
A Feedback Based Solution to Emulate Hidden Terminals in Wireless Networks

Emmanuel Conchon∗†, Tanguy Pérennou∗†, Michel Diaz†
∗ENSICA, 1 place Emile Blouin, F-31056 Toulouse Cedex 5, France

†LAAS-CNRS, 7 avenue du Colonel Roche, F-31077 Toulouse Cedex 4, France
E-mail: {econchon, perennou}@ensica.fr, diaz@laas.fr

Abstract— Mobile wireless emulation allows the test of real
applications and transport protocols over a wired network
mimicking the behavior of a mobile wireless network (nodes
mobility, radio signal propagation and specific communication
protocols). Two-stage IP-level network emulation consists in
using a dedicated offline simulation stage to compute an IP-
level emulation scenario, which is played subsequently in the
emulation stage. While this type of emulation allows the use of
accurate computation models together with a large number of
nodes, it currently does not allow to deal with dynamic changes
of the real traffic. This lack of reactivity makes it impossible
to emulate specific wireless behaviors such as hidden terminals
in a realistic way. In this paper we address the need to take
into account the real traffic during the emulation stage and we
introduce a feedback mechanism. During the simulation several
emulation scenarios are computed, each scenario corresponding
to alternative traffic conditions related to e.g. occurrence or
not of hidden terminals. During the emulation stage, the
traffic is observed and the currently played emulation scenario
can be changed according to specific network conditions. We
propose a solution based on multiple scenarios generation,
traffic observers and a feedback mechanism to add a traffic-
based dynamic behavior to a two-stage emulation platform. The
solution will be illustrated with a simple experiment based on
hidden terminals.

I. INTRODUCTION

Test and evaluation of applications and transport protocols
on mobile wireless networks is a challenging task. In wireless
networks developers of applications and protocols must deal
with mobility and propagation aspects in addition to classical
difficulties encountered in the development of networking
aspects in a distributed environment. Furthermore, developers
must face problems due to traffic-based behavior and to
topological aspects such as hidden terminals in MANETs.

A first solution is to set up a real wireless network in order
to evaluate the application and/or the protocol under test. In
practice, this solution is not suitable when the number of
nodes increase or to evaluate the application/protocol under
limit conditions (e.g. with a high speed mobility model).
Moreover, this solution forbids the reproducibility of an
experiment. A more practical solution is to use a discrete
event simulation tool such as ns-2 [1] or GloMoSim [2].
Despite its usefulness and its ability to deal with traffic-
based aspects, this solution requires the use of a model of
the application/protocol under evaluation instead of the real
application/protocol itself. Providing appropriate models may
lead to a potentially expensive redundant development or may
even be impossible when the system to test is too complex.

Emulation is a solution offering a compromise between
real life experiments and simulation. It simulates in real-
time the service of a given layer on the basis of models
of the underlying layers: real software can be executed
on top of that layer while the behavior of the underlying
layers is reproduced. In an IP-level emulator for instance,
true applications and transport-level protocols can send and
receive regular IP packets. These packets are then delayed
and lost according to user-specified conditions in order to
mimic the behavior of the target network. However, when
those delays and losses are computed in real-time as well
as the dynamic wireless network topology (as in NSE, the
emulation part of ns-2), scalability issues arise even when
only a few nodes are involved.

A more scalable solution is to split the emulation process in
two stages: an offline simulation stage computes an emulation
scenario using complex and accurate models without real-
time constraints, followed by an emulation stage that repro-
duces in soft real-time the emulation scenario. As existing
implementations of this solution do not appropriately take
traffic-based behaviors into account, we investigate an en-
hancing feedback mechanism based on the observation of the
real-time traffic on the emulation platform to switch among
precomputed possible scenarios.

This paper provides a brief overview of the related work
(Section II) and reminds the general architecture of W-
NINE (Section III), our emulation platform, then focusing
on multiple possibilities and on the feedback mechanism
(Section IV). Finally a simple experiment dealing with a
classical hidden terminals situation will then highlight the
use of these mechanisms (Section V).

II. STATE OF THE ART

The main goal of emulation is to reproduce in real time
the behavior of some target network on an experimenta-
tion network (typically Ethernet), which of course must be
physically over-provisioned. Typically a classical research
environment cannot emulate core networks but is suitable
for most access networks such as satellite, xDSL, end-to-end
WAN communications [3], wireless networks and so on.

In this paper we will focus on a network level emulation
where only a few parameters need to be manipulated to mimic
specific network conditions for an end-to-end communica-
tion: bandwidth, delay and packet losses. Traffic shapers such
as Dummynet [4] or NIST Net [5] can be used as basic

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12041043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tools allowing the manipulation of these parameters and can
constrain the traffic of the experimentation network. A num-
ber of large emulation testbeds use such traffic shapers, e.g.
Netbed/Emulab [6]. Various approaches allow the dynamic
configuration of a traffic shaper during an emulation.

Emulators built on a trace-based approach [7] reproduce
the behavior of a real network (wired or wireless) on the
experimentation network, according to previously captured
traces. This approach provides a very accurate emulation but
prevents user from stepping away from existing traces.

A second approach consists in using real-time simulation.
As an example, ns-2 provides an emulation mode [8], al-
though it is widely used by researchers as a discrete event
simulator. Contrary to this classical use, the emulation mode
operates with a real time scheduler and is able to process
real packets. An extension for wireless networks emulation
has been presented in [9]. However it seems that the simulator
scheduler has difficulties to deal with the real-time constraints
leading to false simulation results in the 802.11 protocol
implementation. An improvement of the simulator scheduler
has been proposed in [10]. The main difficulty with this fully
centralized type of emulation is that the discrete-event simu-
lator has to process all relevant events in real-time. When the
density of events becomes too important, the simulator drifts
and does not meet the timing constraints, thus invalidating
the emulation results. The increase of event density can be
due to the number of nodes involved or the accuracy of
the implemented models, which are numerous in wireless
networks (node mobility, radio signal propagation, and of
course communication, including traffic-based behaviors).

Several ways of preventing the simulation drift have been
proposed. A first distribution scheme consists in parallelizing
the simulation task across several hosts as in PDNS [11] and
Netbed/Emulab [6]. Another distribution scheme consists in
delegating part of the simulation task to each emulated node
as in EMWIN [12] and JEmu [13]. This approach is rather
intrusive in that each emulated node must host special soft-
ware. None of these platforms currently implement accurate
propagation models nor support traffic-based behaviors.

An alternative approach consists in using a precomputed
scenario to control a traffic shaper, as in the Network Emula-
tion Testbed [14] for wired networks, or in W-NINE [15],
which extends this approach in the context of wireless
networks, so as to allow the use of accurate mobility, propa-
gation and communication models. These models are run at
simulation-time, in a preliminary stage that does not undergo
real-time constraints. The real-time constraints have to be
met only at emulation-time, when applications and traffic get
operational.

III. W-NINE
A. Architecture of W-NINE

The W-NINE platform (see Figure 1) is designed to
emulate a large spectrum of mobile wireless networks based

on high-level experiment descriptions written by developers
for tests. A high-level experiment description allows the
combination of accurate simulation models by the user, so
that tested situations can approximate real conditions. W-
NINE consists of a network emulation platform, called NINE
(Nine Is a Network Emulator), which was already used
in various emulation experiments [3], and a Simulator for
Wireless Networks Emulation, called SWINE.

Fig. 1: The W-NINE Platform Architecture

The roles of SWINE and NINE are quite simple: SWINE is
an offline discrete events simulator that precomputes emula-
tion scenarios composed of IP traffic constraints correspond-
ing to a high-level experiment description, and NINE pro-
vides a physical network interconnecting real nodes, where
the IP traffic is shaped in soft real-time according to this
scenario, as if the underlying network was a mobile wireless
network.

B. The SWINE Simulator

The limited role of SWINE makes it a much simpler
simulator than ns-2 or GloMoSim: neither network layers
above IP nor the application nor the traffic itself must be
modelled, while in ns-2, every packet is simulated and passed
across all the modelled layers, starting from the application
to the physical channel. The principle behind SWINE is not
to simulate packets, but to compute the effects of the target
network on the bandwidth, delay and losses of each potential
link, according to models of lower communication layers
(physical, MAC and IP), propagation issues and node mo-
bility. The architecture of SWINE is presented on Figure 2.

Fig. 2: SWINE Architecture.

The high-level description file describes the experiment
to set up: the nodes (their movements, their communication
stacks up to IP, including ad-hoc routing protocols) and the
environment (obstacles and radio propagation conditions).
This XML description is parsed by SWINE, which con-
sequently creates the objects corresponding to nodes, links
and routes, as well as obstacles, and realizes the equations

corresponding to the user-specified models. For instance,
a path loss exponent model object computes the pathloss
in dB, i.e. PL(d) = PL(d0) + 10n log(d/d0), where d is
the transmitter-receiver distance, d0 a reference distance,
PL(d0) an estimate of the pathloss at d0 and n an empirical
exponent [16]. At least d0 and n should be specified in the
high-level description file.

The simulation core discretely computes the dynamic
topology: node positions over time in the mobility part, then
the potentially received power in the propagation part, and
finally parameters of the communication stack up to IP for
each link and route are computed in the communication
part to establish the different QoS events (i.e. evolution
of available IP data throughput, losses and delays on each
end-to-end link) characterizing the mobile wireless network
behavior at the IP level. The communication part will be
detailed in Section IV-C. Finally, all of the QoS events are
synthesized into emulation scenarios for the NINE platform.

C. The NINE emulation platform

The NINE network emulator is a platform of intercon-
nected nodes where the IP traffic is shaped by a central
router-emulator with Dummynet [4] on a wired Ethernet
gigabit network. An emulation manager is in charge of the
platform dynamic configuration based on emulation scenarios
provided by SWINE. The emulation manager schedules in
soft real-time Dummynet configuration commands corre-
sponding to precomputed QoS events. Real applications and
transport protocols are deployed on the physical experimen-
tation nodes and the IP packets that they exchange are
systematically routed to the router-emulator, which delays or
loses them according to the last configuration command.

IV. ENHANCING W-NINE WITH A TRAFFIC-BASED
FEEDBACK MECHANISM

A. Impact of real traffic on the behavior of a wireless network

In wired networks, instantaneous network traffic has a
rather simple impact on the QoS at the IP level. In a 10Mb/s
Ethernet network, if a node transmits data at 2Mb/s (IP
throughput), another node can simply transmit IP data with
the remaining 8Mb/s.

In wireless networks more complicated behaviors are ob-
served, such as the 802.11 performance anomaly [17], the
exposed and hidden [18] terminal problems. Under the same
topological conditions, the performance will dramatically
change with traffic conditions. We briefly present those
behaviors.

In the 802.11 infrastructure mode, [17] has shown that
the maximum available IP data throughput for one node is
that of the slowest emitting node. If a node uses the 11Mb/s
transmission rate (which corresponds to a maximum IP data
throughput of 7.74Mb/s) while another node belonging to the
same cell has to use the 2Mb/s transmission rate (i.e an IP
data throughput of 1.4Mb/s), the first node will be slowed

down until it observes an IP data throughput smaller than
1.4Mb/s.

Figure 3 presents the hidden terminals problem [18] that
can occur in 802.11 Ad-Hoc mode. In this situation the node
M2 lies in between the transmission range of the nodes M1
and M3. So, as M1 and M3 are out of range, they cannot
sense each other’s transmissions. They are said to be mutually
hidden. In this case the node M3 can start sending its packets
to the node M2 while M2 is still receiving packets from
M1, which may lead to severe interferences. All of these
interferences will result in losses at the IP level.

Fig. 3: Hidden and exposed terminals situation.

The exposed terminals problem is also presented in Fig-
ure 3. This situation occurs when the node M1 starts a
communication with the node M2 while there is a communi-
cation between M3 and M4. As the node M3 communicates
with M4 and is in range of M2’s communication range, this
communication will cause interferences on M2 leading to
packet losses at the IP level.

B. Possible feedback mechanisms

To reproduce such mechanisms, a model of the network
traffic can be used in order to establish if a collision occurs
at a time t. However, one of the main interests of emulation
is that it works without any traffic model. To keep working
without a traffic model, a solution consists in observing the
experimentation network during an experiment and to react
according to the real network traffic and to collisions which
would occur in the real wireless network. For this purpose,
several solutions were investigated. The most intuitive one
is to modify Dummynet, but this solution increases the
Dummynet complexity which may bring about problems to
provide a correct emulation when the traffic load increases
on the router-emulator. Another similar solution is to develop
an additional module to Dummynet which will be in charge
of observing the network traffic, computing its effects on the
emulated wireless link and modifying Dummynet emulation
accordingly. This solution is very close to real time simulation
solutions such as NSE which are not well suited when the
traffic load or the models complexity increase.

Finally, according to W-NINE architecture, the process was
split in two stages. The first stage computes the different
network traffic possibilities and their impact on wireless

communications within SWINE. For this purpose, SWINE
has to search for all potential traffic cases and has to generate
a particular possibility of the emulation scenario for each
case. Then, in the second stage (emulation), it is necessary to
observe in real time the network traffic on NINE and to react
according to the precomputed possibility which corresponds
to the traffic behavior that occurs.

C. The multiple possibilities approach

As presented in section III, SWINE is split in three parts.
After the mobility and the propagation part, the complete
network topology and available communication links among
nodes at each time step are known. During the communi-
cation part SWINE computes the IP parameters that will be
reproduced at the emulation stage. This communication part
is modified to investigate the topology to search all potential
traffic-based problems. For example in Ad-Hoc networks,
it will search every group of at least two nodes that can
be hidden from each other. If there is no potential hidden
terminal an emulation scenario with a single possibility at
each time step is produced. But if there are potential hidden
terminals, SWINE produces an emulation scenario with two
possibilities at each time step. The first possibility represents
the ”normal” case when no interference occurs, and the
second represents the case when two hidden nodes try to send
packets simultaneously. This second scenario is computed
according to the user-specified hidden terminals model in the
high-level description file (e.g. a 100% packet loss rate). All
of these possibilities provide a multiple scenarios framework.

D. Traffic-based emulation decision

Modules that will be in charge of observing the NINE
experimentation network during an experiment are called
the traffic observers. A traffic observer takes no decision. It
is hosted on the router-emulator and observes in real time
the network traffic crossing the experimentation network.
At the beginning of the experiment, it is configured by the
emulation manager in order to know which nodes need to
be observed. Then, using feedback mechanisms, it sends
information relative to this traffic to the emulation manager
which will choose the corresponding precomputed possibility
of the emulation scenario. For example, if it has to observe
a couple of nodes in order to determine if they are hidden
from each other at a time t, it will check the traffic emitted
by the two potentially hidden nodes and warn the network
observer when these two traffics reach the router-emulator
during the same time δt. This time interval is fixed by the
emulation manager at the beginning of the experiment, just
as the nodes that need to be observed.

The decision process is centralized in the emulation man-
ager because it’s the only node of the administration network
that has a complete view of the experiment and of different
scenarios. This solution is far simpler than distributing the
decision process between the emulation manager and traffic

observers: Dummynet receives update commands only from
the emulation manager whereas in a distributed solution a
priority scheme between the emulation manager and traffic
observers should be set up.

A limitation of this solution is that the detection of a
situation by traffic observers and the reaction of the emulation
manager are not simultaneous. The emulation manager sends
Dummynet configuration commands according to the time
granularity of the precomputed scenario. That means that in
the worst case it will react a full time step after the traffic
observer detection.

V. A SIMPLE EXPERIMENT OF FEEDBACK BASED
EMULATION

In this experiment, three nodes are used and stay still to
simplify the interpretation of results. Nodes M1 and M3 are
hidden from each other by a wall which totally absorbs the
radio signal. Node M2 is located at the wall level and directly
sees M1 and M3. M1 sends UDP datagrams to M2 during the
whole experiment. M3 sends UDP datagrams to M2 from t =
11 to t = 22 and from t = 38 to t = 59. The chosen hidden
terminals model consists in simply losing all IP packets on
both links.

An excerpt of the XML emulation scenario produced by
SWINE is presented on Figure 4. Only the M1 to M2
link is presented, M2 to M3 being exactly the same. At
t = 0, SWINE has precomputed two possibilities. The first
possibility (hidden="0") is used when M1 is the only node
sending data to M2: no problem occur and the packet loss rate
(plr) is 0%. The second possibility (hidden="1") is used when
M1 and M3 simultaneously send data to M2: according to
the chosen hidden terminal model all packets are lost (100%
plr). In both cases the IP throughput is 7.11Mb/s. As nodes do
not move both possibilities are reproduced at each time step
(here set to 100ms, which is sufficient for e.g. a multimedia
application) until the end.

<emulation_experiment>
...
<scenario>
<date ident="t0.0" start="0" unit="ms">
<link_update hidden="0" hidden_id="M1-M2-M3">

<on_link>M1 to M2</on_link>
<bandwidth unit="Mb/s">7.11</bandwidth>
<plr>0%</plr>
<delay>0</delay>

</link_update>
<link_update hidden="1" hidden_id="M1-M2-M3">

<on_link>M1 to M2</on_link>
<bandwidth unit="Mb/s">7.11</bandwidth>
<plr>100%</plr>
<delay>0</delay>

</link_update>
...

Fig. 4: Emulation possibilities precomputed by SWINE.

During the emulation stage, two MGEN [19] transmit-
ters are running on the physical nodes M1 and M3, and

one MGEN receiver is running on the physical node M2.
Meanwhile, the Dummynet traffic shaper is configured in
real-time by the emulation manager according to the pre-
computed emulation scenario. The MGEN applications have
been configured to use the UDP transport protocol and to
measure the data throughput from M1 to M2 and from M3
to M2, i.e. the real UDP/IP traffic observed on the platform.
Figure 5 shows that when M3 starts its first transmission at
t = 11 the measured throughput on the M1-M2 link drops
down to 0, which corresponds to the hidden terminal model
implemented. A few packets sent by M3 reach M2 because
of the latency between the traffic observer detection and the
reaction of the emulation manager. The M1-M2 connection
comes back at t = 22 when M3 stops its transmission. The
same connection breakdown is observed between t = 38 and
t = 59 during M3’s second transmission to M2. The little
variations observed are due to the MGEN data throughput
measurement which is averaged every 25ms.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80 90

R
a
te

 (
k
b
p
s
)

Time (sec)

 Traffic based selection of emulation scenarios.

M1->M2
M3->M2

Fig. 5: Throughput Measured by MGEN on NINE.

This experiment shows that our approach based on a sce-
nario with multiple possibilities and real traffic observation
can deal with traffic-based behaviors such as hidden terminals
in a two-stage emulation framework.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new solution to deal with the repro-
duction of traffic-based behaviors in wireless networks on a
two-stage emulation platform. It is based on the generation of
multiple possibilities during the offline simulation stage and
feedback from traffic observers to switch among possibilities
during the emulation stage. A simple experiment successfully
reproduced a hidden terminals situation.

Future work will essentially consist in enhancing the
realism of wireless networks emulation. Other traffic-
based behaviors such as exposed terminals or the 802.11
infrastructure-mode performance anomaly should be inte-
grated. Also we need to control the delay introduced by the
feedback mechanism. The big question is: does this delay

unacceptably decrease realism? Of course only comparison
with experiments on real wireless networks could give a
definitive answer. However, we feel that a trade-off is possible
between an acceptable loss of realism and the possibility
to experiment real applications and protocols on a wired
emulation platform rather than on an operational wireless
network.

REFERENCES

[1] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances in
Network Simulation,” IEEE Computer, vol. 33, no. 5, May 2000.

[2] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A Library for
Parallel Simulation of Large-scale Wireless Networks,” in Proceedings
of PADS ’98, May 1998.

[3] L. Lancerica, L. Dairaine, F. de Belleville, H. Thalmensy, and
C. Fraboul, “MITV, A solution for Interactive TV Based on IP
Multicast over Satellite,” in Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME), June 2004.

[4] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of
Network Protocols,” ACM Computer Communication Review, vol. 27,
no. 1, January 1997.

[5] M. Carson and D. Santay, “NIST Net: A Linux-based Network Emu-
lation Tool,” ACM SIGCOMM Computer Commununications Review,
vol. 33, no. 3, pp. 111–126, 2003.

[6] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” in Proceedings
of OSDI02, 2002.

[7] B. Noble, M. Satyanarayanan, G. Nguyen, and R. Katz, “Trace-Based
Mobile Network Emulation,” in Proceedings of ACM SIGCOMM’97,
September 1997.

[8] K. Fall, “Network Emulation in the VINT/NS Simulator,” in Proceed-
ings of the fourth IEEE Symposium on Computers and Communica-
tions, 1999.

[9] Q. Ke, D. Maltz, and D. Johnson, “Emulation of Multi-Hop Wireless
Ad Hoc Networks,” in The 7th International Workshop on Mobile
Multimedia Communications (MoMuC 2000), October 2000.

[10] D. Mahrenholz and S. Ivanov, “Real-Time Network Emulation with
ns-2,” in In proceedings of The 8-th IEEE International Symposium on
Distributed Simulation and Real Time Applications, 2004.

[11] G. Riley, R. Fujimoto, and M. Ammar, “A Generic Framework for
Parallelization of Network Simulations,” in Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), 1999.

[12] P. Zheng and L. Ni, “EMWin: Emulating a Mobile Wireless Network
using a Wired Network,” in Proceedings of the 5th ACM international
workshop on Wireless mobile multimedia, 2002.

[13] J. Flynn, H. Tewari, and D. O’Mahony, “JEmu: A Real Time Emulation
System for Mobile Ad Hoc Networks,” in Proceedings of the First
Joint IEI/IEE Symposium on Telecommunications Systems Research,
November 2001.

[14] D. Herrscher and K. Rothermel, “A Dynamic Network Scenario
Emulation Tool,” in Proceedings of ICCCN 2002, October 2002, pp.
262–267.

[15] T. Pérennou, E. Conchon, L. Dairaine, and M. Diaz, “Two-stage
Wireless Network Emulation,” in In proceedings of the 2004 Workshop
on Challenges of Mobility (WCM 2004), 2004.

[16] T. Rappaport, Wireless Communications Principles and Practice, 2nd
Edition. Prentice Hall, 2002.

[17] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Perfor-
mance Anomaly in 802.11b,” in Proceedings of IEEE INFOCOM 2003,
2003.

[18] M. Gast, 802.11 Wireless Networks: The Definitive Guide. O’Reilly,
2002.

[19] NRL/PROTEAN, “MGEN: The Multi-Generator Toolset,” http://mgen.
pf.itd.nrl.navy.mil.

