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Abstract

Nickel foils have been oxidised at 1000 �C on one side only in laboratory air, the other side being protected from oxidation by a

reducing atmosphere. After the oxidation treatment, the unoxidised face was carefully examined by using an atomic force micro-

scope. Grain boundaries grooves were characterised and their depth were compared to the ones obtained on the same sample heat

treated in the reducing atmosphere during the same time. Grain boundaries grooves are found to be much deeper in the case of the

single side oxidised samples. It is shown that this additional grooving is directly linked to the growth of the oxide scale on the oppo-

site side and that it can be explained by the diffusion of the vacancies produced at the oxide scale–metal interface, across the entire

sample through grain boundaries. Moreover, the comparison between single side oxidised samples and samples oxidised on both

sides points out that voids in grain boundaries are only observed in this latter case proving the vacancies condensation in the metal

when the two faces are oxidised.
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1. Introduction

Theory of oxidation of metals developed by Wagner

[1] envisages the diffusion of one or more reactants

through an oxide scale which covers the surface of a

semi-infinite metallic substrate. When an oxide grows

by the outward diffusion of cations, fresh oxide is

formed at the gas–oxide interface whilst metal atoms en-

ter the oxide layer as metal ions at the metal–oxide scale
interface. Vacancies are then created in the metal lattice

at the metal–oxide scale interface. This phenomenon is

well accepted but the destiny of metal vacancies is sub-

ject to debate and two types of models are well docu-
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mented in the literature. The first one considers that
vacancies diffuse in the metal lattice until they are anni-

hilated at sinks (not always well defined) such as grain

boundaries, voids, impurities or dislocations [2–17]. This

process was called vacancy injection by Dunnington [2]

in 1952. The presence of voids in the bulk of oxidised

metals is then explained by the condensation of these

vacancies. The second family of models assumes that

vacancies remain at the metal–oxide scale interface
where they form voids [9,13,18] if the oxide is not ductile

enough to maintain a good contact with the metal [9,19]

or are annihilated by the climb of misfit dislocations

[20,21]. If vacancies are annihilated at the metal–oxide

scale interface, the presence of voids observed in the me-

tal after oxidation is explained by the formation of car-

bon dioxide by the reaction between solute carbon and

oxygen diffusing into the metal [22–26].
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Fig. 1. Setup used for the oxidation of nickel foils on one side: general

view and cross-section of the experimental device.
The question of the mobility of vacancies in the metal

is then asked: could they cover a long distance or not be-

fore being annihilated?

To answer this question, polycrystalline nickel foils

were oxidised on one side only, the other side being pro-

tected from oxidation. Then a careful examination of
the unoxidised surface was carried out. The original

guiding idea of the present work is based on that of

Francis and Lees [15] who oxidised thick iron disks on

one side and showed some interesting specific features

related to these unusual oxidation experiments. In the

present study, single side oxidation experiment is com-

bined with atomic force microscope (AFM) analysis to

attempt a quantitative analysis of the vacancy injection
phenomenon. Special attention is paid to grain bounda-

ries behaviour.
2. Material and experimental procedures

The investigations were conducted on annealed high

purity (99.98%) nickel foils (Table 1), 125 lm and
1 mm thick. The mean grain size of the as received mate-

rials is around 50 lm for the 1-mm thick foil and 35 lm
for the 125 lm thick foil. Surface preparation is well

known to play a great role on the oxidation kinetics

and on oxide morphologies [27,28]. Surfaces of the foils

were then carefully polished down to 1 lm using dia-

mond paste. Specimens were then electrolytically pol-

ished on one side by a mixture of 2/3 perchloric acid
and 1/3 acetic acid at room temperature under 70 V

for 5 s. The faces were then degreased in acetone and

ethanol and the electropolished face was characterized

using AFM technique: the roughness Rt was estimated

to be less than 50 nm and no grain boundary dissolution

was observed. After cleaning, the foils were annealed in

a dry mixture of argon and hydrogen (5 vol% H2) at

1000 �C for 1 h in order to stabilize the microstructure.
The mean grain size obtained after heat treatment was in

the range 350–450 lm for the two types of foils.

The experimental oxidation device (Fig. 1), inspired

from Francis and Lees [15], consists of a superalloy hol-

low cylinder chamber on which the foils are placed and

blocked with a superalloy hoop. One side of the speci-

mens was oxidised (the side which was not electrolyti-

cally polished) by laboratory air whereas the opposite
side was exposed to an argon and hydrogen mixture

(Ar–5 vol% H2 under 1.2 · 105 Pa pressure) to protect

it against oxidation (protection which was confirmed
Table 1

Chemical composition of the nickel foils

Component Co Cr Cu Fe Mg

Concentration (at. ppm ) 8 9 9 11 24
by X-ray Photoelectron Spectroscopy analysis). A refer-

ence coupon with both faces prepared following the pro-

cedure defined for the samples oxidised on one side, was

put inside the chamber so that it was entirely protected

from oxidation (see Fig. 1).

Two oxidation treatments were given: 15 h at 1000 �C
for the thinnest foil and 48 h at 1000 �C for the thickest
one. After disassembling carefully the pile-up, a detailed

examination of the unoxidised surfaces, and particularly

of the grain boundaries intercepting the inert surface,

was performed using AFM. For this purpose, a Nano-

scope IIIa Atomic Force Microscope of Digital Instru-

ments� was used in tapping-mode, in ambient air,

using a silicon tip characterized by a 5 nm nominal ra-

dius of curvature, a 35� interior angle and a height of
15 lm.

A Leo 435 VP SEM was also used to examine the sur-

face protected from oxidation and the cross-section of

the thickest foil oxidised on one side.
3. Experimental results

3.1. Grain boundary grooving in single side oxidised

sample

For the Ni/NiO system, the oxide scale–metal adhe-

sion is recognised to be excellent for flat surfaces [29–

31]. Indeed, we did not observe any spallation neither

on specimens oxidised on one side nor two sides. The

thickness of the NiO scale is about 15 lm after 15 h at
1000 �C and 35 lm after 48 h which is in a quite good

agreement with previous results [32–34]. The oxide

scales were observed after electrolytic dissolution of

nickel in a diluted nitric acid solution (50 vol%

HNO3) during 5 min at 4 V. In each case, the scale

consists of an inner layer of equiaxed grains showing
Mn Si Ti C S O N Ni
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few voids and a compact outer layer of columnar

grains. The thickness ratio R (R = outer layer/inner

layer) is about 1.5 whatever the treatment duration

(Fig. 2). As illustrated in Fig. 3, the surface of the foil

protected from oxidation shows grain boundaries

grooves that look like the ones observed in the refer-
ence sample. On the AFM view, one can easily recog-

nize three grain boundaries intercepting the surface of

the metal. Fig. 4 shows another example of an AFM

top view and the corresponding section of the surface

exposed to the reducing atmosphere. In the following

section, results obtained for the samples oxidised on

one side are compared with the ones achieved for

the reference samples.
Fig. 2. Duplex microstructure of NiO formed on nickel after heat treatment

Fig. 3. (a,b) Surface of the foil protected from oxidation observed with the SE

1000 �C).
3.2. Comparison between samples oxidised on one side and

reference samples

It is well known that thermal grooves develop on the

surface of a hot polycrystal wherever stationary grain

boundaries emerge to intersect the surface. This thermal
effect was called ‘‘thermal grooving’’ by Mullins [36] in

1957. The usual condition for the equilibrium was given

by Bailey et al. [37] for a gas–solid interface

2� c� cos
W
2

� �
¼ cb; ð1Þ

where c and cb are, respectively, the surface and grain

boundary energies per unit area.
in laboratory air: (a) 15 h at 1000 �C; (b) 48 h at 1000 �C – tilted view.

M and (c) corresponding topography obtained with the AFM (15 h at



Fig. 4. AFM top view (a) and the corresponding section (b) of the

surface protected from oxidation (15 h at 1000 �C).
AFM is an accurate technique to measure the depth d

and the angle W at the tip of the grooves as defined in

Fig. 4, as recently used to study the geometry of grain-

boundary grooves in polycrystalline alumina [38]. Meas-

urements of d and W have been made for the nickel foil

(125 lm thick) oxidised on one side and for the reference

foil with both sides annealed in Ar–5 vol% H2. The re-
Fig. 5. Comparison of depth d (a) and angles W (b) of grooves between samp

are represented by solid lines for the reference and by dash lines for the sam

represents the amplitude of the experimental uncertainties (2� for the angle
sults obtained for the samples treated 15 h at 1000 �C
(the thinnest foil), are presented in Fig. 5. This figure

points out first that the angles of the grooves are quite

the same for the single side oxidised specimens and for

the references. Using the equilibrium equation of Bailey

(Eq. 1) and assuming the ratio cb/c = 1/3 according to
McLean and Murr [39,40], one finds that the angle of

the groove at 1000 �C for pure nickel is about 161� which
is close to the mean value 158� found for the two types of

samples. But the most striking and interesting result is

the fact that grooves are much deeper for the samples

oxidised on one side only (Fig. 5(a)) than for the refer-

ence sample. The difference between the mean depth val-

ues is indeed around 300 nm which represents a volume
of 2.3 lm2 per unit length of grain boundary.
3.3. Thick specimens oxidised on one side and on both

sides

Cross-sections of the thickest foils (1 mm thick) oxi-

dised on one side 48 h at 1000 �C were made and SEM

observations were compared with the ones obtained for
the same specimen oxidised on both sides. The NiO scale

thickness is around 35 lm in both cases and, as illustrated

in Fig. 6, the metal oxidised on both sides show many

voids localised at the grain boundaries contrary to the

sample oxidised on one side only in which grain bounda-

ries are particularly clean. These voids did not exist in the

as-received materials and since the chemical composition

of the two samples are exactly the same, with a low carbon
content, the observed voids cannot be attributed to the

formation of CO or CO2 as suggested in [22–26]. Image

analysis was used to calculate themean size- and the vol-

ume fraction fv of the voids (assuming that the volume

fraction fv is equal to the surface fraction fs).-was found

to be about 10 lm and fv about 0.01%.
les (125 lm thick) oxidised on one side and references (the mean values

ple oxidised on one side) – 15 h at 1000 �C. The diameter of the discs

and 30–40 nm for the depth).



Fig. 6. High purity nickel sheets (1 mm thick) oxidised: (a) on one side;

(b) on both sides – 48 h at 1000 �C – laboratory air – detailed

observations of the grain boundaries shown in insert reveal the

presence of numerous voids (see arrows) only in the specimen oxidised

on both sides.
4. Discussion

If each metal atom used to build the oxide scale

would produce a vacancy and if all these vacancies were

injected and not annihilated, this would give an addi-

tional vacancy concentration in the metal bulk of

C0
v ¼

tox
/� tm

; ð2Þ

where tox is the scale thickness, tm the initial thickness of

the coupon (125 lm in our case) and / the Pilling and

Bedworth ratio (/ = 1.65 for the Ni/NiO system [41]).

The fact is that all the produced vacancies are not in-
jected: some of them may be annihilated by the interface

motion. The examinations of the oxide scales formed

under the present conditions revealed a duplex micro-

structure with an inner layer of equiaxed grains and an

outer layer of columnar grains (Fig. 2). As demonstrated

by Peraldi et al. [35], the interface between inner and

outer scales marks the initial metal surface. Thus, con-

sidering a Pilling and Bedworth ratio of 1.65 for the
NiO/Ni system, the thickness ratio R between the outer

scale and the inner scale should be equal to 0.61 if all the

cation vacancies were annihilated by the interface mo-

tion and 1 if they were all injected. The measured ratio

of R = 1.5 corresponds to the injection of 34% of all the
potential vacancies. Indeed, for 1 vol. unit of metal con-

sumed by the oxidation process, 1.65 vol. of oxide is

formed. As the equiaxed internal layer constitutes 2/5

of the total oxide scale, the volume of non annihilated

vacancies is: D = 1 � (2/5) · 1.65 = 0.34. On the one

hand, if those injected vacancies would remain in the
metal bulk without being annihilated, the additional va-

cancy concentration would be

Cv ¼ 0:34� tox
/� tm

: ð3Þ

After 15 h at 1000 �C, tox is equal to 15 lm giving a

value of 2.47 · 10�2 for Cv which is much higher than

the known equilibrium vacancy concentration Ceq
v in

nickel at 1000 �C, i.e., 7 · 10�4 [42].

On the other hand, if all those vacancies would run

across the entire thickness of the specimen and con-

dense at the grain boundaries intersecting the non oxi-

dised surface, they would groove the grain boundaries

by 594 lm2 per unit length (assuming tetragonal

grains of side 230 lm). That the experimental groov-

ing (2.3 lm2) represents 0.38% of the maximum value.
The remaining injected vacancies (i.e., most of them)

are then expected to be annihilated either close to

the metal–oxide scale interface (e.g., by the climb of

misfit dislocations [21]) or in the bulk (e.g., by restau-

ration mechanisms or by the formation of vacancy

loops [5]).

Concerning the presence of voids in nickel, the com-

parison between single side oxidised sample and sample
oxidised on both sides points out that voids are only ob-

served in this latter case and are located at grain bound-

aries. These voids cannot be formed during the cooling

of the sample since no voids are observed in the single

side oxidised sample. Moreover, since cavities can arise

from creep damage, it has been verified that the speci-

mens do not creep under those experimental conditions:

nickel specimens (125 lm and 1 mm thick) have been
hung up in a furnace and the changes in the dimensions

of the samples due to the oxidation treatment were fol-

lowed using a laser extensometer; the maximum meas-

ured strain was lower than 5 · 10�4. Thus, these voids

are neither due to chemical effects nor creep damage;

they are believed to be a proof of the vacancy injection

phenomenon.

In the case of a sample oxidised on one side, the non
oxidised metal face constitutes a perfect sink for annihi-

lation of vacancies which diffuse from the metal–oxide

scale interface to it. In the case of a sample oxidised

on both sides, vacancies are injected in the metal at both

sides of the sample, leading to the formation of voids.

Volume fraction of the observed voids (0.01%) corre-

sponds to 0.66% of the total number of injected vacan-

cies which turns out to be close to the value found to
explain the deeper grooves formed in single side oxidised

samples (2 · 0.38%).



The observation of deeper grooves measured for the

samples oxidised on one side and the observation of

voids at grain boundaries in the sample oxidised on both

sides far from the metal–oxide scale interface are con-

sistant with the idea that grain boundaries do not consti-

tute perfect sinks for vacancy annihilation but fast
diffusion paths. The data scatter evidenced in Fig. 5(a)

can be attributed to the different paths followed by the

vacancies (it depends on the length and the nature of

the grain boundaries).
5. Conclusions

Detailed observations made on samples of nickel oxi-

dised on one or both surfaces have shown that some of

the vacancies formed during oxidation are injected in the

metal and generate: (a) voids in the metal when the two

faces of the substrate are oxidised; (b) additional grain

boundaries grooves on the unoxidised surface in the case

of single side oxidised samples.

A quantitative analysis of the grain boundary grooves
and of the volume fraction of voids shows that the num-

ber of vacancies annihilated in voids or at the unoxidised

surface is a small proportion of the total amount of pro-

duced vacancies. Then, classical mechanisms of vacan-

cies annihilation such as dislocation climb or formation

of vacancy loops have to be taken into account. Never-

theless, the number of vacancies that are shown to diffuse

over large distances through grain boundaries remains
large enough to strongly influence mechanisms responsi-

ble for mechanical properties, such as dislocation climb

and grain boundary diffusion and sliding.
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