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Abstract

A multi-stage industrial agitator system adapted to the mixing of a mixture whose viscosity varies during the process has been
characterized by using CFD. In the entire study the mixture is supposed to have a Newtonian behavior even though it is rarely the case. It
is shown that the well-adapted propeller is able to e7ciently blend high viscous media provided the Reynolds number is not too low. A
scale-up study of the agitated system has also been carried out by respecting the classical scale-up rules such as the geometrical similarity
and the conservation of the power per volume in the particular case of viscous media.

Using an Eulerian approach, the hydrodynamics of three di9erent scales with geometrical similarity have been numerically characterized
by the energy curve (power number versus Reynolds number) and by the Metzner and Otto constant in which both are required for
scale-up procedure. Experimental power measurements have been carried out at the smaller scale so that simulations have been partially
validated. New hydrodynamic criteria have also been introduced in order to quantify the =ows in the case of a multi-stage stirrer running
at low Reynolds number. It has been shown how this hydrodynamic di9ers dramatically from one scale to another when scale-up at
constant energy per volume is applied. From the CFD results, recommendations about the widely used scale-up rules have been suggested
and modi>cations of stirring geometry have been proposed in order to reduce the =ow pattern variations during scale-up.

Keywords: Laminar mixing; Scale-up; CFD; Double-=ux impeller; Multi-stage stirrer

1. Introduction

Industrial mixing in the laminar regime is usually per-
formed by means of speci>c stirrers like anchors (Takahashi,
Arai, & Saito, 1980), screws (Aubin, Naude, Xuereb, &
Bertrand, 2000) or helical ribbons (Brito-de la Fuenta,
Choplin, & Tanguy, 1997). These stirrers are well designed
for processes involving highly viscous mixtures (¿ 50 Pa s)
of Newtonian or non-Newtonian =uid but, if the mixture
viscosity decreases, their e7ciency decreases. In indus-
trial processes (e.g. polymerization, fermentation or several
other processes), the viscosity changes of the mixture oc-
cur frequently and, therefore, there are needs to modify the
mixing conditions (Gerstenberg, Sckuhr, & Steiner, 1983).
A solution could consist in combining di9erent kinds of

stirrers, for example, an helical ribbon with a Rushton tur-
bine (Tanguy, Thibault, La Fuente, Espinoza-Solares, &
Jecante, 1997), which has however the drawback of requir-
ing two di9erent motors in the mixing unit. A second alter-
native is to improve the performance in laminar conditions
of a common stirring system such as propellers. Accord-
ing to Dickey (2000), this can be achieved using several
stages of propellers whose diameters have been increased
(D=T ¿ 0:9) and by removing baHes. Such stirring systems
are then able to blend highly viscous mixtures until about
30 Pa s and remain also e7cient for Reynolds number vary-
ing from 20 to the turbulent regime. The purpose of this
CFD work is, on one hand, to investigate such a stirring
system and, on the other hand, to study the scale-up of this
industrial process.

Many rules or principles can be applied for the scale-up
of stirring vessels. According to Uhl and Von Essen (1986),
the following types of similarity have to be used: geomet-
ric, kinematics and dynamic. Kinematics similarity means
that the =uid motion is similar provided the geometrical
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similarity is respected. The dynamic similarity is based on
the conservation of the forces ratio such as the Reynolds
number, Froude number, Weber number, etc. It is however
clear that no more than two ratios can be kept constant and
all other criteria are consequently violated. Therefore, it is
important during scale-up to recognize those main criteria
which, for further success, must be satis>ed at each scale.
In some particular cases, other principles like thermal and
chemical similarity also have to be considered. For exam-
ple, it could be essential to keep the heat transfer per unit of
mass or a thermal coe7cient constant in the case of poly-
mer reactors. Nevertheless, it has to be pointed out here
that thermal similarity can lead to inconvenient processes.
In addition, the chemical similarity can be justi>ed if cer-
tain kinetics have to be maintained. The most widely used
scale-up rule is the equal power per unit of volume (BNuche
recommendations). As noted by Gerstenberg et al. (1983),
the power per volume criteria is often applied in practice
and, in many instances, has given accurate results. There-
fore, it can be retained as a basic scale-up criterion and this
is the reason why it has been chosen for this study.

The main purpose of this work is to evaluate the con-
sequences of such scale-up criteria on the hydrodynamics
of the agitated vessel. This study attempts to demonstrate
why geometrical similarity must not be applied blindly with-
out taking care of any change of the hydrodynamic regime.
Thanks to CFD, it has been shown how, with geometrical
similarity, the =ow patterns vary as a function of the scale
during scale-up with a constant power per volume. This use-
ful visualization can be used to modify the stirring system
at the smallest scale in order to ensure the same hydrody-
namics during scale-up of processes where hydrodynamics
are critical.

The scale-up rules of equal power per volume di9er with
the hydrodynamic regime characterizing the process. In tur-
bulent =ow (Re¿ 10; 000), the power number given by Eq.
(1) remains constant and the power per volume unit varies
as shown in Eq. (2).

Po =
P


N 3D5 ; (1)

P=V = Po
4

�

(
D
H

)(
D
T

)2

N 3D2; (2)

where  is a factor depending on the bottom geometry of the
vessel ( = 1 in the case of a =at bottom vessel). Assuming
constant geometry, the equal per volume criterion then leads
to the following scale-up rule given by

N 3D2 = constant (or ND2=3 = constant): (3)

However, in the case of a laminar =ow (Re¡ 20), the power
number is inversely proportional to the Reynolds number as
in the following:

Po Re = A: (4)

The laminar energy constant, A, theoretically depends on the
agitator type and on the system geometry only. The power

per unit of volume is varying in laminar regime as shown
below:
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Then, by keeping the power per volume unit constant in the
case of geometrical similarity and for the same mixture, Eq.
(5) leads to the scale-up rule speci>ed by

N = constant (or ND0 = constant): (6)

During scale-up, the Reynolds number increases as the im-
peller diameter increases and, therefore, a laminar regime at
small scale may become a transient or even turbulent regime
at higher scales. In the transient regime, the two scale-up
rules given by both Eqs. (3) and (6) become unsuitable and
cannot be applied. The energy curve in the transient regime
is then needed to scale-up by constant power per volume
criterion.

This paper presents a scienti>c approach of the scale-up
at constant power per unit of volume in the case of a pro-
cess in the laminar or transient regime. Using CFD, the
energy curve for the three scales of similar geometry in
laminar and transient regime were drawn. Power measure-
ments were carried out so that the CFD results could be par-
tially validated. As explained by Aubin et al. (2000), there
are not a lot of experimental techniques available for the
local hydrodynamic characterization of high viscosity =uids.
The classic techniques, such as laser Doppler velocimetry
(LDV) and particle image velocimetry (PIV), which allow
local measurements using a penetrating laser beam are lim-
ited in such high viscosity =uids due to light di9usion. From
the energy curve, stirring speed can be set at each scale to
ensure a scale-up by constant power per volume criterion.
With these stirring conditions, a local analysis of the =ow
patterns is carried out in order to characterize the hydro-
dynamic performance induced by the use of such scale-up
criteria.

2. System description and method

2.1. Description of the stirring system

The stirring system studied in this paper is used in indus-
trial processes. Considering the high viscosity of the New-
tonian =uid to be mixed at the beginning of the process,
baHes become useless and have therefore been removed.
According to the recommendations given by Dickey (2000)
for high viscosity mixing with common propellers, several
impellers with larger diameter should be chosen. In addition
to the justi>cations put forward by Dickey (2000), the large
impeller diameter and the absence of baHes leads to im-
provements in thermal performances which are essential in
industrial processes. Although the viscosity at the end of the
process becomes very low (0:05 Pa s), the stirring system
involving axial impellers provides suitable mixing. It has



Fig. 1. Scale-up of a multi-stages stirrer, geometrical parameters at scales studied.

however to be underlined that the aim of the study is not to
model the process during the variation of mixture viscosity.

As shown in Fig. 1, the stirring system involves a MIG
double-=ux (DF) impeller (D=T = 0:9) and a four-bladed
pitched blade turbine (PBT) (D=T =0:6), which is located at
the bottom of the vessel. Performances of MIG DF impellers
have been compared to those of helical ribbon by KNappel
(1979). He recommended a DF diameter ratio of 0.9 to
attain the best e7ciency for mixing highly viscous liquids.
At least, it can be noted in Fig. 1 that a dished bottom is
used as it is common in industrial processes.

As announced by suppliers of the DF stirrers, these kind
of DF impellers provide excellent blending of highly vis-
cous media and diameter ratios up to 0.95 can be used to
mix products with viscosities of up to 80 Pa s. The opposed
blade angles at the tip of the DF impeller provide an upward
=ow and good mixing close to the wall. In addition to its
relatively low-energy consumption, the main advantage of
the DF impeller is that the =ows induced by the inner and
outer sections move in opposite directions, improving the
distribution of the mechanical energy in the vessel.

Three stirring vessels a; b and c are to scale with one
another and each has been meshed with the geometrical
dimensions as summarized in Fig. 1.

2.2. CFD method

Simulations of three-dimensional velocity >elds and en-
ergy consumption have been performed with the commercial
code FluentJ5, functioning with unstructured mesh, which

enables the representation of the real stirring geometry. The
CFD code has been used to solve, in Cartesian co-ordinates,
the continuity and momentum equations for a laminar =ow.
Several agitator speeds have been simulated with Newtonian
and non-Newtonian =uids. Their characteristics and rheo-
logical behavior are summarized in Table 1.

Resolution of the algebraic equations was performed
using the semi-implicit algorithm pressure linked equa-
tion (SIMPLE) with a second-order upwind discretization
scheme. Constant boundary conditions have been set re-
specting an rotating reference frame (RRF) approach. Here,
the impeller is kept stationary and the =ow is steady relative
to the rotating frame, while the outer wall of the vessel is
given an angular velocity equal and opposite to the velocity
of the rotating frame. This approach can be employed due
to the absence of baHes (and thus baHe–impeller interac-
tion) in the real industrial con>guration. The same RRF
approach, often used for stirred vessels, has given accu-
rate results for several di9erent stirring systems in laminar
(Aubin et al., 2000) and turbulent =ow (Naude, 1998). The
simpli>cation of the stirring system where baHes have been
removed is obviously independent of the CFD resolution
and is only due to mixing and industrial considerations. In
the case of agitated vessels involving baHes, computational
=ow could nonetheless have been easily achieved with an
MRF (Naude, 1998) or sliding meshes approaches. Since no
vortex appears, the free surface is de>ned as a symmetrical
boundary condition where the normal velocity component
is equal to zero. Solutions are considered to be converged
when repeated iterations do not change the power consump-
tion and when the dimensionless velocity residuals remain



Table 1
Fluids characteristics used for simulations and experimental measurements

Rheological Viscosity, � Consistency index, m Flow behaviour Speci>c gravity, 

nature (Pa s) (kg sn−2 m−1) index, n (kg m−3)

Simulations Newtonian 30 — — 1000
scales a, b and c Newtonian 5 — — 1000

Shear thinning (power law) — 70 0.3 1000
Shear thinning (power law) — 70 0.7 1000

Experiments Newtonian 25◦C 4.2 — — 1100
scale a

Table 2
Mesh optimization for a Newtonian =uid: viscosity of 30 Pa s and speci>c gravity of 1000 kg m−3

Scales

a b c

Stirring speed N (rpm) 90 70 50
Number of cells (half volume) 35 644 75 951 58 053 104 153 182 501 216 598
Power, P (W) 145 140.4 18 072 17 165 31 520 30 943
Uncertainty (%) ±1:8 ±2:6 ±0:9

constant above 10−7. According to an Eulerian approach,
results are then transformed back into the stationary frame.
The stirring geometry has been built with GambitJ soft-
ware for the three scales: a; b and c. Thanks to the periodic
symmetry, only one-half of the vessel was modeled leading
to a reduction of calculation time. The meshes used are
tetrahedral and hexahedral. Additional mesh re>nements
near the walls of the vessel and near the stirrer were com-
pleted so that the accuracy in the high-velocity gradients
zones was improved. The mesh at each scale has also been
optimized in order to obtain accurate results in a shorter
calculation time. The e9ect of grid size has been investi-
gated in the case of laminar =ow for a Newtonian =uid. The
number of computational cells tested at each scale is sum-
marized in Table 2. Composing the results for each scale,
in terms of power consumption, shows that this variable
varies very little with the grid size. Therefore, the solutions
in this work are independent of grid size.

Freitas (1999) has checked the numerical uncertainty in
the case of several existing codes: Fluent, Star-CD, N3S
and CFD-ACE. The rules of numerical calculations recom-
mended by Freitas (1999) have been followed in this study,
which means that a second-order discretization scheme has
been used. The solution is grid independent, iterative conver-
gence has been accurately addressed, boundary conditions
have been explained, and the existing code has been cited.

2.3. Experimental set-up for energy consumption
measurements

Experiments were carried out in a thermostated stain-
less steel vessel, the dimensions of which are those of

scale a (Fig. 1). The stirring system previously described
is known as MIG propellers and the torque measure-
ments have been performed with a torque-meter (F612 TC,
0–500 N) supplied by Robin Industries. The stirring motor
(M2JA 100L4A) can deliver a maximum power of 2:2 kW
at 1500 rpm. The =uid used for the experiments was a
Newtonian one and its characteristics are summarized in
Table 1. From the torque measurements, C, the power, P,
can be calculated by subtracting to the torque measured in
the empty vessel, C0, as shown below

P = 2�N (C − C0): (7)

It is important to carry out these measurements with an
industrial pilot in order to take into account the ball
bearings and shaft perturbations that are present on an in-
dustrial scale. This has, nonetheless, some drawbacks as
the non-transparent nature of the industrial vessel makes it
impossible to carry out tracer tests or laser doppler mea-
surements.

3. Results and discussion

3.1. The energy curve and the Metzner and Otto
constant: simulations and experiments

As the simulations also involve non-Newtonian =uids, the
following theoretical equations have been given for the case
of a power-law =uid for the calculation of the Metzner and
Otto constant at di9erent scales.

The power consumption of the stirring system may be
computed from the integration of the viscous dissipation
function, �v. For the general case of an incompressible and



Fig. 2. Power curve, experimental results (scale a) and CFD results (scales a, b and c).

a power-law =uid (Ostwald–de Waele model), the power
consumption can be expressed as

P =
∫

(V )
m|�v|(

n−1
2 )�v dV; (8)

where

�v = 1
2(� : �); (9)

where � is the symmetrical rate of the deformation tensor.
The combination of Eqs. (8) and (1) enables the calcu-

lation of the dimensionless power number. In the case of
Newtonian =uids (n=1), this calculation has been repeated
at each scale for several impeller speeds in order to plot
the energy curve (i.e. Po vs. Re). This curve, obtained from
simulations with Newtonian =uids at scales a; b and c is
compared in Fig. 2 to the one obtained from experiments
conducted at scale a for Reynolds number varying between
20 and 500. Firstly, it is noticed that there is good agree-
ment between experimental and simulated points although
simulations involve a laminar model even in the transient
regime. Secondly, the energy curves obtained at each scale
have been superimposed which con>rms, using a numeri-
cal approach in case of geometrical similarity, the energy
curve is independent of the scales but is only a function
of the stirring system geometry. The dimensionless analysis
leads to an accurate evaluation of the power required, what-
ever the scale considered. Moreover, the points in laminar
regime, Re¡ 20, are perfectly aligned as a straight line with
a − 1 slope, which is in full agreement with the theoretical
Eq. (4). As expected, when the Reynolds number is in-
creased, the regime becomes transient, and the points devi-
ate from the slope −1.

Metzner and Otto (1957) characterized the =uid motion
in the impeller region by an average shear rate, Ṙ�, which is
linearly related to the rotational speed, N as shown below:

Ṙ� = kN: (10)

The dimensionless average shear, k, commonly called the
constant of Metzner and Otto, has been estimated for each
scale. For this purpose, simulation of non-Newtonian =uids
is required.

In order to calculate the Metzer and Otto constant, sim-
ulations have been conducted with di9erent shear thinning
=uids (Table 1), rheological behaviors of which can be de-
scribed by the Ostwald–De Waele (or power law) models.
For non-Newtonian =uids, the Reynolds number becomes
the apparent Reynolds number, Rea, which is a function of
the apparent viscosity, �a. Substituting Eq. (10) into a simple
power law leads to a generalized de>nition of the Reynolds
number, Reg as

Rea =

ND2

�a
=


ND2

m Ṙ�n−1
=


N 2−nD2

mkn−1 = Regkl−n: (11)

By introducing the power number, Eq. (11) can be rear-
ranged as

PoReg = PoReakn−1 = Akn−1: (12)

The energy curve of the DF stirring system, given by
Fig. 2, can be extended to non-Newtonian =uids by the Po

vs. Rea curve. For each scale, both the constants k and A
have been calculated from simulations with shear thinning
=uids by using Eq. (12). In case of experimental results,
the constant A has been calculated using only the >rst two
points since the last three points are in the transitional
regime. All the results for A and k, compared in Table 3,



Table 3
Metzner and Otto constants, k, and laminar energy constants, A, for scales a, b and c

Scales

a a b c

Method used Experimental Simulations Simulations Simulations
Metzner and Otto constant, k — 13 11 14
Laminar Energy constant, A 56 48 50 52
Correlation coe7cient of ln(PoRea) versus n − 1 — 0.999 0.991 0.966

are very close. Nevertheless, the experimental value of A is
slightly higher and this could be explained by the fact that
the >rst two points are bordering on the laminar-transitional
regime. Further experiments are needed in the laminar zone
to obtain a better experimental accuracy.

In conclusion, it has been con>rmed with a CFD approach
that the energy curve as well as the dimensionless average
shear in the vessel is speci>c to the stirring geometry only
and not of the considered scale.

As the stirring system has been de>ned for industrial pur-
pose and involves two kinds of impellers (DF and PBT), it
is not surprising that no reference of this system is available
in the literature. Among the rare references related to DF
impellers, KNappel (1979) has studied the mixing of highly
viscous Newtonian liquids. He presented a comparison
between performances obtained by a helical ribbon and a
stirring system involving >ve MIG DF impellers with D=T
varying 0.9, 0.95 and 0.98. The constant A for a single stage
can be estimated at 27 which is in agreement with the value
given by the supplier. The value of A given by CFD (Table
3 and Fig. 2) for the stirring system (DF and PBT) is about
50 which would be close to the case of two stages of DF
impellers. HNocker, Langer, and Werner (1981) have also
studied stirring systems involving three DF impellers in
baHed vessels. They compared the energy curves obtained
in the case of Newtonian and, non-Newtonian liquids. They
also proposed a value of the Metzner and Otto constant,
k, equal to 11 which is quite close to those presented in
Table 3.

Simulations of energy consumption allow the stirring
speed to be set at every scale so that the power per unit
volume can be kept constant during the scale-up. For this
purpose, the power per unit volume has been plotted as
a function of the stirring speed for the three scales in
Fig. 3. In order to ensure a constant power per unit of
volume for stirring conditions of 90 rpm at scale a, Fig. 3
shows that stirring speeds must be set at 70 rpm for scale
b and 63 rpm for scale c. As expected, the variation of the
power per unit volume as a function of the stirring speed
presented in Fig. 3 di9ers because the Reynolds number
involved at each scale is also di9erent. For scale a, func-
tioning at stirring speed smaller than 150 rpm, the regime
is almost laminar (Re¡ 10:4) and the power per unit vol-
ume curve varies according to Eq. (5). For the other scales
functioning at stirring speed larger than 20 rpm, the regime

is rapidly transient (Re¿ 40) and the power exponent is
enclosed between 2 and 3.

Consequences of a constant power per volume scale-up
criteria, on the tip velocity, Reynolds, Froude and Weber
numbers are summarized in Fig. 4. It has been noticed that
there is a large increase in the Reynolds number, Froude
number and tip velocity for the higher scales, b and c.
As recommended by the suppliers and the common indus-
trial users of DF impellers, the tip velocity can be set to
2–8 m s−1 and the stirring can be run both in laminar and
transient regime. Because of these variations in Reynolds
number, Froude number and tip velocity, the =ow patterns
in the vessel may also change during scale-up, leading to a
change of mixing performances. In the following part, the
e9ects of the constant per volume scale-up criteria combined
with the geometrical similarity on the local analysis of the
=ow patterns will be assessed. It will be shown how the
=ow patterns change so that discussion on the pertinence of
these scale-up rules is given. In addition, modi>cations of
stirring systems are suggested for reducing the =ow patterns
changes during scale-up.

It is obvious that even the >nest local =ow pattern analysis
will not be signi>cant at an industrial process scale if this
previous analysis has not been conducted. In the next part,
it will be shown that =ow pattern variations are signi>cant
from one scale to another despite the conservation of the
power per volume unit.

3.2. Hydrodynamic results : @ow pattern visualization of
Newtonian @uids

The purpose of this section is to present the =ow patterns
of Newtonian =uids visualized in the vessels a; b and c in
the case of a constant power per volume criteria (conditions
of Fig. 4). Fig. 5 describes the planes of observation and the
=ow patterns at scales a; b and c are presented in Fig. 6. The
colored scale refers to the dimensionless axial velocities,
normalized by the tip velocity as (vz=�ND).

The =ow patterns di9er between scales a; b and c. In
the case of vessel a, particular oscillatory =ows have been
obtained. The =uid is put in motion only in front and be-
hind the blades and no motion is noticed in plane 4. The
areas of the axial cross section where the =uid =ows up and
down are linked to the position of the DF impeller. For the
three scales, self-feeding at the tip of the DF impeller can be



Fig. 3. Power per volume in function of stirring speed for scales a, b and c.

Fig. 4. Variations of several hydrodynamic parameters during scale-up.

observed. This is the main disadvantage of this kind of im-
peller. The mixing in the volume near the double-=ux is not
well renewed, particularly in laminar =ow, even though the
liquid is put in motion near the wall.

The axial velocity in each half-vessel has been averaged
under the angular coordinate, � with an in-house made pro-
gram so that the normalized axial velocity (vz=�ND) can

be plotted for several horizontal planes. A comparison be-
tween scales, given in Fig. 7, shows that the axial =ow at the
smallest scale a (or lowest Reynolds number) is very poor
in comparison with that obtained for scales b and c. The cir-
culation loops are nonetheless well connected at each scale.
Likewise, the =ow generated by the down pumping PBT is
more like that produced by a radial impeller. This is due to



Fig. 5. Observation planes of =ow patterns.

the proximity of the vessel base and the fact that the agitated
=uid has a high viscosity. The unusual radial =ow, provided
by an axial impeller has already been noticed experimen-
tally by Mavros, Xuereb, and Bertrand (1996) for an axial
impeller in non-Newtonian liquids. In order to avoid such
a phenomenon, one solution could be to move up this im-
peller stage in the vessel but this may induce a dead zone at
the bottom of the vessel and, in this case, a third impeller
has to be added. A secondary circulation loop, due also to
radial =ow, is observed in the plane above the DF impeller
particularly when the Reynolds number is increased. This
inaccurate hydrodynamic phenomenon could be avoided by
increasing the impeller diameter.

Fig. 8 presents the contours of the dimensionless axial
=ow in the median plane located at equidistance between
the DF and PBT impellers. The >gure illustrates the phe-
nomenon previously described in Fig. 6. The axial =ow at
small Reynolds number (scale a) is strongly dependent of
the position of the impeller. At higher scales (b and c),
this phenomenon tends to disappear because of the increase
in the Reynolds number. Therefore, =ow patterns then be-
come more usual in all the vertical planes: the =ow moves
downward in the middle of the vessel whereas it moves up-
wards near the wall. The phenomenon characterizing scale
a has also been reported by Lamberto, Alvarez, and Muzzio
(1999) in an experimental and computational study of a
stirring vessel in laminar =ow. In the case of Rushton tur-
bine, these authors have shown that the positions of segre-
gated regions are found to move towards the impeller in the
radial direction and away from the impeller in the axial
direction as a blade approaches. They also noted that as the
Reynolds number increases, this e9ect decreases; the struc-
ture becomes less dependent on the angular position of the
blade.

In order to point out this phenomenon, the dimensionless
axial =ow in the median planes of each scale, for two dif-
ferent normalized radii ( Rr = 0:4 and 0:8, as indicated in the
Fig. 8), are presented in Figs. 9 and 10, respectively. In the
case of scale a, the dimensionless axial velocity at both radii
Rr = 0:4 and 0:8 varies around zero except in front and be-
hind the DF impeller. It is then obvious that the averaging

carried out to plot Fig. 7 leads to a reduction of the motion
in the plane. The upward and downward =ows near the DF
impeller are namely added and, as the axial velocity in the
rest of the angular co-ordinate range is close to zero, the
resulting mean is very low. This is not the case for higher
Reynolds numbers (i.e. scales b and c). Firstly, axial =ow is
of the same kind (positive or negative) before and after the
DF impeller. Secondly, the dimensionless velocity is gener-
ally negative for Rr = 0:4 and generally positive for Rr = 0:8.
In conclusion, the average along the angular co-ordinate �,
is only meaningful for higher Reynolds numbers, i.e. larger
scales. Therefore, a new approach without angular averag-
ing has been investigated and is detailed in Section 3.3.

The particular low =ow pattern obtained at scale a is due
to small Reynolds numbers and the same dimensionless =ow
pattern would be obtained for a higher scale if the Reynolds
number was maintained constant, which is extremely excep-
tional in scale-up procedures. The =ow pattern obtained at
the smallest scale a is not representative of those obtained
after scale-up. Therefore, a distortion of geometrical simi-
larity or a change in stirring geometry could be investigated
at the smaller scale in order to provide closer =ow patterns
between pilot and industrial scales. Generally, these kinds
of distortions are very common in industrial cases and this
is the reason why a numerical approach like the one devel-
oped in this paper is very useful.

3.3. Quantitative approach: calculation of the axial and
tangential average @ow numbers and the average swirl
number

The =ows provided by a stirrer are usually character-
ized by a pumping number approach, which considers the
=ows through a volume close to the agitator. This approach
becomes unsuitable in the case of multi-staged and large
diameter impellers and, particularly, in case of laminar
=ows presented here (with re-circulation loops). Therefore,
a more global approach is needed. In order to evaluate the
global e7ciency of the whole considered stirring system at
these three di9erent scales, the upward or downward axial
=ows, Qax, have been computed for several heights, z, of the
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Fig. 7. Angular average of =ow pattern at the scales a, b and c.

vessels. As it has been shown in the previous part, the an-
gular average of the axial velocity is not suitable for the
case of very small Reynolds number. Therefore, axial =ows
have been computed without taking into account the angular
position of velocity vectors, but only their sign as given by

Qax =
∑
i=vi¿0

Aivzi =
∑
i=vi¡0

Aivzi (13)

where Ai is the computational cell area.

The dimensionless axial =ows numbers, Nq ax, given by
Eq. (14) can then be plotted as a function of the dimension-
less height z=H for several impeller speeds (or Reynolds
number):

Nq ax =
Qax

ND3 : (14)

For a constant power per volume criterion (conditions given
by Fig. 4), the axial =ow numbers are plotted in Fig. 11
as a function of the dimensionless height, z=H . Like the



Fig. 8. Contours of dimensionless axial velocity (vz=Vtip) visualized in the median planes between DF and PBT impellers (Iso-z=H = 0:46).

Fig. 9. Variation of the dimensionless axial velocity (vz=Vtip) along angular co-ordinate for Rr =0:4 in the median planes between the DF and PBT stirrers.

=ow patterns, the shapes of the curves di9er from scale a
to scale b and from scale b to scale c. This is obviously
due to a change in the hydrodynamic regime. The pitched
blade turbine (PBT) and the double-=ux (DF) stirrers are
positioned at z=H = 0:24 and =0:69, respectively. The axial
=ow at scale a is characterized by minima, which occur at
heights corresponding to the stirrer planes. In these planes
and at low Reynolds numbers, the stirrers generate tangential
and radial motion. Therefore, it is recommended to modify
the angles of the impeller blades in order to provide more
conventional axial =ow in laminar range. The curves related

to b and c have almost the same shapes even though the
regime becomes less and less laminar from b to c.

In order to check the continuity of the curves, Nq ax, be-
tween the scales, several agitator speeds have been simu-
lated so that the curves Nq ax vs. z=H can be compared for
di9erent Reynolds number values (Fig. 12). In the case of
scale a, it has been observed that the dimensionless values
and the shape of the curves are the same whatever the im-
peller speeds when the Reynolds number is smaller than 20.
The shape of the curves related to the scale b are close to
those of a or c depending on the Reynolds number.



Fig. 10. Variation of the dimensionless axial velocity (vz=Vtip) along angular co-ordinate for Rr=0:8 in the median planes between the DF and PBT stirrers.

Fig. 11. Dimensionless axial =ow pro>le in vessels a, b and c for a constant energy per volume.

The presence of these two kinds of curves is in agree-
ment with this qualitative approach since the >rst type of
curve is typical of the laminar =ow (Re¡ 20) and corre-
sponds to the oscillatory =ow observed in the case of scale a
(Fig. 3). The second kind of curve corresponds to the tran-
sient regime, which leads to more usual =ow patterns. One
could expect also to identify a characteristic curve for the

turbulent regime. Further simulations would be needed to
con>rm it.

The dependence of the =ow of the Reynolds number can
also be shown by plotting global hydrodynamic criteria re-
lated to the height of the vessel as a function of the Reynolds
number. The average axial =ow number, NAq ax, has also
been computed by averaging the curves Qax vs. z, and by



Fig. 12. Dimensionless axial =ow pro>le in vessels a, b and c for several Reynolds numbers.

normalizing the result by ND3 as shown in (15). The aver-
age tangential number, NAq tan has also been calculated for
each case as in Eq. (16):

NAq ax =
1

ND3

∫ h
0 Qax(h) dh∫ h

0 dh
; (15)

NAq tan =
Qtan

ND3 : (16)

By dividing the average axial number by the average tan-
gential number, a new criterion is introduced, given by Eq.
(17), which is derived from the Swirl number introduced by
Bakker and Van Den Akker (1994):

SA =
NAq ax

NAq tan
: (17)

This dimensionless number, named Average Swirl number,
illustrates the capability of the stirrer to convert tangential
motion into axial motion. The main advantage of these three
global dimensionless numbers is that the =ows can be char-
acterized in the entire vessel and not only in the volume
surrounding the impeller.

These three global parameters are plotted in Fig. 13 as
a function of the Reynolds number for scales a; b and c.
Continuity between scales can be veri>ed. The results are
in agreement with the LDV measurements run by Mavros
et al. (1996). They con>rm that an increase in the Reynolds
number improves axial =ow. A minimum value of SA at a
Reynolds number equal to 30 can be noticed. This minimum
corresponds to a change of regime. This is the point from
which the =ow becomes independent of the blade position.
In the range of Reynolds number lower than 30, the Average

Swirl number increases when Reynolds number is reduced.
In this domain, the tangential motion increases faster than the
axial motion when the Reynolds number increases. This can
be explained by a raise of the segregated zone with stirring
speed. The mechanical energy delivered by the stirrer makes
the tangential motion of this segregated zone higher, which
reduces mixing performances. From an energy point of view,
it is better, in this laminar zone, to set a low stirring speed.

A more convenient way to present the result, from a global
hydrodynamic point of view, could be achieved by intro-
ducing the average axial circulation time which can be cal-
culated from Eq. (18).

tax =
NAq ax

V
: (18)

The dimensionless homogenization number given by
Eq. (19) can then be introduced.

NR = Ntax: (19)

This number is very useful as it represents the number of
revolutions for the materials to recirculate by the stirring
system. Fig. 14 shows the variation of the recirculation
number as a function of the Reynolds number. As expected,
continuity is veri>ed and the variation is very similar to the
variation of Nptm where tm is the mixing time (Novak &
Rieger (1969) the case of a screw). The recirculation num-
ber is constant in the laminar regime and would decrease
regularly to a value which remains constant when the tur-
bulent regime is attained. In addition to increasing strongly
the stirring speed at the scale a, the simplest way to ensure
the same kind of =ow pattern consists in a distortion of
the geometrical similarity at the smallest scale. Further



Fig. 13. Flow characterization, average axial and tangential numbers and Average Swirl number as a function of Reynolds number.

Fig. 14. Recirculation number as a function of Reynolds number.

simulations will be conducted with three bladed DF pro-
pellers equipped with de=ector to limit radial =ow. The
width of the blades will be enlarged giving a high solid-
ity ratio which limits oscillatory =ow by forcing the axial
downward motion. A de=ector at the extremity of the down-
ward blades will be added to limit the radial =ow in laminar
regime. Another interesting similarity distortion would be
to investigate the addition of a second DF impeller at scale
a. Such stirring system would have certainly greater power

requirements but this study has shown that power per vol-
ume should not be chosen as scale-up criteria from pilot to
industrial scale.

4. Conclusions and further work

An unusual methodology of scale-up of laminar mix-
ing applied to an industrial stirring device has been



presented using CFD. Such an approach could be very useful
in the case of scaling process where the hydrodynamics are
critical.

The main advantage of such a stirring system (PBT and
DF) is its versatility for di9erent hydrodynamic regimes.
Therefore, this kind of stirring system may be applied to dif-
ferent industrial processes involving viscosity variation of
mixtures like, for example, those found in the food industry
or cosmetics, pharmaceutical, petroleum and polymer spe-
cialty industries.

Numerical results show good agreement with energy con-
sumption measurements at the smallest scale a and so are
assumed validated. As expected, the =ow patterns depend
on Reynolds number and then on the considered scale for
power per volume as a scale-up criterion. New global crite-
ria for characterizing multi-staged stirred systems have been
introduced. Their values show two main functioning types,
which are in good agreement with the qualitative results of
the =ow patterns in the vessel.

The most commonly used scale-up guidelines such as the
geometrical similarity and the power per volume have been
discussed regarding hydrodynamic considerations. Using the
power per volume as a scale-up criterion, this study has
shown that the =ow patterns di9er strongly from one scale
to another. Therefore, it is suggested that this criterion must
not be used without a preliminary study of the consequences
on the =ow pattern.

Two possible solutions could then be foreseen. On the one
hand, modi>cations of the stirring geometry and functioning
could provide closer =ow patterns between each scale and,
on the other hand, another scale-up criterion could be more
appropriate.

According to Uhl and Von Essen (1986), the use of the
power per volume constant rule provides a more than ad-
equate power investment, and this means an excessive in-
put of mechanical energy. Therefore, it would be interesting
to study other scale-up criteria like constant tip velocity or
constant torque per volume in further works.

However, the hydrodynamic study of =ow patterns has
shown that such a multi-stage double-=ux stirrer leads to
acceptable =ow patterns for highly viscous mixtures in the
case of the transient Reynolds numbers. Hydrodynamic per-
formances are increased at higher scale. A distortion of the
geometrical similarity has been suggested by modifying the
double-=ux impeller at the scale a in order to reduce the
oscillatory =ow. In the near future, the =ow patterns gener-
ated by this new stirring system could be investigated with
CFD and would be compared to the =ow patterns presented
in this study for the scales b and c.

As it is reminded by Dickey (2000), nearly all viscous
=uid exhibit non-Newtonian characteristics. The study pre-
sented here could also be extended to the case of mixing
scale-up of shear thinning =uids. In addition, such work per-
formed here can be extended to other stirring systems such
as screws, o9-centered systems, special devices and all sys-
tems acting in transient =ows.

Notation

a; b; c names of the scales studied
A laminar energy constant, dimensionless
Ai cells area, m2

C torque, N m
C0 torque measured in the empty vessel, N m
D double-=ux impeller diameter, m
D′ pitched blade turbine diameter, m
H liquid height, m
H1 height from the bottom of the pitched blade tur-

bine, m
H2 height between the pitched blade turbine and the

double-=ux impeller, m
i calculation indice, dimensionless
k Metzner and Otto constant, dimensionless
m consistency index, kg sn−2m−1

n =ow behavior index, dimensionless
N impeller speed, s−1 or rpm
P power consumption, W
Qax axial =ow, m3 s−1

Qtan tangential =ow, m3 s−1

r radial co-ordinate, m
tax average circulation axial time, s
tm mixing time, s
T vessel diameter, m
vz axial velocity, m s−1

V vessel volume, m3

Vtip tip velocity, m s−1

z axial co-ordinate, m

Greek letters

( linear scale-up factor
 vessel form coe7cient, dimensionless
� symmetrical rate of deformation tensor, s−1

� tangential co-ordinate, rad or ◦

�v viscous dissipation function, s−2

Ṙ� average shear rate, s−1

� Newtonian viscosity, Pa s
�a Apparent viscosity, Pa s

 speci>c gravity, kg m−3

) surface tension, N m−1

Dimensionless numbers

Re Reynolds numbers (=
ND2=�)
Rea apparent Reynolds number (=
ND2=�a)
Res generalized Reynolds number (=
N 2−nD2=m)
Po power number (=P=
N 3D5)
Fr Froude number (=DN 2=g)
Rr dimensionless radial co-ordinates (=r=T=2)
SA average Swirl number (=NAq ax=NAq tan)
NAq ax average axial pumping number

(=(1=ND3)
∫ h

0 Qax(h) dh=
∫ h

0 dh)



NAq tan average tangential pumping number
(=Qtan=ND3)

Nq ax axial pumping number (=Qax=ND3)
NR recirculation number (=N tax)
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