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Abstract: One of the major challenges in aeronautical flexible structures control is the uncertain
or the non stationary feature of the systems. Transport aircrafts are of unceasingly growing size
but are made from increasingly light materials so that their motion dynamics present some
flexible low frequency modes coupled to rigid modes. For reasons that range from fuel transfer
to random flying conditions, the parameters of these planes may be subject to significative
variations during a flight. A single control law that would be robust to so large levels of
uncertainties is likely to be limited in performance. For that reason, we follow in this work an
adaptive control approach. Given an existing closed-loop system where a basic controller controls
the rigid body modes, the problem of interest consists in designing an adaptive controller that
could deal with the flexible modes of the system in such a way that the performance of the
first controller is not deteriorated even in the presence of parameter variations. To this purpose,
we follow a similar strategy as in Hovakimyan (2002) where a reference model adaptive control
method has been proposed. The basic model of the rigid modes is regarded as a reference model
and a neural network based learning algorithm is used to compensate online for the effects of
unmodelled dynamics and parameter variations. We then successfully apply this control policy
to the control of an Airbus aircraft. This is a very high dimensional dynamical model (about
200 states) whose direct control is obviously hard. However, by applying the aforementioned
adaptive control technique to it, some promising simulation results can be achieved.
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1. INTRODUCTION

Any mechanically flexible structures are inherently dis-
tributed parameter systems whose dynamics are described
by partial, rather than ordinary, differential equations. In
the context of large and flexible aircrafts control, repre-
senting the whole dynamic is a real challenge. Considering
the rigid body classically leads to a linear model, but
adding the effects of flexibility rapidly increases the model
size: typically a complete linear model of a large transport
aircraft is described by a state vector of dimension 200.
Obviously such a model, although linear, is not adapted
for control purpose.
The key idea is then to use a reduced order model as a
reference model for control design, thus considering the
unmodeled dynamics as disturbances with respect to this
reference model.
The control scheme under study is depicted on figure 1. A
unique linear controller is designed to control the reference
model and then applied to the two parallel loops: the
reference loop and the complete loop including the whole
system, actuators and sensors dynamics. The measured
error between these loops is then fed into a compensator

that aims at correcting the linear controller action. The
objective is thus to augment the linear control law ulc

with an adaptive element uad so that when applied to the
system, the controlled output y tracks the reference ouput
ym. The measured error ym − y is clearly related to the
unmodeled dynamics, so this signal (together with some
additional errors, see 1) is treated by the compensator as
follows:

• an error observer is designed to extract the unknown
dynamics

• a simple neural network computes the extra control
signal uad from the estimated error and input output
data

As a matter of validation, this control scheme has first been
tested on an electromechanical apparatus that represents
important classes of ”real life” systems. This test bench
represents such physical systems as rigid bodies, flexibil-
ity in drive shafts, gearing and belts. The corresponding
dynamic model may range from a simple rigid body to a
sixth order case with two lightly damped resonances. In
that case, the reference model is chosen to cope the rigid
body dynamic (order 2), thus neglecting the underdamped



modes. The linear controller is a lead compensator. The
results obtained with a 5-neurons 1-hidden layer neural
network confirm that this control can cope with the control
of simple flexible structures.
The main application treated later is related to the longi-
tudinal control of a complete aircraft model of order 193.
The reference model (order 7) includes the rigid body dy-
namics, the first flexible mode and actuator dynamics. The
linear controller is a basic LQR, and the neural network is
formed with only 7 neurons on the unique hidden layer. For
disturbance rejection scenarii, promising simulation results
exhibit a notable decrease in the output signal activity
(accelerations, pitch rate, g-load factor).

2. THE ALGORITHM

The global algorithm is represented on figure 1. In the
upper loop, the linear controller is associated to the
reference model, which is supposed to contain the main
dynamic of the real system. Following this idea, main
dynamic means that it is known and accurately modeled.
On the other hand, the unknown/unmodeled dynamic will
be present in the other loop, within the actuator + system
transfer. The linear model is designed in a classical way
from the knowledge of the reference model. The objective
is clearly to use a simple controller with respect to the
model complexity. This closed-loop system constitutes the
reference model, thus specifying the best performances
that should be achieved by the adaptive control process.
The error measured between both control loops is simply

ūd

ȳd
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Fig. 1. Adaptive control scheme with reference model

the difference between both outputs ym and y. Then the
adaptation signal uad is added to the current control signal
ulc in order to compensate the effects of the unmodeled
dynamics and then to force the lower loop to exhibit the
same behavior as the above one. In other words, the idea
is to augment the linear control law ulc with an adaptive
element so that when applied to the system, then output y
tracks reference output ym. This is achieved by employing
the adaptive control method in [Hovakimyan (2002)]. The
adaptation process (lower loop) is composed of different
elements with specific tasks:

• the error observer is used to estimate the states of
the error dynamics Ê from the output error e1 = ym−

y and from the controller state error xcm − xc. This
estimation will be fed into the neural network.

• the neural network aims at reconstructing the sys-
tem uncertainty from the estimated error dynamics
Ê and from a finite history of available input/output
ūd and ȳd.

• the error controller can be added to accelerate
the neural network adaptation and to improve the
convergence of the tracking error e1

Considering the closed loop reference model (upper loop
on figure 1), the state equations are given by:

Ẋm = ĀXm + B̄yc (1)

ym = C̄Xm (2)

where yc is the reference signal or setpoint. The state
vector Xm is partitioned sot that XT

m =
[

χT
m zT

m xT
cm

]

where χm is the reference model state vector, zm is the
state vector of internal dynamics, and xcm is the linear
controller state vector. In a similar way, and taking into
account the control law:

u = ulc − uad (3)

one can write the state equations of the lower loop in a
compact form:

Ẋ = ĀX + B̄yc − B̄′uad + ∆ (4)

y = C̄X (5)

where X is partitioned so that XT =
[

χT zT
1 xT

c

]

with χ being the system state vector, z1 representing
the part of the states of the internal dynamics that are
modeled through zm, and xc being the linear controller
state vector. The uncertainties are represented by ∆T =
[

∆T
1 ∆T

2 0
]

where ∆1 and ∆2 are the matched and
unmatched uncertainties respectively.
As equations (1) and (4) give the current state of the
reference loop and the system loop respectively, it is
possible to extract the error dynamic by subtracting both
equations, leading to:

Ė = ĀE + B̄′(uad − ∆1) − B∆2 (6)

Z = CE (7)

where

E ≡ Xm − X (8)

is the error dynamic, B and C are matrices of appropriate
dimensions, Z represents the signals available for feedback:

Z =

[

ym − y
xcm − xc

]

(9)

Hovakimyan (2002) has demonstrated that ∆1 can always
be estimated with an arbitrary accuracy ε∗ using a single
hidden layer neural network:

∆1 = MT σ(NT η) + ε(η), ‖ε(η)‖ ≤ ε∗ (10)

where σ(.) is the activation function, M and N are the
input and output network weights, ε(η) is the neural
network reconstruction error and η is the network input
vector (finite history of available input/output data):



η(t) =
[

1 ūT
d (t) ȳT

d (t)
]T

(11)

Finally, the adaptive signal uad is designed as:

uad = unn = M̂T σ(N̂T η) (12)

The weight adaptation laws are similar to the ones in
Hovakimyan (2002). To this, it is needed to estimate error

dynamic Ê. This can be easily performed by the following
error observer:

˙̂
E = ĀÊ + K(Z − C̄Ê) (13)

with K chosen so that Ā − KC̄ is stable and more rapid
than Ā.

3. AIRCRAFT MODEL

The models used during this work are linear state models
corresponding to different Mach numbers and different
positions of the center of gravity (depending on fuel tank
configurations). There are 7 inputs: 6 command inputs (of
which inner aileron IA, outer aileron OA and elevator δ
deflections) and 1 disturbance input (wind turbulence).
Among the 105 available outputs, some of them are of
major interest, like angle of attack α, pitch angle θ and rate
q, vertical velocity Vz and acceleration nz. These measures
are made at the center of gravity, but the problem to be
treated is clearly related to flexible modes damping, more
vertical acceleration measures are needed. On figure 2 are
represented the location of the different nz measures.

Fig. 2. Location of the 7 nz measures

3.1 Actuators and sensors simulation

Simulation of actuators includes typical nonlinearities like
rate limiters and saturations. The bandwidths are approx-
imatively 27rd/s for the inner aileron, 10rd/s for the outer
aileron and 25rd/s for the elevator.
The measures are simulated using low-pass filters with a
3Hz bandwidth plus a pure delay of 160ms.
Note that the wind turbulence input is simulated using a
white noise passing through a Von Karman filter.

3.2 Reduced model

Even if the full order model contains the entire dynamic,
the high frequency modes are not considered as essential
in the control law design process. In order to reduce
the computational burden, a classical order reduction
procedure has been used, resulting to model of order 42.
Following this idea, the procedure can be continued until
reducing the dynamic to its minimum size, i.e. an order 2
corresponding to the rigid body dynamic. On figure 3 are

plotted the bode diagrams of the transfer function α(p)
IA(p)

for the 3 dimensions (193 in blue, 42 in green and 2 in red).
Clearly the reduced model is valid up to 50rd/s, which is
superior to the desired closed loop bandwidth.

Fig. 3. Bode plots of full order, reduced order and rigid
models

3.3 Control objective

The main objective remains the reduction of oscillations
produced by either the classical aircraft control or the
disturbances (wind gusts and shears). Considering the
transfers from wind input to the different nz measures,
it will be asked to reduce as much as possible the main
resonant peaks using the inner aileron as control variable.
Among the available measures, we will consider more
particularly:

• nzCG, vertical acceleration at the aircraft center of
gravity (index 100201 on figure 2), which is directly
related to passengers comfort.

• nzL and nzR, vertical accelerations on the left and
right wings (indexes 99140114 and 99340114 on figure
2). These measures give a good feedback of the
structure flexibility.

then a combination of these measures will be built, leading
to a criterion representing a good trade-off between the
passengers feeling due to oscillations and the mechanical
energy: the following criterion has been validated:

nzlaw =
nzL + nzR

2
− nzCG (14)



4. CONTROL

4.1 Reduced order reference model

The success of the simulation is obviously related to the
choice of the reference model. The first idea was to reduce
this reference model to its minimal size, i.e. considering
the rigid body dynamic and thus discarding the flexible
modes, the actuators and sensors dynamics. The resulting

model, of order 2, with state vector xm = [ α q ]
T

has
been combined with a state feedback controller designed
to double the damping ratio while keeping the natural
frequency. The resulting simulations are not convincing
as it can be observed on figures 4 and 5. The simulation
corresponds to a tracking problem (step response for α):
the blue plot is the output of the reference model (rigid
body dynamic of order 2), the red one is the output of the
global closed loop model (order 43), and the black plot
corresponds to the open loop behavior. Considering first
α, the benefit is clear as the output tracks the reference
output without exhibiting any flexible modes (fig. 4). On
the other hand, the evolution of the pitch rate (fig. 5)
is affected by many high frequency modes which are not
visible on the open loop dynamic! This phenomenon is also
present for any nz measure, and of course for nzlaw. Here
this phenomenon is due to spillover: some damping ratios
are improved, some others are deteriorated and these mode
transitions are not mastered at all. Finally, it appears that
there is no way of controlling the whole modes using such
a simple reference model (and a simple controller).

Fig. 4. Simulation of the angle of attack α

4.2 More realistic choice for the reference model

The reference model is augmented by adding the first
flexible mode (around 1.2Hz) and the actuators dynamic,
leading to an order 7. The input variable is still the inner
aileron deflection (IA), the available outputs are nzCG,
nzR, nzL, nzlaw, α and q, but only nzlaw is considered. The
controller is designed using a LQG strategy by minimizing
the following criterion:

Fig. 5. Simulation of the pitch rate q

J =

∞
∫

0

(χT
mQχm + Ru2)dt (15)

where χm is the state vector. As the design of the controller
is not the key point, the weighting matrices are not
accurately tuned (Q = 5I7 and R = 0.5 in this case).
The resulting controller is

ulc = kcyc − Klqgχm (16)

The neural network is composed of a single hidden layer
of 7 neurons. Input/output data history that is fed into
the neural network (ūd and ȳd) is limited to 19 samples
(sampling period is 2ms). For simplicity reasons, the error
observer is not used in that simulation, so that the output
error e1 = ym − y is directly fed into the neural network
together with ūd and ȳd. For the same reasons as before,
the error controller is omitted, so that uad = unn (figure 1).
The setpoint is nzCG = 0.1g, so that in steady state nzlaw

Fig. 6. Simulation of the outputs over 10s

should remain null. Simulation results are shown on figure
6: as the open loop evolution of nzlaw is depicted in blue,
it is interesting to compare the reference model output



ym (green curve) with the controlled output nzlaw (red
curve). First the output error remains weak although both
dynamics are clearly different. Indeed, the first flexible
mode (around 1.2Hz) is visible on ym (as it belongs to
the reference model) and on nzlaw, but nzlaw also exhibits
higher modes (next one can be measured around 2.7Hz).
Then it can be underlined that the transient response of
nzlaw is good, including less overshoot than the reference
output.
On figure 7 are given the ”classical” control law signal ulc

(red curve) and the effective control signal ulc+uad = ulc+
unn (black curve). Although the difference between both

Fig. 7. Effect of the neural network adaptation

curves is not that obvious, the effect on the output signal
nzlaw is clear. That being said, different neural network
tuning would lead to slightly different results: in a classical
way, the more sensitive mode is the first flexible mode not
belonging to the reference model, i.e. the 2.7Hz mode.

One way to improve the efficiency of adaptation is to add
an error controller. Here we have chosen a simple lead
compensator of transfer function:

Udc(s) = 20
s + 3

s + 20
E1(s) (17)

The simulation setpoint is now zero, that is to say we
consider a disturbance rejection problem. Disturbance is
simulated using the wind input. Once again, the results
presented in figure 8 show an improvement with respect
to open loop behavior (green curve). Moreover, the effect
of the error compensator through udc allows a reduction
of the nzlaw activity (red curve). As it is quite difficult to
get measurable indexes of the control quality from figure
8 only, it is chosen to build an energy criterion C from the
controlled output:

C(t) =

t
∫

0

n2
zlawdt (18)

The criterion evolution given on figure 9 confirms the
better behavior of the adaptation based on both neural
network and error controller. Although the adaptation
algorithm has not been detailed in this paper, there are

Fig. 8. nzlaw evolution in case of disturbance rejection

Fig. 9. Evolution of the energy criterion C(t)

many degrees of freedom left to tune the adaptability
capabilities of the neural network (see Hovakimyan (2002)
and Yang (2004)). This work has shown that it is always
possible to find a set of tuning parameters leading to an
improvement of the closed loop behavior, this keeping a
small sized neural network together with a basic error
controller like (17). This last point will become crucial
when a real time implementation will be considered.

5. CONCLUSION

Augmenting a linear controller with an adaptive output
feedback element based on neural networks is a concept
already studied and validated on real-time applications.
The open problem treated along this work is the extension
to a very high order system composed of many flexible
modes. Clearly, it appears that the keypoint is the choice
of the ”best” reference model, i.e. getting the optimal
balance between simplicity and representability of the
main dynamic. The good results obtained during these first
steps are encouraging us to come on. More particularly,
special effort has to be made to develop a systematic
approach for the choice of that reference model.
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Supaéro, 2000.

Y. Zhang, B. Fidan, and P.A. Ioannou. Backstepping
control of Linear Time-Vaying Systems with Known
and Unknown Parameters. IEEE, Transactions on
Automatic Control, vol.48, n11, Nov. 2003.

L. Bako. Commande adaptative des modes de flexion
voilure. MSc dissertation. Ecole Supérieure d’Ingénieurs
de Poitiers, 2003.

I.D. Landau. From robust to adaptive control. Control
Engineering Practice. vol. 7, pages 1113–1124, 2003.


