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A B S T R A C T

An investigation of the potential interest of a-alumina–hematite foams, as opposed to pow-

ders, as starting materials for the synthesis of carbon nanotubes (CNTs) by catalytic chem-

ical vapor deposition method was performed. The oxide powders and foams as well as the

corresponding CNT–Fe–Al2O3 composite powders and foams are studied by X-ray diffrac-

tion, specific surface area measurements, electron microscopy, Raman spectroscopy and

Mössbauer spectroscopy. The latter technique revealed that four components (correspond-

ing to a-Fe, Fe3C, c-Fe-C and Fe3+) were present in the Mössbauer spectra of the composite

powders, and that an additional sextet, possibly due to an Fe1�yCy alloy, is also present in

the Mössbauer spectra of the composite foams. Contrary to some expectations, using

foams do not lead to an easier reduction and thus to the formation of more a-Fe, Fe3C

and/or c-Fe–C potentially active particles for the formation of CNTs, and hence to no gain

in the quantity of CNTs. However, using foams as starting materials strongly favors the

selectivity of the method towards SWCNTs (60% SWCNTs and 40% DWCNTs) compared

to what is obtained using powders (5% SWCNTs, 65% DWCNTs and 30% MWCNTs).
1. Introduction

The synthesis of carbon nanotubes (CNTs) by catalytic chem-

ical vapor deposition (CCVD) is based on the catalytic decom-

position of carbonaceous gases such as CH4 on transition

metal (usually Fe or Co) nanoparticles. The nanoparticles

are either supported by a substrate, or held in suspension in

the gas stream. A critical survey of the bibliography [1] re-

vealed that many different CCVD routes can succeed provided

all parameters related to the metal source are adapted to all
t of Subatomic and Radia
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parameters related to the carbon source, at the appropriate

synthesis temperature. Indeed, the critical step is the forma-

tion of metal nanoparticles, which must have a size (0.4–

5 nm) adequate for the formation of single-wall CNTs

(SWCNTs) and double-wall CNTs (DWCNTs) [2,3] at a temper-

ature (usually in the range 600–1100 �C) making possible the

catalytic (as opposed to thermal) decomposition of the carbo-

naceous gas.

One method [4], ensuring that the metal particles do not

grow too much, involves the reduction in H2–CH4 of
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alumina–hematite solid solutions, first producing nanometric

Fe particles that are active for the decomposition of CH4, thus

producing CNT–Fe–Al2O3 composite powders. The influence

of the characteristics of the solid solutions upon the synthesis

of CNTs has been the subject of intensive research. In partic-

ular, in order to increase the quantity of CNTs, it is desirable

that there are more Fe nanoparticles on the surface of the

oxide grains. Increasing the geometrical surface area by a

grinding which decreases the grain size of the starting pow-

der of alumina–hematite solid solution was not found [5] to

be useful, possibly because of the much higher packing of

the ground powder. When using the high-specific-surface-

area amorphous or transition solid solutions prepared from

the mixed-oxalate decomposition and calcination, it was

found [6] that some undesirable carbon species are entrapped

within the Al2O3 grains upon the crystallization into the

corundum (a) form which occurs during the H2–CH4 reduction

step. Thus, the aim of this paper is to investigate a new way to

prepare a-alumina–hematite starting materials. This will in-

volve the preparation of self-supported foams. The advantage

of the shaping into to a foam, as opposed to a powder, is that

the porous oxide solid solution presents a very low packing,

which should permit firstly to obtain more active surface area

and therefore catalyst nanoparticles and secondly to main-

tain free space that will allow a good diffusion of CH4. This

route has given promising results when applied to catalytic

materials based on (Mg,Co)Al2O4 [7] and (Mg,Co,Mo)O [8].

CNTs–Fe–Al2O3 composite powders and foams will be studied

by electron microscopy, Raman spectroscopy and Mössbauer

spectroscopy.

2. Experimental

2.1. Preparation of powders and self-supported foams

a-(Al1�xFex)2O3 (corundum) powders (x = 0.02, 0.05, 0.07, 0.10)

were prepared by decomposition and calcination of the Al/Fe

oxinate precursors whose preparation is detailed else-

where [9]. The powders were code-named as PX, where X rep-

resents the iron content (2, 5, 7 and 10 cat.%) in the solid

solution.

About 3 g of each a-(Al1�xFex)2O3 powder was mixed with

0.045 g of dispersant (BEYCOSTAT C213, CECA France), which

represents 1 mg of dispersant/m2 of powder, diluted in about

10 mL of ethanol. The mixture was kept under magnetic stir-

ring for about 10 min for homogenization. The so-obtained

dispersant-powder mixture was attrition-milled (2000 rpm,

3 h) using a Nylon vessel and rotor, and alumina balls (200–

300 lm in diameter). The ratio between the powder volume

and the volume of the balls was 0.5. After attrition milling,

the powder was separated from the alumina balls by rinsing

in ethanol and filtering. The composition of the resulting slur-

ry was adjusted to about 35 wt% dispersant-powder mixture

and 65 wt% ethanol. A polyurethane foam (80 pores per inch,

60 · 30 · 20 mm3) was impregnated with the slurry. The

impregnated foam was mechanically pressed several times

in order to eliminate the excess slurry. It was then dried over-

night at room temperature and calcinated in air (600 �C,

150 �C/h, 60 min) in order to burn all organics, producing the
self-supported a-(Al1�xFex)2O3 foams. These foams were

code-named as FX, after the corresponding powder PX. Note

that only three foams were prepared (F2, F5 and F7).

2.2. Synthesis of carbon nanotubes

The solid solution powders and foams were reduced in a H2–

CH4 (20 mol% CH4) gas mixture in a silica reactor (inner diam-

eter 56 mm, length of the heating zone 200 mm). The heating

and the cooling rate to the desired temperature (1025 �C) and

back to room temperature was 5 �C/min. No dwell time was

applied at 1025 �C. The flowing gas was dried on P2O5 and

its composition was regulated by mass-flow controllers. The

total flow rate was 15 L/h. The so-obtained CNTs–Fe–Al2O3

composite powders and foams are code-named as PXR and

FXR, respectively.

2.3. Characterization

X-ray diffraction (XRD) patterns were recorded in the range

10–70� (2h) with a Bruker D4 Endeavor diffractrometer operat-

ing with Cu Ka radiation. Counts were registered every 0.02�
(2h). The specific surface area of the oxide powders and foams

was measured by the BET method (Micrometrics Flow Sorb II

2300) using nitrogen adsorption at liquid nitrogen tempera-

ture. This instrument gives a value from one point (i.e. one

adsorbate pressure) and requires calibration. The reproduc-

ibility of the results is in the ±3% range. Mössbauer spectra

at room temperature (295 K) and at 15 K were collected using

spectrometers operating at constant acceleration mode with

triangular reference signals. 57Co(Rh) sources were used. All

Mössbauer spectra were analyzed in terms of model-indepen-

dent distributions of hyperfine parameter values and numer-

ical data quoted hereafter refer to maximum-probability

values [10]. Isomer shifts are referenced with respect to a-Fe

at room temperature. The carbon content (Cn) in the compos-

ite powders and foams was measured by the flash combus-

tion method with an accuracy of ±2%. Raman spectra were

recorded using a LabRAM 800 Jobin–Yvon spectrometer

(632.82 nm) and were averaged on three spectra. The powders

and foams were observed by field-emission-gun scanning

electron microscopy SEM (FEG–SEM, JEOL JSM 6700F). The

observations were performed with a tension of 5 kV and a

work distance between 4.0 and 6.2 mm. Composite specimens

were plated with Pt before FEG–SEM observations. High-reso-

lution transmission electron microscopy (HRTEM) was per-

formed with a JEOL JEM 2100F microscope operated at

200 kV. The samples were slightly sonicated in ethanol, and

a drop of the suspension was deposited onto a holey carbon

grid.

3. Results and discussion

3.1. Oxide powders and foams

The XRD patterns of the PX powders (not shown) show peaks

characteristic of well-crystallized corundum solid solution.

For P10, however, several weak additional lines corresponding

to hematite (a-Fe2O3) are observed. This reveals that for this



Table 1 – Hyperfine parameters at room temperature for the a-(Al1�xFex)2O3 powders [9].

Sample D1 D2 Sg S1

DEQ

(mm/s)
da

(mm/s)
RA (%) DEQ

(mm/s)
da

(mm/s)
RA (%) d (mm/s) RA (%) Bhf (T) 2eQ

(mm/s)
d

(mm/s)
RA (%)

P2 0.54 0.30 63 1.18 0.30 29 0.03 8

P5 0.53 0.30 85 1.18 0.30 12 0.04 3

P7 0.54 0.29 88 1.20 0.29 8 0.05b 1 49.8 �0.19 0.35 3

P10 0.54 0.29 85 1.20 0.29 7 0.05 0.5 49.8 �0.18 0.37 7.5

Bhf, hyperfine field at maximum of the distribution (T); 2eQ, quadrupole shifts (mm/s); DEQ, quadrupole splitting (mm/s); d, isomer shifts (mm/s);

RA, relative spectral areas (%). The values of isomer shifts are with reference to metallic iron.

a The isomer shifts of D1 and D2 were coupled.

b Fixed parameters.
composition the crystallization of the solid solution into the a

phase was followed by some degree of phase partitioning into

an alumina-rich corundum phase and a hematite- rich corun-

dum phase. This further infers that the solubility limit of

hematite into a-Al2O3 for the present synthesis route is below

10 mol%.

The Mössbauer spectra (not shown) of the a-(Al1�xFex)2O3

powders were studied in detail elsewhere [9]. They are com-

posed of a dominant Fe3+ quadrupole doublet with quadru-

pole splitting DEQ � 0.54 mm/s besides two other weaker

components, i.e., a singlet and another quadrupole doublet

with DEQ � 1.2 mm/s. Additionally, the presence of a weak

sextet characteristic of a-Fe2O3, is observed for samples P7

and P10. The Mössbauer spectra parameters are listed in

Table 1 [9]. The dominant doublet was attributed to Fe3+ ions

substituting for Al3+ ions in the corundum structure. The sin-

glet was ascribed, on the basis of its isomer shift value, to ex-

tremely small metallic Fe nanoclusters that for some yet
Fig. 1 – Typical FEG–SEM images showing the a-(Al1�xFex)2O3 po

(c and d).
unknown reason may have formed within the solid solution

grains, which is an unusual result that is discussed elsewhere

in great detail [9]. However, the amount of iron involved is

very minor (Table 1) and the specimens are nevertheless con-

sidered as solid solutions. The isomer shift obtained for the

weak doublet (�0.3 mm/s at 295 K) points at an Fe3+ species

in an octahedral co-ordination. Its high quadrupole splitting

(DEQ � 1.2 mm/s) implies a strong deformation of the octahe-

dral symmetry of the involved site. As discussed elsewhere

[9], these strongly deformed sites could most likely be associ-

ated to the presence of the metallic nanoclusters within the

solid solution grains. The presence of the weak a-Fe2O3 sextet

for P7 and P10 indicates that some phase partitioning into an

alumina-rich corundum phase and a hematite-rich phase

occured during the calcination step. Regarding the self-sup-

ported foams, there is no reason to suspect that the process

used in the present work produced any change in the distri-

bution of the Fe3+ ions.
wders (a and b) and the walls of the corresponding foams
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Fig. 2 – MS of the CNTs–Fe–Al2O3 powders measured at 295 K (left) and 15 K (right).

Table 2 – Mössbauer results of the CNTs–Fe/alumina powders at 295 K and 15 K. The quadrupole shifts (2eQ), quadrupole
splitting (DEQ) and isomer shifts (d) are given in mm/s, the hyperfine fields (Bhf) are in T and the relative spectral areas (RA)
are given in %. The values of isomer shifts are with reference to metallic iron.

Sample Fe3C a-Fe c-Fe–C (Al,Fe)2O3

Bhf 2eQ d RA Bhf d RA d RA DEQ d RA

295 K

P2Ra 20.7 0.07 0.19 15 33.1 0.00 10 �0.10 23 0.57 0.30 41

P5Rb 20.7 0.02 0.21 16 32.5 0.01 20 �0.13 24 0.56 0.30 33

P7R 20.7 0.04 0.20 22 32.6 0.00 31 �0.13 21 0.57 0.30 26

P10R 20.8 0.04 0.20 24 32.8 0.00 36 �0.12 19 0.57 0.29 21

15 K

P2Rc 25.6 �0.05 0.36 19 34.4 0.12 16 �0.01e 28 0.55 0.41 27

P5Rd 25.6 �0.01 0.35 16 34.5 0.12 29 �0.01e 27 0.55 0.40 22

P7R 25.8 0.00 0.33 21 34.6 0.12 40 �0.01 24 0.56 0.42 15

P10R 25.7 0.01 0.33 24 34.4 0.12 43 �0.01 23 0.57 0.42 10

a Also present is a weak doublet with DEQ about 1.58 mm/s, d = 0.79e mm/s and RA �11%.

b Also present is a weak doublet with DEQ about 1.58 mm/s, d = 0.79e mm/s and RA �7%.

c Also present is a weak doublet with DEQ about 1.52 mm/s, d = 0.89 mm/s and RA �10%.

d Also present is a weak doublet with DEQ about 1.53 mm/s, d = 0.81 mm/s and RA �6%.

e Fixed parameter value.



FEG–SEM images (Fig. 1a and b) of the powders reveal that

they are made up of 2–5 lm grains assembled into tabular-like

aggregates. However, the observation of smaller entities and

of side-views of the tabular-grains reveals the so-called ver-

micular microstructure with much looser aggregates made

up of 0.2–0.5 lm primary grains or crystallites. The BET

specific surface area of these powders is in the range 4.4–

6.0 m2/g, in good agreement with the usual values for corun-

dum. Interestingly, FEG–SEM images (Fig. 1c and d) of the

walls of the self-supported foams reveal a much more homo-
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Table 3 – Mössbauer results of the CNTs–Fe/alumina foams at
splitting (DEQ) and isomer shifts (d) are given in mm/s, the hype
are given in %. The values of isomer shifts are with reference

Sample Fe3C a-Fe

Bhf 2eQ d RA Bhf d RA

295 K

F2R 20.2a 0.03a 0.19a 8

F5R 19.9 0.03a 0.19a 10 33.5 0.00 13

F7R 20.0 0.03a 0.20 15 33.4 0.00 19

15 K

F2R 24.8 �0.03a 0.31a 14 34.6 0.11a 10

F5R 24.7 �0.03a 0.31a 12 34.7 0.12 31

F7R 24.7 �0.03a 0.31a 16 34.7 0.12 38

a Fixed value.
geneous microstructure, with grains generally smaller than

0.5 lm and appearing relatively densely packed. The BET spe-

cific surface area of the foams is in the range 10.1–18.7 m2/g,

the increase as compared to the powders probably reflecting

the lower average grain size.

3.2. Composite powders and foams

Analyses of the XRD patterns (see Supplementary Data, Fig-

ure S1) of the PXR powders reveals the pattern of a corundum
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F7R) measured at 295 K (left) and 15 K (right).

295 K and 15 K. The quadrupole shifts (2eQ), quadrupole
rfine fields (Bhf) are in T and the relative spectral areas (RA)
to metallic iron.

c-Fe–C (Al,Fe)2O3 Fe1�yCy

d RA DEQ d RA Bhf d RA

�0.09 27 0.55 0.32a 65

�0.13 27 0.56 0.33 33 26.8 0.13a 17

�0.13 23 0.56 0.33 25 27.4 0.13a 18

�0.01a 18 0.55 0.42a 53 28.8 0.24a 5

�0.01 31 0.56 0.42 17 29.0 0.24a 9

�0.02 24 0.57 0.43 13 28.7 0.24a 9
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Fig. 4 – High-frequency range of the Raman spectra (632.82 nm) showing the D and G bands for the CNTs–Fe–Al2O3 powders

and (inset) the corresponding low-frequency range showing the RBM peaks.

Fig. 5 – FEG–SEM images of the powders: P2R (a), P5R (b), P7R (c) and P10R (d).



Fig. 6 – FEG–SEM images of the foams: F2R (a), F5R (b) and

F7R (c).
phase and the peaks of Fe3C and a-Fe with increasing intensi-

ties upon the increasing iron content. It is difficult to separate

the XRD patterns of Fe3C and a-Fe because the respective

main peaks are rather broad and strongly overlapping. c-Fe

may also be present, but cannot be observed because the

main c-Fe peak (d111 = 0.208 nm) is masked by the corundum

(d113 = 0.209 nm) and Fe3C (d121 = 0.210 nm) peaks. As ex-

pected, the XRD patterns of the FXR foams (see Supplemen-

tary Data, Figure S2) show features essentially similar to

those observed for the PXR powders.

The Mössbauer spectra collected at 295 K and 15 K are

reproduced in Fig. 2 left and right, respectively. Three of the

subspectral components found in the Mössbauer spectra of

the parent oxides have vanished: the a-Fe2O3 sextet, the weak

Fe3+ doublet and the singlet due to metallic Fe clusters. More-

over, only part of the main Fe3+ doublet has remained, the ex-

tent depending on the initial iron concentration, whilst three

other components have appeared. Thus, four components

were found to be required to obtain adequate fits of these

spectra: (i) an outer sextet with hyperfine parameters typical

of the a-Fe phase; (ii) an inner sextet that can be attributed

to Fe3C; (iii) a central singlet due to a c-Fe phase, maybe al-

loyed with carbon; and (iv) a doublet that can be ascribed to

Fe3+ species substituting in the Al2O3 structure. For samples

P2R and P5R, meticulous fitting attempts of their Mössbauer

spectra have led to the conclusion that an additional, but

weak (611% of total absorption area) and rather ill-defined

doublet has to be included in the model. Its quadrupole split-

ting DEQ was found to be �1.6 mm/s and its isomer shift

d � 0.8 mm/s at 295 K. This latter value is neither typical of

Fe3+, nor of Fe2+, but is rather in between. Moreover, the DEQ

value is unusually high for Fe3+. It is proposed that the re-

solved broad doublet is actually an approximation for the

spectrum of a hercynite phase (FeAl2O4). The Mössbauer spec-

trum of such spinel-type compounds are composed of several

quadrupole doublets arising from Fe2+ and from Fe3+, as such

rendering their Mössbauer spectrum very complicated and

highly unresolved [11–15]. Consequently, when fitting such a

composition of Fe2+ and Fe3+ doublets by one single doublet,

one obtains a broad line width and hyperfine parameters with

values that are intermediate between those characteristic for

Fe2+ and Fe3+, respectively.

The relevant numerical data resulting from the adjust-

ments of the respective spectra are listed in Table 2. The rel-

ative spectral areas (RA) of the various components (Table 2),

change significantly when the temperature is lowered from

295 K to 15 K. This can be due either to superparamagnetic ef-

fects in some of the constituents at 295 K, or to the weaker

resolution of the respective subspectra, making the derived

Mössbauer parameters, in particular the RA values, less reli-

able. The occurrence of superparamagnetism is a well-known

property of magnetic small particles ([16] and references

therein). In the Mössbauer spectra, this phenomenom is re-

flected in the collapse of the magnetically split spectrum into

an apparently paramagnetic doublet or singlet at tempera-

tures lower than the respective Curie or Néel point of the in-

volved material in bulk appearance. This collapse is due to

fast relaxation of the magnetization vector as a whole. It is

reasonable to consider that the Fe phases present in the com-

posites exhibit relatively broad particle-size distributions.
Consequently, some of these phases may present a super-

paramagnetic effect at relatively high temperatures, resulting

in the appearance of a quadrupole doublet or a singlet in the

Mössbauer spectra acquired at these temperatures. In view of

this feature it could be that part of the Fe3+ doublet and/or the

singlet presently observed at the higher temperature (295 K) is

actually due to Fe constituents that at 15 K are experienced as

being magnetic, i.e., as a sextet. In this sense, one may raise

doubts about the validity of the Mössbauer parameters ob-

tained for the Mössbauer spectra at 295 K, in particular the

relative spectral areas RA. For this reason, only the data refer-

ring to 15 K are thought to be reliable and useful. The main

differences between the four powders concern the RA values

for the (Al,Fe)2O3 doublet and the a-Fe sextet. The RA value for

the (Al,Fe)2O3 doublet steadily decreases from P2R to P10R,



showing that the reduction is comparatively easier when the

total iron content is increased. The a-Fe sextet is significantly

more abundant for P7R and P10R than for P2R and P5R, which

could be a consequence of the easier reduction process and

could also reflect the presence of a hematite-rich phase (Table

1) in the corresponding P7 and P10 powders.

Typical Mössbauer spectra recorded at 295 K and 15 K for

the FXR foams are reproduced in Fig. 3 and the relevant Möss-

bauer parameters are reported in Table 3. Some constraints

had to be imposed to the fit procedure. They are indicated

in the footnotes to Table 3. In the applied fitting model, gen-

erally five patterns were included: the four components (cor-

responding to a-Fe, Fe3C, c-Fe-C and Fe3+) that were also
Fig. 7 – HRTEM image
present in the Mössbauer spectra of the PXR powders, and

an additional sextet. This later component is possibly due to

an Fe1�yCy alloy [17]. However, this fifth component could

not be resolved from the 295 K spectrum for F2R, and also

the a-Fe subspectrum was not detected in this latter spec-

trum. Note that the relative abundance of the (Al,Fe)2O3 dou-

blet for F2R (53%) is much higher than for P2R (27%),

indicating that the reduction was significantly more difficult

for the former specimen. The RA values for F5R and F7R are

similar to those for P5R and P7R. These results reveal that

contrary to some expectations, the lower grain size and

higher specific surface area of the starting oxide foams do

not lead to an easier reduction and thus to the formation of
s for powder P5R.
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P5R.
more a-Fe, Fe3C and/or c-Fe-C potentially active particles for

the formation of CNTs. This could be due to the higher pack-

ing of the solid solution grains in the walls of the foam.

The carbon content (Cn) was found equal to 0.6, 1.0, 1.9 and

3.3 wt% for P2R, P5R, P7R and P10R, respectively. This evolu-

tion is in agreement with earlier results [18] obtained with

powders by the oxalate (not oxinate) route, although the val-

ues are lower. This difference arises because in the earlier

study [18], there was a dwell time of 4 h at the maximum

reduction temperature, whereas no dwell time was applied

for the present study. The carbon content was found equal

to 0.8, 1.4 and 1.5 wt% for F2R, F5R and F7R, respectively.

These values are not much different than those measured

for the PXR powders, which is in line with the conclusion of

the above Mössbauer spectroscopic study.

The high-frequency range (1200–1800 cm�1) of the Raman

spectra (Fig. 4) shows the D band (ca. 1320 cm�1) and the G

band (ca. 1580 cm�1). The ratio between the intensity of the

D band and the G band, ID/G is very high for P2R (180%) and

much lower (close to 30%) for the other three powders. An

increasing ID/G value corresponds to a higher proportion of

sp3-like carbon, which is generally attributed to the presence

of more structural defects. In addition, the G band for P2R

shows a shoulder at higher frequency (ca. 1615 cm�1), which

is typical of defective graphite-like materials [19]. The pres-

ence of radial-breathing-modes (RBM) peaks in the low-fre-

quency range (100–300 cm�1) of the spectrum (insets in

Fig. 4), the frequencies of which are inversely proportional

to the CNT diameters, is usually the sign of the presence of

small-diameter CNTs, such as SWCNTS and DWCNTs. Only

very weak RBM peaks are observed for P2R. Note however that

the Raman process is influenced by optical resonance and it is

thus impossible to detect all present CNTs using only one

wavelength. Moreover, the peak intensities do not reflect the

real amount of individual CNTs because of the resonance ef-

fect which amplifies the Raman signal from certain CNT. The

Raman spectra (see Supplementary Data, Figure S3) of the

FXR composite foams clearly reveal a decrease in the inten-

sity ratio ID/G with increasing Fe content (88, 66 and 33% for

F2R, F5R and F7R, respectively). Compared to the correspond-

ing PXR powders, the ID/G values are much lower, higher and

similar for F2R, F5R and F7R, respectively. RBM peaks are de-

tected for all three composite foams.

FEG–SEM images (Fig. 5) of the PXR specimens reveal the

presence of long, flexible filaments, with a smooth and regu-

lar surface, on the surface of the oxide grains and bridging

several grains. The quantity of such filaments increases with

increasing X. All filaments have a diameter smaller than

30 nm and a length of the order of some tens of micrometers.

From earlier results, it is known that such filaments are iso-

lated CNTs and/or CNTs bundles. Spherical particles 5–

20 nm in diameter that may be a-Fe, Fe3C and/or c-Fe–C (some

of which are arrowed on Fig. 5b) are observed at the surface of

the alumina grains. Most of these particles do not appear to

be connected to a CNT, indicating that they have been inac-

tive for the formation of CNT. It is interesting to note that

the presence of undesirable thick, short carbon nanofibers is

not observed. FEG–SEM images (Fig. 6) of the FXR specimens

reveal features essentially similar to what is observed for

the PXR samples.
Typical HRTEM images collected for sample P5R are shown

in Fig. 7. The images show CNT bundles (Fig. 7a and d),

DWCNTs (Fig. 7b and e) and CNTs with four walls (Fig. 7c).

Carbon nanofibers partly filled with a metal particle (Fig. 7f)

are very rarely observed, in agreement with the FEG–SEM re-

sults. An inactive particle (a-Fe, Fe3C or c-Fe–C) covered by

several graphene layers is shown in Fig. 7g. Fig. 8 presents his-

tograms of the number of walls and diameter distributions,

which were obtained by measuring CNTs on similar HRTEM

images for sample P5R. The distribution of the number of

walls (Fig. 8a) shows that about 65% of CNTs are DWCNTs.

Most of the other CNTs have three, four or five walls, the

SWCNTs accounting only for less than 5%. The diameter dis-

tribution (Fig. 8b) spans a relatively broad range. The inner

diameter averages at �2.7 nm and the outer diameter at

�4.4 nm. HRTEM images (Fig. 9) were collected for sample

F5R. Note that the poorly-ordered carbon observed at the sur-

face of the CNTs originates from CNTs damaging under the

electron beam. The important difference compared to P5R is

that SWCNTs (Fig. 9a and b) and DWCNTs (Fig. 9c) appear to

be considerably more abundant for F5R, to the detriment of

MWCNTs. Indeed, the histogram of the number of wall indi-

cates 60% SWCNTs and 40% DWCNTs (see Supplementary

Data, FigureS4). This finding is in agreement with previous re-

sults [7,8] showing that the selectivity of the method towards

SWCNTs is much higher when the starting material is in the

form of a foam as opposed to a powder. The XRD and Möss-

bauer spectroscopic studies do not seem to reveal differences



Fig. 9 – HRTEM images for foam F5R.
that could account for this, prompting out the need for future

studies.

4. Conclusions

The Mössbauer spectroscopy technique revealed that four

components (corresponding to a-Fe, Fe3C, c-Fe–C and Fe3+)

were present in the Mössbauer spectra of the composite pow-

ders, and that an additional sextet, possibly due to an Fe1�yCy

alloy, is also present in the spectra of the composite foams.

Contrary to some expectations, the lower grain size and high-

er specific surface area of the starting oxide foams compared

to the powders do not lead to an easier reduction and thus to

the formation of more a-Fe, Fe3C and/ or c-Fe–C potentially ac-

tive particles for the formation of CNTs. This could be due to

the higher packing of the solid solution grains in the walls of

the foam. Thus, there is no gain in the quantity of CNTs, but

HRTEM images interestingly revealed that the selectivity of

the method towards SWCNTs is much higher when the start-

ing material is in the form of foam (60% SWCNTs and 40%

DWCNTs) as opposed to a powder (5% SWCNTs, 65% DWCNTs

and 30% MWCNTs).
Acknowledgements

This work was partially funded by the Fund for Scientific Re-

search – Flanders, and by the Special Research Fund (BOF, Bij-

zonder Onderzoeksfonds), UGent (B/06633), Belgium. The

authors would like to thank Mr. Lucien Datas for assistance

in HRTEM observations. All electron microscopy observations

were performed at TEMSCAN, the ‘‘Service Commun de
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