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Abstract 
In this paper, we present a method for the fault detection and isolation based on the 
residual generation coupled with a case based reasoning approach. The main idea is to 
reconstruct the outputs of the system from the measurement using the extended Kalman 
filter. The estimations completed with qualitative information are included in a Case 
Based Reasoning system in order to discriminate the possible faults and to have a 
reliable diagnosis. The reference model is simulated by the dynamic hybrid simulator, 
PrODHyS. The use of this method is illustrated through an application in the field of 
chemical process. 
Keywords: Fault Detection and Isolation, Extended Kalman Filter, 
Dynamic Hybrid Simulation, Distance, Case Based Reasoning 

1. Introduction 
Nowadays, of safety and performance reasons, monitoring and supervision have 
an important role in process control. The complexity and the size of industrial 
systems induce an increasing number of process variables and make difficult the 
work of operators. In this context, a computer decision support tool seems to be 
wise. Nevertheless, the implementation of fault detection and diagnosis for 
stochastic system remains a challenging task. Various methods have been 
proposed in different industrial contexts  [1]. They are generally classified as: 
○ Methods without models such as quantitative process history based 

methods (for example, neural networks), or qualitative process history 
based methods (expert systems…), 

○ And model-based methods which are composed of quantitative model-
based methods (such as analytical redundancy) and qualitative model-
based methods (such as causal methods). 

In this paper, the proposed approach to fault detection and isolation is a model-
based approach. The first part of this communication focuses on the proposed 
diagnosis approach. This approach is illustrated through the simulation of the 
monitoring of a didactic example. This example puts in highlight the limit of 
this approach with a false diagnosis. Then we propose an evolution which 
encompasses quantitative and qualitative information to make the diagnosis 
more reliable. 
2. Supervision module 
The global principle of this system is shown in Figure 1, where the sequence of 
the different operations is underlined. Moreover, a distinction between the on-
line and off-line operations is made. Our approach is composed of three parts: 
the generation of the residuals, the generation of the signatures and the 
generation of the fault indicators. 
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2.1. Residual generation 
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Figure 1. Supervision Architecture  

The first part concerns the generation of the residuals (waved pattern in the 
Figure 1). Thus, it is based on the comparison between the predicted behavior 
obtained thanks to the simulation of the reference model (values of state 
variables) and the real observed behavior (measurements from the process 
correlated thanks to the Extended Kalman Filter). The main idea is to 
reconstruct the outputs of the system from the measurement and to use the 
residuals for fault detection [2-4]. A description of the extended Kalman filter 
can be found in [5]. Besides the residual is defined according to the following 
equation: 
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where Xi is the state variable, iX̂  is the estimated state variable with the 
extended Kalman Filter and n is the number of state variables. Note that the 
generated residual ( )trir  is relative. As a matter of fact, this allows the 
comparison of residuals of different variables, since the residual become 
independent of the physical size of the variable. 

2.2. Signature generation 
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 (Eqn. 2.) 

The second part is the generation of the signatures (doted pattern in the Figure 
1). This is the detection stage. It determinates the presence or not of a default. 
This is made by a detection threshold ( )tiε . The value of iε is chosen according 
to the model error covariance matrix of the Extended Kalman Filter. The 
generated structure S ( )trN

i is denoted by Eqn. 2. 

2.3. Fault indicator generation 
The last part deals with the diagnosis of the fault (hatched pattern in the Figure 
1). The signature obtained in the previous part is compared with the theoretical 



  

fault signatures by means of distance. A theoretical signature T•,j of a particular 
default j is obtained by experience or in our case, by simulations of the process 
with different occurency dates of this fault. Then, a fault indicator is generated. 
For this, two distances are defined: the relative Manhattan distance and the 
improved Manhattan distance. The first distance is denoted by the following 
expression: 
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The second distance, which allows the diagnosis of many simultaneous faults, is 
denoted by the following expression: 
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where n′  is the number of non-zero elements of the theoretical default signature 
T•,j and m′  is the number of non-zero elements of the default signature S ( )trN . 
3. Application: the adding-evaporation unit operation 

3.1. Description 
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Figure 2. The studied process  

Table 1. The operating conditions 
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The process of adding-evaporation is generally used to change solvents. Its 
recipe describes a succession of evaporations and adding of the new solvent 
(methanol). This process is studied here (Figure 2). The operation conditions are 
listed in the Table 1. The values of the minimum and maximum holdups Ul are 
respectively 200 and 800 moles. The steps of this process are the following: a 
feeding step during 500 seconds, a step of heating and feeding, until the holdup 
has reached the maximum threshold, and a heating step until the minimum 
holdup threshold. The pressure is supposed to be constant during this operation. 
The goal of this process is to have a molar composition of methanol in the 
reactor at 0.98.  

3.2. Results 
The behavior of this process is governed by thermal phenomena. A default of 
the reactor thermal system can damage the success of this operation. That is 
why, it is important to detect it as soon as possible. 

3.2.1. Incidence matrix 
To perform a monitoring of a process, some off-line adjustments must be made. 
In one hand, we need to determine the covariance matrices of the model and 
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measurement disturbances. While the measurement noises are supposed to be 
well-known by experiments or by the sensor manufacturer, the model 
disturbances is estimated by an “ensemble method”. Numerous simulations 
have been performed during which a model parameter has been disturbed. This 
allowed the estimation of statistic distribution of the model mistakes. Then, if 
the behavior of the system goes beyond this distribution, its behavior is 
abnormal. So, the detection thresholds are determined according to the model 
disturbances. On the other hand, the second adjustment is the learning of the 
incidence matrix. It is based on the same “ensemble” theory. For this, we 
perform a set of simulations, during which a fault is introduced at different 
occurency dates, for each potential state of the hybrid dynamic system. For this 
study, we consider seven faults: 
○ Fault 1: The energy system provides no more power; 
○ Fault 2: The energy system provides a power lower than the nominal 

one; 
○ Fault 3: The energy system provides a power higher than the nominal one; 
○ Fault 4: The feeding provides no more material; 
○ Fault 5: The feeding provides material with a flow rate lower than the 

nominal one; 
○ Fault 6: The feeding provides material with a flow rate higher than the 

nominal one; 
○ Fault 7: The holdup detector detects a damaged value. 

The obtained incidence matrix is the following: 
Table 2. Incidence matrix 

We can notice that all the faults have an affect on the holdup of the mixture. 
The faults are differentiated thanks to the temperature, energy power or feeding 
flow rate information.  

3.2.2. Detection results 
A default of the reactor heating energy feed is introduced at t = 20000 seconds. 
This energy feed provides a heat quantity lower than the nominal one (fault 2). 
We suggest that we have only a holdup sensor. So, we don’t have any 
information about the temperature, the flow rate and the power. In this case, the 
extended Kalman filter can not correct the estimated state thanks to the 
measurements. It only considers the holdup deviation. Figure 3 shows the 
detection stage. It illustrates the evolution of the residuals linked to the holdup 
of the mixture. From t = 80 seconds, the values of both residuals underline the 
abnormal behavior of the process. The diagnosis is launched at t = 21500 
seconds.  

  Faults 
  1 2 3 4 5 6 7 

Energy Power 0,92828 0,59286 0,50299 0 0 0 0 
Flow Rate 0 0 0 0,84299 0,74166 0,97214 0 

Temperature 0,00667 0 0,00006 0 0 0 0 
Holdup 0,06505 0,40714 0,49695 0,15701 0,25834 0,02786 1 
xWater 0 0 0 0 0 0 0 Si

gn
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xMethanol 0 0 0 0 0 0 0 



Fault detection and isolation based on the model-based approach  
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Figure 3. The evolution of the holdup residual 

3.2.3. Diagnosis results 
Table 3. The instantaneous 

fault signatures 
Energy Power 0 

Flow Rate 0 
Temperature 0 

Holdup 1 
xWater 0 Si
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The residual is then estimated and we obtain the 
corresponding instantaneous default signature (Table 
3). We compare the instantaneous fault signature 
(Table 3) with the theoretical fault signatures (Table 
2), by calculating the relative and improved 
Manhattan distances (Eqn. 3. and 4.). Then, the fault 
indicators are generated (Table 4). They correspond to 
the complement to 1 of these distances.  

The Manhattan relative and improved indicators detect the presence of the fault 
7 with a probability of 100%. The fault 7 is a false diagnosed. So, with only the 
holdup measurements, a fault diagnosis is established. We must complete the 
system information with qualitative information in order to be more precise and 
relevant during the diagnosis step. 

Table 4. The default indicators of the example 
 Faults 
 1 2 3 4 5 6 7 

Manhattan relative indicator 0,688 0,802 0,832 0,719 0,753 0,676 1 
Manhattan improved indicator 0,121 0,611 0,666 0,235 0,387 0,042 1 

3.2.4. Improved Approach  
To overcome this drawback, the previous approach is coupled with the Case 
Based Reasoning (CBR) method. This method aims to capitalize and reuse pas 
experiences and knowledge for solving problem. In our case the coupling of 
both methods allows to have in a same problem description qualitative and 
quantitative information. In the CBR, illustrated on figure 4 (and detailed in 
[6]), the problem is described (Represent Step) with the main and most relevant 
characteristics, no matter the type of information. Then, the problem is 
compared with other ones stored in a case based and the most similar one and 
its associated solution are extracted to propose a solution to the initial problem 
(Reuse). In the previous example, the problem description is composed of the 
attributes given in Table 3. The model based approach allows the filling of the 



  

quantitative attributes like holdup, and the qualitative attributes like 
temperature, complete and detail the problem description. The qualitative 
information comes from detector thresholds for example. With this additional 
information, the fault 2 is identified, thus the diagnosis refined and more 
reliable. 
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Figure 4. CBR Cycle 

4. Conclusion 
In this research work, the feasibility of coupling qualitative methods and model 
based one is demonstrated for fault detection and diagnosis for chemical 
engineering process monitoring. These two complementary approaches improve 
the diagnosis phase thanks to simultaneous treatment of both qualitative and 
quantitative information. Unfortunately, the monitoring task is not limited to the 
diagnosis, after this step the operator has to take decisions in order to repair the 
fault under constraints: productivity, economic, security, environmental… 
Consequently, a relevant decision support tool must help the operator in this 
difficult task. Currently, in our tool, the solution to the problem encompasses 
only the diagnosis but it can be extended to the proposition of ways to stop (or 
stand by) the process until the repair, and after ways to restart it. In these 
conditions, these proposed ways could be easily tested and then validated by 
simulation (Revise step of Figure 4) because the model of the process already 
exists (needed for the generation of the residuals). Only, the new operating 
conditions must be given. 
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