of ai(x), noted W (ai).

B. Design of the matrices

In order to build a code supporting hybrid iterative/ML
decoding, a first constraint is to optimize the iterative decoding
on the parity check matrix. This decoding is very sensitive
upon the degree of the symbol and check nodes, i.e. the
weight of the columns and the rows of the parity check matrix.
Thanks to the polynomial approach, these parameters can be
controlled. Indeed the weight of the columns and rows of U is
defined by the number of monomials in u(x), and the weight
of the column of A is defined by the number of monomials
in the different ai(x). We will see later how the row weight
can be controlled. The second constraint concerns the ML
decoding. As explained before, the generator matrix of this
code must be band of width B in order to reduce the ML
decoding complexity. We do not impose any other constraint
on the generator matrix as we assume that the matrix is
sufficiently random to allow good correction capabilities under
ML decoding.

In order to support an efficient iterative decoding, the
columns of the parity check matrix must have a small weight.
In particular we must choose a small weight polynomial for
u(x), the polynomial defining U the right side of the parity
check matrix.

The main point of the process is to find polynomials mi(x)
of degree close or equal to B, such that ai(x) have few
monomials, where ai(x) = mi(x)u(x). Let us call these
polynomials candidate polynomials. Finding these candidate
polynomials can be achieved with an exhaustive search, in
advance, once the various code parameters (n, k, B) are known.
The details of how this search is done does not impact the
decoding efficiency and therefore are not described in the
reminder of this paper.

Once a polynomial u(x) and a set of candidate polynomials
have been selected, the weight of the columns of parity check
matrix is fixed. But the weight of the rows can still be modified
to fit a specific value. Indeed by permuting two polynomial in
M , or by exchanging a polynomial with another candidate



H =



a0,0 u0

a0,1 a1,0 u1 u0

a0,2 a1,1 a2,0 u2 u1 u0

a0,3 a1,2 a2,1 u3 u2 u1

... a1,3 a2,2
. . .

... u3 u2
. . .

... a2,3

... u3

...
...


Fig. 1. The parity check matrix of the code with a band structure

polynomial of same weight, we can modify the weight of
several rows without changing the weight of the columns.

C. Optimizations

We have now defined a way to implement banded codes
for both decoding techniques. However this implementation
is limited to a number of encoding symbols of exactly n =
2k+B. Furthermore, these codes turn out to be quite inefficient
for the ML decoding in terms of erasure recovery capability,
because the first non-systematic symbols only protect a small
part of the source symbols. This is a negative side effect of
the approach. We now explain how to solve this problem.

Given a polynomial u(x) and a bandwidth B, the set
of candidate polynomials usualy contains several elements.
Therefore it is possible to choose different polynomials and
to interlace them to build the matrix M , and the matrix A
inherits from a corresponding interlacement in its polynomial.
This technique has two main benefits. The first one is an im-
provement of the decoding performances for the ML decoding,
with limited impacts on the iterative decoding. Indeed, many
polynomials interlaced produce more variety in the generator
matrix and avoid diagonals and regularities that damage the
performances of the ML decoding. The second benefit is the
suppression of the side effect mentionned above. The idea is
to suppress the B

2 first and last columns of M . As it breaks
the polynomial relations between A, U and M because of the
first and last B

2 lines of M that are now truncated, we replace
these lines with candidate polynomials which are of degree
B
2 at maximum, in order to keep the matrix banded, and keep
the constraints upon A and U . As a consequence, the encoding
packets at the edge of the non-systematic part of the generator
matrix are now connected to more source symbols. This also
suppress the influence of the band size on the code rate, as
the number of symbols produced is now n = 2k, meaning a
code rate strictly equal to 1/2.

The last point is to handle different code rates. To that goal,
we define the f parameter which corresponds to the column
shift between consecutive lines of M . For instance, for a ratio
of r = 1/2, each successive line is shifted by 1 position from
the previous one, i.e. f = 1. In order to handle other ratios,
we need to take f = 1/r− 1. Moreover, in this case, the first
and last B

2f lines are of degree B
2 . If f is not an integer, we

should use a family of integer offsets {fi} such as the average
value of this set is equal to f .

Fig. 2. Design of the banded matrix of the non-systematic part with side
effect removed

To summarize, in this section we have defined a way to
create erasure band codes that handle efficiently (both in terms
of erasure recovery capability and algorithmic complexity)
both iterative (thanks to the sparseness of the parity check
matrix) and ML decoding (thanks to its banded structure), for
different code rates.

III. CORRECTION CAPABILITY ANALYSIS

A. Theoretical Analysis

Influence of the band on the ML performances: For the
ML performances on the generator matrix G, the crucial point
is to determine a band size that ensures both a quick decoding
and good correction capabilities. With the first constraint, the
band size used should be as narrow as possible. However, this
size should also be sufficient in order to avoid an explosion of
the decoding overhead. It is important to notice that the band
size corresponds to the maximum degree of the associated
binary polynomials mi(x).

Studholme and Blake [2][1] have studied the influence of
the window size on binary random matrices constrainted in
a window. The conclusion of their work is that for random
binary matrices constrained in a window, its size has to be
kept close to 2

√
k. Moreover, in this window, the number

of non-zero elements must be at least 2 log k. These values
guarantees that the probability of being full rank is close
to the one of pure random matrices. As our approach uses
specific configurations of banded matrices, this value should
be considered as a minimum. The band size in our case has
to be kept as low as possible and for long dimensions, as
close as possible to this value, because it will have a great
impact on decoding speed. The size of the band will then be
a tradeoff between a good ML decoding speed and a strong
ML decoding performance.

Density evolution analysis: A density evolution approach
[14] for the design of this code has been studied, but have
faced many obstacles. If we choose to consider a infinite
matrix with an infinite band width, the density evolution
will give the same distributions as for a standard Repeat-
Accumulate code. But building a finite length matrix having
a such distribution can be difficult as the rows distribution
strongly depends on the choice of the polynomials and their
permutations. Furthermore as the band is small, a strong
irregularity in the joint degree distribution [15] may appear.



On the other hand if we choose an infinite matrix with a
finite band width, the hypothesis of infinite length cycle does
not hold anymore.

B. Simulation Results

In this section, we compare the correction capability of
our codes with standard LDPC-Staircase codes. First of all,
it is worth noticing that we will use band codes with multiple
polynomials interlaced. Indeed, experiments have illustrated
the fact that using only one polynomial degrades greatly the
decoding performances and will not be discussed here.

The crucial point is now to select a set of polynomials
that will respect the conditions in the band, but also that
have great performances in both decoding. In this study, we
have tried to keep as close as possible of iterative adapted
distributions. However, because of the additional conditions
of banded matrices, an evolution density approach is not
straightforward. It is also worth noticing that the chosen set
of polynomials is always a compromise between performance
of iterative decoding and ML decoding. This allows the user
to adapt the polynomials to the environment of the channel.
Experiments have also shown that the way the polynomials
are interlaced and their position has only a little impact on the
ML decoding performances, even for a random interlacing.
The results presented in Table I and Table II are based on a
regular interlacing for B = 100 and B = 200 for a code rate
of 1/2. We compare both LDPC-Band codes with a Windowed
Erasure code with a band size of 2

√
k. Nevertheless the results

for the Windowed Erasure code are only available for the
ML decoding, as the iterative deconding is not relevant here.
We study here, the average overhead required in order to
successfully decode the received symbols.

Decoding scheme Iterative Maximum-Likelihood
LDPC-Staircase N1 = 5 14.24% 1.21%

LDPC-Band - B = 100 18.39% 2.97%
LDPC-Band - B = 200 14.75% 1.24%

Windowed Erasure - b = 63 NA 0.17%

TABLE I
AVERAGE OVERHEAD W.R.T DECODING SCHEME, K=1000 CODE

RATE=1/2

Decoding scheme Iterative Maximum-Likelihood
LDPC-Staircase N1 = 5 13.95% 1.15%

LDPC-Band - B = 200 16.23% 1.19%
Windowed Erasure - b = 89 NA 0.79%

TABLE II
AVERAGE OVERHEAD W.R.T DECODING SCHEME, K=2000 CODE

RATE=1/2

As expected, the band size is a crucial factor for the
decoding performances. A band size of 100 is less performant
but will have a greater decoding speed. In order to have
efficient systems, we can see that the band size has to be
large compared to the Windowed Erasure Codes. These results

also show that LDPC-Band codes are really close to standard
LDPC-Staircase codes, while being more constrained.

IV. COMPLEXITY ANALYSIS

A. Theoretical Analysis

A key point in data transmission is the encoding and
decoding speed of the code. In this study we do not include
the creation of the code in the complexity analysis. Indeed,
the generation of the generator and parity check matrices is
straightforward and can be done out of line. On the decoder
side, both decoding algorithms apply. The first one is an
iterative decoding on the parity check matrix. This decoding
is fast and has a linear complexity on the dimension of
the code O(k). When the iterative decoding fails, a ML
decoding is used on the generator matrix. The complexity of
this algorithm is in the general case O(k2) row operations.
However the decoding of LDPC-Band codes benefits from
the band structure. Thanks to this structure, an optimized LU
decomposition of the matrix [16] leads to a complexity of
O(kB) row operations. This means that for k = 2000 source
symbols and a band size of B = 200 symbols, the theoretical
speed gain compared to a classical ML decoding will be about
one order of magnitude. The complexity obtained here has to
be compared with the complexity of O(k3/2) row operations
of the Studholme and Blake approach.

However, in practice, the size of the matrices that need to be
inverted is lower than k. There are three reasons: (1) whenever
a source symbol is received, the corresponding row in the
generator matrix is removed. Then (2), only the columns of
the non-systematic part that are received are used. It means that
for a code rate r the system that has to be inverted is only in the
order of (1−r)k× (1−r)k. Finally (3) the iterative decoding
may have rebuilt some missing symbols, thereby reducing the
system size.

B. Simulation Results

We carried out several tests to assess the computation
benefits of our proposal. These tests were obtained on a 4xIntel
Xeon5120 @ 1.86GHz/4 GB RAM/Linux PC. We compared
the LDPC-Band codes with a band width of 200 with two
other codes:

1) the LDPC-Staircase codes, regular repeat accumulate
codes standardized by the IETF [8]. Following the opti-
misation for the hybrid iterative/ML decoding proposed
in [17], the degree of the source symbol nodes is set to
5.

2) the random windowed codes proposed in [2]. These
codes can be seen as a non systematic LDGM codes
with 2log(k) elements per column. Because it is a
non-systematic code, iterative decoding cannot be used
(unlike standard LDGM codes).

Figure 3 shows the average decoding bitrate as a function
of the loss probability of the channel for the various code.
The LDPC-Band and the LDPC-Staircase performances can be
divided into two parts. In the region where the loss probability
is low, the iterative decoder is sufficient to recover the losses
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Fig. 3. Bitrate W.R.T loss probability, k=2000 code rate=1/2 and symbol
size=1024 bytes

and the bitrate is high. In the region of high loss probability
the ML decoder is needed and the bitrate is reduced 1. On
the opposite, the decoding speed of Windowed code does not
depend on the loss probability, since it can only be decoded
with a ML decoder.

We see that when the iterative decoding is used, the LDPC-
Staircase and the LDPC-Band present comparable decoding
speed (with a slight advantage to LDPC-Staircase codes), and
they are both significantly faster than Windowed codes (that
need ML decoding).

When ML decoding is needed, LDPC-Band codes outper-
form the other two codes: they are roughly 2 times faster than
the Windowed codes, and roughly 4 times faster than LDPC-
Staircase codes. Let us remind that the ML decoding of the
LDPC-Band and the LDPC-Staircase is equivalent to solve a
linear system of size (1 − r)k × (1 − r)k, whereas the ML
decoding of the windowed erasure codes requires to solve a
system of size k×k (being non systematic, no source symbols
is received and the system still has k unknown variables).

Table III present the average ML decoding time for the three
compared codes as a function of the number of source symbols
k. The LDPC-Band is always faster than the two other codes.
Furthermore the ML decoding speed falls more quickly with
the two other codes than with the LDPC-Band. The decoding
speed with an iterative decoder are shown in Table IV. The
LDPC-Band is slower than the LDPC-Staircase but remains
very close to it under iterative decoding.

V. CONCLUSION

In this paper we proposed a flexible scheme that allows the
construction of generator and parity check matrices and their

1Note that the bitrate slightly increases with the loss probability when the
ML decoder is used. When the loss probability decreases, the number of row
increases and the number of column decreases because more parity symbols
are known and fewer source symbol are unknown. While the solver complexity
remains approximatly the same, the size of the constant vector increases with
the row number and induce an additional complexity.

k 1,000 2,000 4,000
LDPC-Band 326 Mbps 235 Mbps 150 Mbps

LDPC-Staircase 125 Mbps 60 Mbps 30 Mbps
Windowed Erasure 220 Mbps 120 Mbps 68 Mbps

TABLE III
AVERAGE ML DECODING TIME AS A FUNCTION OF THE OBJECT SIZE, FOR

A CODE RATE=1/2 AND SYMBOL SIZE = 1024 BYTES.

k 1,000 2,000 4,000
LDPC-Band 1100 Mbps 1050 Mbps 900 Mbps

LDPC-Staircase 1300 Mbps 1200 Mbps 1000 Mbps

TABLE IV
AVERAGE ITERATIVE DECODING TIME AS A FUNCTION OF THE OBJECT

SIZE, FOR A CODE RATE=1/2 AND SYMBOL SIZE = 1024 BYTES.

efficient hybrid decoding. The iterative decoding on the parity
check matrix provides a fast way to recover the source sym-
bols, as decoding complexity is linear. When the environment
is too harsh and the loss rate is close to the recovery capability
of the codes, a Maximum-Likelihood decoding is applied on
the structured generator matrix. Thanks to the band structure of
this matrix, the ML decoding complexity is reduced to O(kB)
row operations. This property allows the hybrid decoder to
sustain high decoding speeds, even in high loss environments.

Thanks to the polynomial representation of the matrices,
we presented a practical way of building the matrix of such
codes. Our results shows that our LDPC-band codes match the
performances of LDPC-staircase codes in terms of iterative
decoding speed, while being much faster than these codes
when ML decoding is required. Furthermore the LDPC-band
codes exhibit erasure recovery capabilities close to standard
repeat-accumulate codes using iterative decoding, and are
close to the channel capacity when decoded with a ML
scheme. In future works, a density evolution study should
enable us to further improve the erasure correction capabilites
of the iterative decoding scheme, without degrading the ML
decoding capability.
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