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The evolution and structure of a spatially evolving two-dimensional mixing layer seeded with small
bubbles are numerically investigated. The one-way coupling approach is first employed to show that
characteristics of bubble dispersion are dominated by the possibility for sufficiently small bubbles
to be captured in the core of the vortices. A stability analysis of the ordinary differential equation
system governing bubble trajectories reveals that this entrapment process is governed by the
presence of stable fixed points advected by the mean flow. Two-way coupling simulations are then
carried out to study how the global features of a two-dimensional flow are affected by
bubble-induced disturbances. The local interaction mechanism between the two phases is first
analyzed using detailed simulations of a single bubbly vortex. The stability of the corresponding
fixed point is found to be altered by the collective motion of bubbles. For trapped bubbles, the
interphase momentum transfer yields periodic sequences of entrapment, local reduction of velocity
gradients, and eventually escape of bubbles. Similar mechanisms are found to take place in the
spatially evolving mixing layer. The presence of bubbles is also found to enhance the destabilization
of the inlet velocity profile and to shorten the time required for the rollup phenomenon to occur. The
most spectacular effects of small bubbles on the large-scale flow are a global tilting of the mixing
layer centerline towards the low-velocity side and a strong increase of its spreading rate. In contrast,
no significant modification of the flow is observed when the bubbles are not captured in the
large-scale vortices, which occurs when the bubble characteristics are such that the drift parameter
defined in the text exceeds a critical value. These two contrasted behaviors agree with available
experimental results.

I. INTRODUCTION

Two-phase dispersed flows are of major importance in a
wide variety of industrial and natural processes. For instance
full-scale devices in chemical engineering plants have to be
carefully designed to achieve optimal mixing, mass transfer,
or chemical reaction. Transport and extraction of oil are al-
ways performed under two-phase flow conditions. In such
systems, predicting the phase distribution and the macro-
scopic evolution of the bulk flow is still a challenging task.
The presence of a dispersed phase made of particles, drop-
lets, or bubbles, dramatically affects the global properties of
the flow. Conversely, the dispersion of the particulate phase
is mainly related to the dynamics of the carrying flow. A
naive analysis would conclude that turbulence mixes the en-
tire flow and yields a uniform distribution of the dispersed
phase. However, detailed analysis contradicts this conclu-
sion, as shown by Eaton and Fessler1 for particulate flows or
by Spelt and Biesheuvel2 for bubbles �see also Davila and
Hunt3�. Turbulent structures induce preferential accumula-
tion of particles in well-defined structures of the flow. Hence,
the local value of bulk properties such as density, effective

viscosity, or thermal diffusion depends on the local volume
fraction of the particulate phase. Even at modest concentra-
tion, two-way coupling interactions may modify the dynam-
ics of vortical structures of the carrying flow.4 These interac-
tions are very difficult to take into account in global models
because of the large variety of length scales involved in the
momentum transfer between the dispersed and the continu-
ous phase. For instance, bubbles and particles induce small-
scale velocity fluctuations in their vicinity. Part of the energy
due to the wake and the boundary layer is locally and almost
immediately dissipated. However, collective effects can feed
the low-wavenumber contents of the energy spectrum
through backscatter transfer, making the overall response of
the flow difficult to predict.

Very few available experimental studies have provided
simultaneous measurements of both phases.4,5 This is mainly
because the presence of particles or bubbles in the flow de-
creases the accuracy of most nonintrusive measuring tech-
niques or even prevents their use. Based on particle image
velocimetry �PIV� measurements and optical filtering, Ford
and Loth6 and Dreier et al.7 extracted the fluid velocity field
together with Lagrangian trajectories of the dispersed phase
in a plane horizontal mixing layer. Using a phase Doppler
particle analyzer �PDPA�, Martinez-Bazan and Lasheras8 and
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Rightley and Lasheras5 determined bubble dispersion and in-
terphase coupling in the same flow configuration. Bubble
concentration profiles were found to satisfy self-similarity
conditions. These measurements also revealed that bubbles
are entrained by the large-scale vortices, which results in a
nonuniform spatial distribution of the dispersed phase.

Numerical simulation of dispersed two-phase flows has
also provided insightful results over the past two decades.
Lagrangian tracking of small particles moving in a known
velocity field was first performed9–11 to demonstrate that seg-
regation and dispersion properties of the particulate phase are
basically related to the characteristics of the vortices. The
major role played by vortical structures was widely empha-
sized in various carrying flows.12–14 Inertial particles or
massless bubbles experience dominant forces of a different
nature. Heavy particles are swept outside vortices and accu-
mulate in straining regions through centrifugal ejection. In
contrast, bubbles tend to accumulate within the vortex cores
because they are mainly driven by the added-mass force
which is directed toward the high-vorticity regions. Both
features have been widely observed experimentally, and
Lagrangian tracking based on simple force balances repro-
duces qualitatively the underlying physics. With the consid-
erable increase of computational resources, unsteady three-
dimensional flows were then considered by solving directly
the full Navier-Stokes equations. Using the concept of point
forces to model the effect of small heavy particles on the
flow field, modulation of turbulence properties in homoge-
neous situations15,16 or in channel flows17 was investigated.
In bubbly flows, bubbles can drive the large-scale fluid mo-
tions through collective buoyancy effects and can simulta-
neously contribute to the small-scale agitation due to wake
and path instabilities. As for turbulent particulate flows, the
dynamics of turbulent bubbly flows is greatly complicated by
the continuous range of spatial scales involved in the energy
transfer process. Even though a Kolmogorov scaling has
been clearly identified for the dispersion of small bubbles,
bubble-induced modifications in a fully turbulent flow are
still under examination.18 Moreover, compared with the case
of heavy solid particles, bubbles represent a much more dif-
ficult problem because they are extremely sensitive to hydro-
dynamic effects, owing to their negligible density. While part
of these effects, i.e., added mass, is now quite well known,
models for the lift force in a general flow field are still lack-
ing in several flow regimes, especially for microbubbles. The
study of relatively simple bubbly flows in a regime where the
hydrodynamic forces are reasonably well known is thus of
great interest to identify and quantify interaction mecha-
nisms. A plane mixing layer can be regarded as a canonical
case of free-shear flow where well-defined coherent struc-
tures drive the dispersion features and interphase coupling
governs the evolution of large-scale vortices seeded with
bubbles.

The computations reported below provide new insights
to interpret available, apparently conflicting, experimental
results.19,20 The first attempt to perform two-way coupling
simulations in a bubbly mixing layer was achieved by
Ruetsch and Meiburg.21 The idealized temporal mixing
layer22,23 is a useful configuration but it obviously prevents

the investigation of the spatial evolution of large-scale dy-
namics. Druzhinin and Elgobashi24 recently achieved a three-
dimensional computation of a two-phase mixing layer. Their
approach makes use of a mixed Lagrangian-Eulerian formu-
lation which reproduces bubble accumulation in vortex cores
without inducing numerical instabilities on the Eulerian con-
centration. Their results reveal that a nonuniform bubble
concentration profile at the inflow strongly affects the veloc-
ity fluctuations throughout the flow and that the growth of
the vorticity thickness of the mixing layer is driven by un-
stable bulk stratification.

In the present paper we report on a two-way coupling
investigation of an upward spatially evolving two-
dimensional mixing layer seeded with bubbles. All bubbles
are assumed to have the same diameter; however, the role of
the bubble diameter is investigated through different runs.
This is why the present study is quite complementary from
that in Ref. 24, where all the computations were run with the
same bubble diameter. Based on the numerical results, we
carry out a detailed analysis of bubble dispersion induced by
the large-scale vortices and of bubble-induced modifications
on both the vortical structure and the global characteristics of
the large-scale flow.

II. INTERPHASE COUPLING APPROACH

A. Lagrangian tracking

The dispersed phase is made of small bubbles experienc-
ing the combined effects of the carrying fluid flow and the
buoyancy force. Bubble trajectories are distinct from fluid
element paths and a precise force balance acting on the
bubbles is required. Obtaining an analytical expression for
all hydrodynamic forces is still an open issue in most flow
regimes, even though problems linked with deformability,
breakup, coalescence, collisions, and contamination by sur-
factants are disregarded. Therefore, assumptions have to be
made to simplify the problem and obtain a reasonable force
balance. Considering only bubbles smaller than all the rel-
evant spatial length scales of the carrying flow makes the
so-called Fàxen corrections induced by the local curvature of
the flow velocity field negligible.25,26 Moreover, restricting
ourselves to situations where the bubble Reynolds number
�defined below� is typically a few hundreds allows us to
write the force balance as a sum of distinct contributions.
This is due to two crucial factors. First, bubbles rising in
low-viscosity liquids such as water are almost spherical in
this range and do not exhibit path instability.27 Second, the
mechanisms that control lift effects in this range are essen-
tially of inviscid nature, so that the inviscid expression of the
lift force is appropriate.28 Note that this is not the case for
bubble Reynolds numbers typically less than unity, in which
case viscosity and inertia play a joint role and combine in a
nonlinear way in the generation of lift effects, making the
inertial scaling or even the sign of the force predicted by the
inviscid expression irrelevant.29 Hence, assuming that
bubbles keep a spherical shape, we can track their trajecto-
ries and predict the position x�t� of their center of mass and
their velocity v�t� in a fluid flow whose velocity, Lagrangian



acceleration, and vorticity at x�t� are, respectively, u, Du /Dt,
and �=��u, by solving the differential system �Eqs. �1�
and �2�� for each bubble,

dx

dt
= v, �pV

dv

dt
= F , �1�

F = ��p − � f�Vg + � f
Du

Dt
− � f

3V

8R
CD�v − u��v − u�

+ � fVCM�Du

Dt
−

dv

dt
� − � fVCL�v − u� � � , �2�

where �p �respectively, � f� denotes the bubble �respectively,
liquid� density, and V and R are the bubble volume and ra-
dius, respectively. CD, CM, and CL are the drag, added-mass,
and lift coefficients, respectively. In addition to the restric-
tions discussed above, Eqs. �1� and �2� rely on several im-
portant assumptions. First, they assume that direct interac-
tions between bubbles are negligible. Neglecting
coalescence, breakup, collisions, and direct hydrodynamic
interactions restricts our investigation to configurations with
low bubble volume fractions. Then, the force balance �1� and
�2� is based on the velocity and velocity gradients of the
undisturbed flow field, which means that two-way coupling
effects only modify the flow through collective effects,
whereas the disturbance of the large-scale flow due to a
single bubble is assumed to be negligibly small. The various
forces taken into account in Eq. �2� are the buoyancy force,
the so-called pressure gradient force due to the Lagrangian
acceleration of fluid elements, the viscous drag force, the
added-mass force, and the inertial lift force. In the above
expression, the drag coefficient CD depends on the instanta-
neous bubble Reynolds number Rep=2�v−u�R /� �� being
the kinematic viscosity of the carrying fluid�. Based on direct
numerical simulations around a single bubble,30 an accurate
approximation of CD�Rep� is

CD�Rep� = 16�1 + 0.15 Rep
1/2�/Rep for Rep � 50, �3a�

CD�Rep� = 48�1 − 2.21 Rep
−1/2�/Rep for Rep � 50. �3b�

Note that Eq. �3b� is simply the theoretical result established
by Moore31 in the limit of very large Reynolds number,
which was actually shown in Ref. 30 to be valid even at
moderate Reynolds number. In the range of high bubble Rey-
nolds numbers �200�Rep�500�, the contribution of un-
steady viscous effects to the total drag force is weak. Using
direct numerical simulation around a single bubble in an os-
cillating flow, Rivero et al.32 showed that the history force
may be neglected for moderate accelerations of the bubble at
such high Rep. The added-mass coefficient CM is now known
to be constant and equal to 1/2 whatever the Reynolds
number.28,32 In contrast, it was found in Ref. 33 that the lift
coefficient CL is a function of both the Reynolds number and
the shear rate. However, both dependencies are weak for
Rep�10, so that in the present context it is appropriate to
consider CL as a constant whose value corresponds to the
inviscid lift coefficient in a weak shear flow, i.e.,
CL=1/2 �Ref. 34�. As mentioned above, the computations
discussed below focus on moderate-to-high bubble Reynolds

number. More precisely, Rep ranges typically from 200 to
600, which in pure water corresponds to equivalent bubble
diameters ranging from 500 �m to 1.5 mm, approximately.
Bubble deformation is moderate in this range and is thus
neglected as a first approximation. The 1.5-mm bubble case
is obviously the most critical as deformation does occur in
air-water flows. We neglect this aspect of the bubbly flow
because we mostly aim at investigating the relationship be-
tween the bubble drift parameter and the two-way coupling
modifications of the flow.

As �p�� f, Eqs. �1� and �2� may be simplified, yielding

dx

dt
= v ,

�4�

CM
dv

dt
= − g + �1 + CM�

Du

Dt
−

3

8R
CD�v − u��v − u�

− CL�v − u� � � .

All forces in Eq. �4� are evaluated using the characteristics of
the instantaneous flow field at the exact position x of the
bubble. Since the bubble location generally differs from the
location of the mesh grid points used in the flow simulation,
an interpolation procedure is required. A bicubic spline inter-
polation involving 64 nodes is employed to ensure the accu-
racy and the stability of the trajectory computation. The set
of ordinary differential equations �ODEs� �4� is solved using
a fourth-order Runge-Kutta scheme. Parallelization is em-
ployed to compute simultaneously all bubble trajectories. In
the two-way coupling computations of Sec. IV B, the num-
ber of bubbles is O�105�.

B. Large-scale Navier-Stokes equations
and coupling terms

To solve �4�, the instantaneous motion of the carrying
phase is required. Assuming that the flow is incompressible
and Newtonian, its motion can be predicted by solving the
full unsteady Navier-Stokes equations. However, as men-
tioned in the introduction, the small-scale motions induced
by the dispersed phase cannot in general be resolved, owing
to limitations in computer resources. Therefore, it is neces-
sary to filter the local equations of the flow field at a certain
scale �. Bubbles act on the flow through different mecha-
nisms. Some of them are directly related to the actual size of
the bubbles. Boundary layers, near-wake effects, and poten-
tial flow disturbances around a moving bubble all scale with
the bubble radius R and are not directly considered here. On
the other hand, collective effects that occur through smooth
variations of the bubble concentration have a significant
impact on the large-scale fluid motion �see, for example,
bubble columns or fluidized bed instabilities�. As we are only
interested in such collective effects, � is chosen such that
L	�	R, where L stands for the characteristic scale of the
large-scale velocity gradients. This obviously imposes an up-
per bound on the grid cell size. Based on several preliminary
tests, we found that the grid spacing has to be typically ten
times larger than R. The filtered fluid velocity field �u	 �the



brackets denote the spatial filtering at scale �� is obtained by
solving the continuity equation �5a� and the fluid momentum
balance �5b�,

� · �u	 = 0, �5a�

� f
D�u	
Dt

= − �P + � · 
�eff���u	 + T��u	�� + �s�x,t� ,

�5b�

with D�u	 /Dt=��u	 /�t+ �u	 ·��u	. The additional term
�S�x , t� detailed below models the interphase coupling in-
duced by the presence of the bubbles in the flow. The effec-
tive viscosity �eff, which differs from the molecular viscosity
� involved in the particle Reynolds number Rep, is included
in the Navier-Stokes equations �5b� to model the effects of
the unresolved motions on the large-scale momentum trans-
fer. These effects result, on the one hand, from the energy
dissipation in the boundary layer and wake of each bubble,
and on the other hand, from possible small-scale turbulence,
i.e., from the contribution of the subgrid-scale tensor
�uu	-�u	�u	. Due to the lack of specific subgrid-scale models
for bubbly flows, we simply assume that �eff is constant
throughout the flow.

Bubbles seeded in the flow contribute to momentum
transfer and affect the bulk properties of the mixture. In Eq.
�5b�, �S�x , t� is an Eulerian source term distribution evolv-
ing in time and space, owing to the Lagrangian motion of the
dispersed phase. Explicit formulation of this term can easily
be obtained through a momentum balance over a reference
volume Vf containing Np bubbles of volume V �e.g., Refs. 35
and 36�. In the limit Vf →0, this yields for particles of finite
density

�s�x,t� = lim
Vf→0

V

Vf
�
i=1

Np 
�p�g −
dv�i�

dt
� + � f�D�u	

Dt
− g�� ,

�6�

where the index i refers to all particles present at time t in the
control volume Vf. The first term on the right-hand side of
�6� is related to the reaction force acting on the ith particle
and is negligibly small for bubbles. In contrast, the second
term which arises from the net buoyancy force acting on the
bubbles is crucial as it acts to reduce locally the net buoy-
ancy of the large-scale flow. In classical variable-density
flows, the bulk density obeys an Eulerian advection/diffusion
equation. In contrast, the motion of the bubbly phase is gov-
erned by the Lagrangian equation �4�. This equation clearly
shows that the transport velocity of the dispersed phase may
strongly differ from �u	 and this has deep implications on the
overall dynamics of the flow.37

In the force balance �4�, the undisturbed fluid velocity u
has to be interpolated at the bubble location but we only
solve equations for �u	. Therefore, we assume that unre-
solved small-scale fluid motions do not affect significantly
the bubble trajectories and we set u= �u	 in �4�. Recent
work38 confirms that in turbulent flows computed by large
eddy simulations, unresolved motions are only of minor im-
portance for particle dispersion. Replacing u by �u	 in �4�

closes the fully coupled system �4�–�6�. Equations �5a� and
�5b� are discretized on a staggered grid using a second-order
finite volume technique. Second-order accurate time ad-
vancement is achieved by combining a third-order Runge-
Kutta algorithm with a Crank-Nicolson treatment of viscous
terms. Incompressibility is achieved at the end of each time
step by solving a Poisson equation for a pressure correction.

We simulate a plane upflowing mixing layer seeded with
bubbles rising under gravity. We assume that the most sig-
nificant features of the interaction between bubbles and
large-scale vortical structures are basically two dimensional.
Although the computations are two dimensional, the trajec-
tories and source term in the Navier-Stokes equations are
evaluated for spherical bubbles, assuming that the void frac-
tion is uniform in the spanwise direction. Therefore, the local
void fraction is representative of the actual distribution of
bubbles in a mixing layer where large-scale structures are
essentially two dimensional.

The above model of two-phase bubbly flow was already
successfully used in several configurations. For instance, we
studied the cellular motion which can be set up when many
rising bubbles are randomly injected at the bottom of a liquid
layer initially at rest.36 Detailed comparisons with experi-
ments also proved that the model reproduces quantitatively
all physical features of a bubbly plume.37

III. BUBBLE DISPERSION

We first consider the passive dispersion of bubbles
within a plane upflowing mixing layer. The main purpose of
the corresponding computations is to prepare the discussion
of the two-way coupling simulations by highlighting the ma-
jor role played by the large-scale coherent structures.

Numerous computational studies of the dispersion of
heavy solid particles were reported in the past. The vortical
structures of the flow were often computed using point vor-
tex methods,13,14,39 a suitable approach for situations where
large-scale vortices are clearly identified. It was established
that dispersion of solid particles is mainly controlled by the
Stokes number, which compares the particle relaxation time
to the time scale of the flow.40 For Stokes numbers close to
unity, particles are strongly swept out of vortices, a process
that enhances their dispersion. This feature fully agrees with
the numerical findings of Squires and Eaton,41 who observed
preferential concentration of particles in straining regions
corresponding to low vorticity. Details on segregation fea-
tures may be found in Ref. 1.

Considerably fewer results are available for bubbles.
Lagrangian tracking of bubbles is much more time consum-
ing because Eq. �4� requires the spatial and time derivatives
of the fluid velocity to be interpolated precisely at the bubble
positions, in addition to the fluid velocity itself. Ruetsch and
Meiburg42 studied bubble dispersion in a plane temporal
mixing layer and showed that bubbles tend to accumulate in
the vortex cores. Here we describe how bubble entrapment is
related to the stable fixed points present in a plane, spatially
evolving, mixing layer.



A. Location and stability of the fixed points

The presence of stable fixed points capable of producing
a significant entrapment of bubbles can be proved by exam-
ining large series of trajectories or by analyzing the stability
of the dynamical system governing the bubble motion. The
locations of these fixed points correspond to the points of the
fluid velocity field where v=0 and dv /dt=0 is a solution of
the ODE �4�. We may rewrite Eq. �4� in dimensionless form
by introducing a velocity scale U, a length scale L, and a
time scale T=L /U. Assuming that the flow is steady and
defining the Froude number Fr=gL /U2 and the scale ratio

=2R /L, �4� then becomes

1

2

dv�

dt�
= Frex −

3

4

CD



�v� − u���v� − u�� +

3

2
u� · ��u�

−
1

2
�v� − u�� � ��, �7�

where u�=u /U, ��=�L /U, etc., and ex is the unit vector
along the upward vertical direction. Let u� have components
U and V along the vertical �x� and horizontal �y� axes, re-
spectively. Fixed points lie at the intersection of the x and y
projections of �7�, setting v�=0 and dv� /dt�=0. Denoting the
dimensionless coordinates of the fixed point as �xf, yf�, the
system to be solved becomes

fx�xf,yf� = Fr +
1

2
V�� +

3

2
�u� · ���U +

3

4

CD



�u��U = 0,

�8�

fy�xf,yf� = −
1

2
U�� +

3

2
�u� · ���V +

3

4

CD



�u��V = 0,

where CD is now the drag coefficient at the location of the
fixed point, i.e., CD=CD�2RU �u� � /��. The solution of �8� is
obtained numerically. This solution yields a collection of dis-
crete fixed points whose stability has yet to be examined to
determine whether or not entrapment occurs. For this pur-
pose we come back to Eq. �7� and first evaluate the slip
velocity VL of a single bubble rising in a quiescent liquid,
which corresponds to the situation where the drag force ex-
actly balances the buoyancy force. As experimental evi-
dences indicate that bubbles are moving with a quasiconstant
slip velocity, we may linearize the drag force about VL. De-
fining the components of the actual bubble velocity as VL

+vx and vy, respectively, Eq. �7� may be recast in the form of
a dynamical system,10

dx�

dt�
= vx,

dy�

dt�
= vy ,

dvx

dt�
= 2fx�x�,y�� − vy�� −

3

2

CD



VLvx, �9�

dvy

dt�
= 2fy�x�,y�� + vx�� −

3

2

CD



VLvy .

The Jacobian matrix of the ODE system �9� has four com-
plex eigenvalues �i, which satisfy

Det�
− � 0 1 0

0 − � 0 1

2
�fx

�x�
2

�fx

�y�
−

3

2

CD



VL − � − ��

2
�fy

�x�
2

�fy

�y�
+ �� −

3

2

CD



VL − �

� = 0.

�10�

These eigenvalues are easily computed numerically. The last
step consists in examining the sign of their real part, as it is
well known that the corresponding fixed point is stable when
the real part of all four eigenvalues is negative.

The above procedure was first tested on a single Lamb-
Oseen vortex defined by the streamfunction

� = − C exp �−
r2

2Rc
2� �11�

with r= �x�2+y�2�1/2. A bubble initially released close enough
to the vortex is eventually trapped near the vortex center,
whereas another one released slightly further away passes
through the vortex without being trapped. Note for future
purpose that the stable fixed point corresponds to a negative
value of y�, which according to �11� implies that the vertical
velocity U=�� /�y� is directed downwards there. A second
fixed point is located outside the vortex core. This fixed point
is always unstable. As long as the vortex is sufficiently
strong �VL�Umax=C /Rc

2�, the two fixed points exist and the
entrapment may take place. In contrast, if Umax becomes
smaller than VL, no more fixed point exists because the equa-
tion fx�x� ,y�=0� has no more root. A detailed analysis of the
forces experienced by the bubble during its spiralling trajec-
tory reveals the major role played by the lift and added-mass
forces which are both centripetal. We performed a similar
study43 for bubble entrapment in Stuart vortices44 which are
often used as an analytical model of a mixing layer. This
study also showed that Stuart vortices are able to trap
bubbles when the rising speed VL of the bubbles is smaller
than half the velocity difference 
U between the two streams
of the mixing layer. This defines the critical condition of
entrapment based on the drift parameter 2VL /
U.

B. Bubble dispersion in the upflowing mixing layer

We now turn to the spatially evolving upflowing mixing
layer. In this case, the velocity field u is generated by nu-
merical simulation of the two-dimensional Navier-Stokes
equations without the coupling term �S described in Sec. II.
The nonuniform grid is made of 150�50 cells. The lateral
dimension of the computational domain is about six times
the size of the biggest vortex while the streamwise dimen-
sion allows eight vortices to be simultaneously present in the
domain. An exponential refinement of the grid is used near
the inlet to capture the linear growth of the primary Kelvin-
Helmholtz instability. A hyperbolic tangent velocity profile is
prescribed at the inlet, while an absorbing boundary condi-
tion �see Ref. 30� is employed on the downstream boundary.
The dimensionless velocity difference 
U /Um between the
two streams is selected to be 4/3. The initial development of



the mixing layer is triggered by numerical noise only and it
was verified that the selected wavelength and frequency of
the large-scale vortices are in agreement with linear theory
predictions.45 The flow Reynolds number based on the aver-
aged fluid velocity Um= �U1+U2� /2 and most amplified
wavelength of the Kelvin-Helmholtz instability �o is close to
900. The latter scales are used to nondimensionalize Eqs.
�8�–�10�, i.e., we set 
=2R /�o and Fr=g�o /Um

2 . Several glo-
bal quantities were checked to make sure that the global
behavior of the mixing layer is correct. In particular, when
properly renormalized, the mean velocity profiles at different
streamwise locations are found to collapse on a single hyper-
bolic tangent profile and the autosimilarity characteristics are
achieved. The mean spreading rate was also successfully
compared to the reference experimental data in Ref. 46. A
snapshot of the velocity field is shown in Fig. 1�a�.

To find the fixed points of the bubble trajectories and
perform a stability analysis similar to that described above in
an unsteady flow, a supplementary assumption is required,47

namely that the characteristic time scale of the bubble mo-
tion is short compared to that of the flow temporal change.
The Stokes number characterizing this time-scale ratio is al-

ways very small �see Table I�. Making use of this assumption
and substracting the average velocity Umex from u �i.e.,
translating with the vortices�, we are in position to use the
methodology described in Sec. III A. The intersection of the
curves fx=0 and fy =0 yields the fixed point locations dis-
played in Fig. 1�b�. Each vortex clearly contains a stable
fixed point �open circles in Fig. 1�b�� located near its core on
the low-velocity side of the mixing layer, whereas an un-
stable fixed point lies in between two consecutive vortices.
When the bubble radius corresponds to the critical value for
which VL equals 
U /2, the fixed points disappear, marking
the end of the entrapment phenomenon. Larger bubbles with
VL�
U /2 pass through the vortices without being trapped.

We examine bubble dispersion by injecting bubbles
close to the inflexion point of the inlet velocity profile.
Bubbles are released with their terminal slip velocity VL. The
role of the coherent vortices can easily be appreciated by
comparing the mean time required for bubbles of different
sizes, i.e., different VL, to reach the upper bound of the do-
main. In the absence of coherent vortices, the residence time
Tres of a bubble of terminal velocity VL would simply be
T0=H / �Um+VL�, with H being the height of the domain. The
relative variation of Tres is plotted versus the entrapment pa-
rameter 2VL /
U in Fig. 2. As expected from the above dis-
cussion, large bubbles �corresponding to 2VL /
U�1�
merely pass through the vortices without being trapped, so
that Tres is only weakly affected by the presence of the vor-

FIG. 1. Snapshot of the single-phase mixing layer. �a� Velocity field
u-Umex. �b� ��� Position of the stable fixed points �
=6.94�10−4, Fr=40�.
Bold line �fx�x ,y�=0�; thin line �fy�x ,y�=0�.

TABLE I. The nondimensional numbers characterizing the two-way coupling simulations.

Local void
fraction

Scale ratio
2R/L

Drift parameter
VL /U

Stokes number
�p / �L /U�

Reynolds
number Rep

Isolated vortex 1% 3.10−3 0.6 2.65�10−3 310

Mixing layer

Case B 0.25% 6.94�10−4 0.75 9.72�10−4 310

Case C 0.5% 6.94�10−4 0.75 9.72�10−4 310

Case D 0.5% 9.02�10−4 1.25 1.52�10−3 650

FIG. 2. Evolution of the residence time of bubbles in the mixing layer as a
function of their rise velocity.



tices. In contrast, the residence time of smaller bubbles may
increase by about 20%, especially in the range 0.4
�2VL /
U�0.9. For such bubbles the average rise velocity
is not Um+VL anymore, but rather Um, as they are essentially
translating with the vortices. Trajectories of bubbles corre-
sponding to values of VL much smaller than 
U /2 are close
to paths of fluid elements, so that Tres tends towards T0 as VL

tends to zero. Similar features were noticed in experiments
performed by Poorte and Biesheuvel48 in homogeneous iso-
tropic turbulence. More precisely, their measurements re-
vealed that the residence time of millimetric bubbles in a
vertical water tunnel increased by about 30% when the flow
was turbulent, as compared to the residence time determined
in quiescent water.

It is customary to describe particle dispersion by evalu-
ating the streamwise variation of the lateral dispersion func-
tion. For this purpose the whole domain is sliced into ten
subdomains of height H /10. The standard deviation yd of the
lateral displacement is evaluated in each subdomain by av-
eraging on all positions of bubbles located within this slice.
Figure 3 displays the variation of yd�x� versus the bubble
diameter. Close to the inlet �x /�o�7�, the lateral dispersion
is weak because no rollup takes place in this early region.
Bubble trajectories are thus close to paths of fluid elements.
As coherent structures develop further downstream, the lat-
eral dispersion increases and two distinct behaviors are ob-
served. Bubbles corresponding to 
�9.0�10−4 �2VL /
U
=1.25� pass through the vortices and eventually disperse less
than fluid elements. In contrast, smaller bubbles are trapped
by the vortices and follow trajectories close to a cycloid. The
lateral dispersion of such bubbles increases with their diam-
eter. The reason for this may be understood by examining
how the average lateral position of the fixed points change
with 
. Increasing 
 tends to tilt this mean lateral position
toward the low-velocity side, forcing the bubbles to experi-
ence lateral displacements larger than those of the vortex
centers. A similar trend was observed in Ref. 42 in the case
of a single vortex.

IV. TWO-WAY COUPLING EFFECTS

As small enough bubbles are attracted toward the core of
coherent vortices, the local volume fraction of the dispersed
phase tends to increase. These are the regions where the
dynamics of the mixing layer are expected to be primarily
affected by interphase coupling mechanisms. To gain some
insight into the consequences of these mechanisms, we per-
form two-way coupling computations based on the model
discussed in Sec. II. We assume that the effective viscosity of
the bubbly flow is constant and that the spatially evolving
mixing layer may be considered as a two-dimensional tran-
sitional flow. Again, before we examine the modifications of
the spatially evolving mixing layer, we briefly discuss the
evolution of a single vortex seeded with small bubbles, as it
represents a canonical situation where the successive stages
of the interaction process may easily be disentangled.

A. Evolution of a single vortex

To this end, we solve the coupled equations �4�–�6� in
the case of the Lamb-Oseen vortex �Fig. 4�a�� already con-
sidered in Sec. III. Two-way coupling interactions are en-
forced by injecting bubbles close to the stable fixed point of
the vortex. Once trapped, the bubbles spiral around the fixed
point and transfer momentum to the fluid. As buoyancy pro-
vides the dominant contribution in the coupling source term
�Eq. �6��, the transferred momentum is essentially directed
vertically upward. Consequently, the local vertical velocity
experiences a positive disturbance �Fig. 4�b��. Since the ver-
tical velocity of the undisturbed vortex �say U0� is negative
in the vicinity of the fixed point �see Sec. III A�, the magni-
tude of the disturbed vertical velocity U is smaller than �U0�.
As the vertical velocity remains almost zero at x�=y�=0, the
magnitude of the transverse gradient of the vertical velocity
�U /�y� is reduced compared to that of �U0 /�y� �Fig. 5�. A
similar behavior was observed in point-force computations
of bubbly homogeneous isotropic turbulence.18 From Eq. �7�,
it is clear that the reduction of �U /�y� lowers the radial
component of the added-mass force, i.e., the strength of the
dominant centripetal force. As the capture process proceeds,
the cumulative strength of the above effect increases, making
the stable fixed point move away from the vortex center to
stay in a region of the flow where the negative vertical ve-
locity remains comparable to U0 �Figs. 6�a�–6�c��. When the
number of bubbles captured within the vortex exceeds a criti-
cal value, there is no more point within the vortex at which
the combined requirement of a strong centripetal force and a
sufficiently negative vertical velocity can be simultaneously
satisfied, so that the fixed point becomes unstable. Bubbles
are then released out of the vortex, which recovers its initial
characteristics �Fig. 6�d��. In particular, the fixed point be-
comes stable again, enabling entrapment and initiating a new
interaction cycle. Thus, provided bubbles are continuously
injected, periodic cycles during which the fixed points are
successively stable and unstable take place. Similar features
were observed numerically in Ref. 21 and experimentally in
Ref. 4. Indeed, the latter experiments proved that even few
microscopic bubbles are able to modify dramatically the po-
sition of a vortex and the velocity gradients within it. More

FIG. 3. Lateral dispersion of bubbles of various sizes in the mixing layer.
�Dashed line� Fluid particle; ��� 
=2.77�10−4; ��� 
=5.55�10−4; ���

=6.94�10−4; ��� 
=7.63�10−4; ��� 
=9.02�10−4; �*� 
=10.4�10−4.



precisely, the injection of five 512 �m diameter bubbles in
the vortex was observed to displace the vortex core by
3.5 mm upward. The buoyancy forcing term induces modi-
fications of the local velocity gradients and vorticity peaks
which are found to increase by about 20% compared to their
original value. In our simulations, the maximum local void
fraction is less than 1% when the stable fixed point loses its
stability. Velocity perturbations are in the range of 2% of the
maximum velocity Umax, and the local vorticity variation due
to two-way coupling is around 20% of the local undisturbed
vorticity level. However the most noticeable effect of inter-
phase coupling is the release of bubbles initially trapped
within the vortex core. Passive bubbles would have stayed
entrained by the vortex core for much longer times. Obvi-
ously, none of the above phenomena takes place if the in-
jected bubbles pass through the vortex without being trapped
�drift parameter VL /Umax�1�. Then the interaction time
is very short and only weak modifications of the flow are
observed.

B. Spatially evolving mixing layer

In Sec. III we showed that small enough bubbles �VL

�
U /2� accumulate in the large-scale vortical structures of
the mixing layer. Therefore, owing to the local increase of
the volume fraction, we expect two-way coupling effects to
produce local modifications of the flow similar to those dis-
cussed above. These modifications may in turn influence the
global features of the flow field. To explore such phenomena,
two-way coupling computations are carried out in three dif-
ferent situations �cases B, C, and D�. The reference case
�case A� is the single-phase flow described in Sec. III where
bubbles are tracked in the flow but �S is set to zero. Case B
corresponds to a 0.25% average volume fraction of bubbles

FIG. 4. Effect of a single bubble on the velocity field of a Lamb-Oseen vortex. �a� Single-phase flow; �b� disturbance induced by a trapped bubble.

FIG. 5. Bubble-induced modification in the vertical velocity profile. �Solid
line� Single-phase flow; �dashed line� two-phase flow.

FIG. 6. Evolution of the bubble positions �small dots� within the vortex as a
function of the number of bubbles �a–d�. Location of the: ��� vortex center,
�� � stable fixed point, and �� � unstable fixed point. The simulation domain
is similar to that in Fig. 4.



with 
=6.94�10−4. These bubbles are expected to be
trapped by the vortices since they satisfy the criterion VL

�
U /2. Case C is identical to case B, except that the aver-
age volume fraction is increased to 0.50%. Finally, case D
has the same average volume fraction as case B, but with
larger bubbles corresponding to 
=9.02�10−4. According to
the results of Sec. III, these bubbles are not captured by the
vortices. All bubbles are injected around the inflection point
of the velocity profile in the inlet section. The simulation
conditions are referenced in Table I. The parameters we se-
lected correspond to bubbles of 1 mm and 1.3 mm diameter
rising in water. The extremely low value of the Stokes num-
ber clearly indicates that the bubbles respond very quickly to
fluid flow fluctuations. The typical length scale L is the
wavelength of the mixing layer �o and the drift parameter is
based on 
U /2. The assumption that bubbles are small com-
pared to the vortical structures agrees with the experimental
conditions of Roig et al.20 In these experiments, the typical
size of the vortices is 10 cm at 40 cm from the inlet section
and the bubble diameter is about 2 mm.

Near the inlet section, i.e., in the region where the dis-
turbances grow linearly due to the Kelvin-Helmholtz insta-
bility, all two-phase flows display the same behavior. The
comparison of Figs. 7�a� and 7�b� indicates that the first pair-
ing occurs much earlier in the two-phase case, which sug-
gests that the small-scale disturbances produced by the
bubbles trigger efficiently the rollup phenomenon. Local
void fraction fluctuations act as a random forcing of the mix-
ing layer. The typical length scale of these perturbations is
ten times larger than the bubble diameter while the spatial
resolution scale � of our simulations is intermediate between
the bubble diameter and the large-scale features of the two-
dimensional mixing layer. A spectral analysis of the flow
field confirms the visual observation that the selected wave-

length of the coherent vortices is the same as in the single-
phase situation, i.e., �0. This result is in agreement with that
obtained for solid particles through a linear stability
analysis.49

In order to study the effects of the dispersed phase on the
global flow characteristics, it is of high interest to average

the fluid velocity in time. Let Ū�x ,y� be the corresponding
time-averaged streamwise velocity. Figure 8 shows several

profiles of the normalized velocity UN���=2�Ū�x ,y�
−Um�x�� /
U�x� plotted versus the dimensionless lateral po-
sition �= �y−ym�x�� /��x�. Here ym�x� is the position of the

flow centerline �i.e., Ū�x ,ym�x��=Um�x�� and ��x� is the local
thickness of the mixing layer defined as the lateral distance
between the two points where UN= ±0.475. All profiles cor-
responding to cases B through D collapse on a master curve,
whatever the streamwise location �see Ref. 8 for a similar
trend on bubble concentration�. This result indicates that the
streamwise velocity achieves self-similarity in such low-
concentration bubbly mixing layers. A similar conclusion
was reached experimentally in Ref. 20. Figure 9 shows the
streamwise evolution of the centerline position for the single

FIG. 7. Snapshot of the velocity field of the carrying flow close to the inlet
section. �a� Single-phase flow �case A�; �b� two-phase flow �case B�.

FIG. 8. Profiles of the normalized streamwise velocity UN= �U�x ,y�
−Um�x�� /
U�x� vs the dimensionless lateral position �y−ym�x�� /��x�. Sym-
bols correspond to distinct streamwise locations. �Solid line� tanh profile.

FIG. 9. Streamwise evolution of the average centerline position ym�x�.
�Solid line� Case A; �dashed line� case B; ��� y�0.9U2�; ��� y�1.1U1�.



phase �case A� and the bubbly mixing layer �case B�. Com-
pared to the single-phase situation, the bubbly mixing layer
appears to be strongly tilted toward the low-velocity side.8

Single-phase spatially developing mixing layers are known
to be already tilted toward this side �see the curve corre-
sponding to case A in Fig. 9� because the entrainment rate of
the high-speed fluid is larger than that of the low-speed
stream.50 In a bubbly flow where bubble entrapment takes
place, this feature is reinforced by the two-way coupling
mechanism which induces a baroclinic effect for the follow-
ing reason. Bubbles rising in the central part of the flow
spend part of their time spiraling around the fixed points of
the vortices as we saw in Sec. IV A. Therefore, the time-
averaged density of the two-phase medium has a minimum at
the average lateral position of the stable fixed points, which
we know to be located on the low-velocity side of the mixing
layer �see Sec. III B�. “Heavy” fluid thus tends to invade this
relatively light region. For the same reason as in a single-
phase flow, most of this heavy fluid comes from the high-
velocity side. Therefore, there is a net increase of the local
streamwise velocity which results in a bending of the aver-
age centerline towards the low-velocity side. Figure 10 dis-
plays the streamwise evolution of the mixing layer thickness.
As may be expected on the grounds of Fig. 7, the linear
growth of � starts much closer to the inlet section in the
two-phase cases. Moreover, beyond x /�0�3, the slope
d� /dx is found to be strongly increased in the presence of
small bubbles �cases B and C�. This effect obviously in-
creases with the volume fraction of bubbles. For instance,
near the downstream boundary of the domain �x /�0�25�,
��x� is about 20% larger in case B than in the single-phase
situation, whereas the increase reaches 30% in case C, where
the average bubble concentration is twice that of case B. The
main mechanism responsible for this fairly spectacular in-
crease of d� /dx appears to be the meandering of the large-
scale vortices. Indeed, for the reason discussed above, during
the stage corresponding to the bubble capture, a coherent
vortex tends to move towards the low-velocity side. In con-

trast, the local density of the two-phase mixture is made
more homogeneous after the bubbles have been released for
this vortex, so that it tends to move back toward the high-
velocity side during this second stage. In a time-averaged
view, this alternate motion results in an increased lateral mix-
ing, i.e., in an increase of d� /dx. Qualitatively similar trends
for both the lateral tilting and the spreading rate were ob-
served in Ref. 20, where millimetric bubbles �with an aver-
age diameter about 2 mm� were injected with a volume frac-
tion up to 3% at the bottom of an upward mixing layer.
Similar conclusions for the spatial growth of the vorticity
thickness were also obtained numerically in Ref. 24 using an
Eulerian-Lagrangian approach.

In the presence of bubbles such as 2VL /
U�1 �case D�,
the global parameters of the mixing layer differ by less than
5% from those of the single-phase flow. It was already re-
ported in Ref. 19 �where the experiments were carried out
with bubbles with a typical diameter of about 4 mm� that a
dispersed phase made of “large” bubbles only marginally
affect the global dynamics of upward mixing layers. The
reason for the dramatic difference observed between cases
B/C and case D �or between the experimental results of Refs.
19 and 20� in the streamwise evolution of the global flow
parameters is clearly related to the entrapment phenomenon
and its consequences on the life cycle of the large-scale vor-
tices. Present results establish that for a given bubble volume
fraction, the large-scale features of the time-averaged flow
may or may not be deeply modified by the presence of
bubbles, depending on whether or not they satisfy the entrap-
ment criterion. If they do, they alter the dynamics of the
coherent vortices as described in Sec. IV A and their prefer-
ential concentration within these vortices during part of their
residence time produces a baroclinic effect that affects the
position of the centerline and the thickness of the mixing
layer. If they do not, their interaction time with a given vor-
tex is short. Moreover, their spatial distribution within the
flow is fairly homogeneous, and so is the distribution of the
momentum they transfer to the fluid. These two features
make bubbles produce only minor changes in the large-scale
flow when VL�
U /2.

The last result provided by these computations concerns
the lateral dispersion of bubbles in cases B and C, where the
dynamics were found to be deeply modified by the inter-
phase transfer. Figure 11 shows that two-way coupling ef-
fects strongly reduce this lateral dispersion. This is essen-
tially because the fixed point of each vortex, which is stable
in the single-phase configuration �case A�, is unstable during
part of the residence time of the bubbles in cases B and C,
owing to the reduction of the added-mass force described in
Sec. IV A. During the stage where a given vortex has no
stable fixed point, the bubbles released out of this vortex
accumulate on the high-velocity side of the mixing layer,
instead of staying on the low-velocity side in case A �see
Figs. 12�a� and 12�b��. The time-averaged consequence of
this difference is a decrease of the lateral dispersion function
compared to that found in case A. Obviously, the lateral dis-
persion function of bubbles with VL�
U /2 experiences
little modifications compared to the single-phase situation.

FIG. 10. Streamwise evolution of the mixing layer thickness ��x�. ��� Case
A; ��� case B; ��� case C.
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V. SUMMARY AND CONCLUSIONS

In this paper we used a computational approach to inves-
tigate various aspects of the dynamics of a plane upflowing
mixing layer in presence of a dispersed phase made of
spherical isolated bubbles. We employed a Lagrangian de-
scription of the dispersed phase in which the total hydrody-
namic force acting on each bubble comprises buoyancy, a
viscous drag, a pressure gradient contribution, an added-
mass force, and a shear-induced lift force. We first carried
out one-way coupling simulations to determine how bubbles
of different diameters disperse in the coherent vortices of the
mixing layer. For this purpose, we performed a stability

analysis of the fixed points present in these vortices to find
out the critical conditions for preferential accumulation of
bubbles. We showed that small enough bubbles are trapped
within these vortices, owing to the centripetal action of iner-
tial forces. In contrast, bubbles whose velocity �i.e., diam-
eter� exceeds a critical value cannot be trapped and escape
from the vortices. The residence time of the former category
of bubbles was found to be roughly 20% larger than that of
the second category. Similarly, the lateral dispersion of
bubbles trapped in the vortices was found to be significantly
larger than �frequently twice as large as� that of bubbles
whose rise velocity exceeds the critical condition VL

=
U /2. This is because the former bubbles follow cycloidal
trajectories with lateral displacements increasing with the
drift parameter 2VL /
U, whereas the larger ones merely
cross the vortices and disperse even less than fluid elements.

We studied the effect of the dispersed phase on the mo-
tion of the carrying flow using a two-way coupling approach
based on a point-force approximation. In this approach, the
interphase momentum transfer term which results from the
presence of the bubbles tends to reduce the net acceleration
of the surrounding fluid, essentially through a buoyancy ef-
fect. Using this formulation, we first examined the evolution
of a single Lamb-Oseen vortex forced by some bubbles sat-
isfying the entrapment criterion. The buoyancy transferred to
the fluid was found to decrease the magnitude of the �nega-
tive� vertical velocity in the vicinity of the stable fixed point,
resulting in a significant reduction of the transverse gradient
of this vertical velocity. This effect reduces the centripetal
forces acting on the bubbles and the fixed point eventually
becomes unstable. The bubbles are then released out of the
vortex, allowing a new cycle of interaction to take place.
Ruetsch and Meiburg42 found that there is an intermediate
bubble size for which the coupling effect is maximum. This
optimum is related to the existence of equilibrium points for
both the bubble trajectories and the local concentration of
bubbles. They noticed that two-way coupling effects modify
the location and the level of the local accumulation of
bubbles. Our simulations display the same features. This pre-
liminary study was found useful to interpret the evolution of
the upflowing mixing layer forced by bubbles. Indeed the
same sequence takes place with small enough bubbles, yield-
ing important modifications of the global characteristics of
the time-averaged flow field. In particular, we noticed that
the centerline of the corresponding two-phase mixing layers
is tilted towards the low-velocity side, while their thickness
increases much more rapidly than in the single-phase case.
We interpreted the former feature as being due to the baro-
clinic effect resulting from the part-time entrapment of the
bubbles in the coherent vortices, the consequence of which is
to create a region of lighter two-phase mixture on the low-
velocity side. We pointed out that the alternance of such
periods during which the mixture density is inhomogeneous
within a given vortex, and of periods during which this den-
sity is homogeneous because bubbles are released toward the
high-velocity side, results in a lateral meandering of the
large-scale vortices. This meandering phenomenon is respon-
sible for the observed increase of the spreading rate of the
time-averaged mixing layer. We also noticed that the lateral

FIG. 11. Streamwise evolution of the lateral dispersion. ��� Case A; ���
case B; ��� case C.

FIG. 12. Instantaneous positions of bubbles in the mixing layer. �a� Case A;
�b� case B.



dispersion of these bubbles is reduced compared to the one-
way situation, due to periods of time during which the fixed
point of each vortex is unstable. In contrast with these re-
sults, the effects of larger bubbles �2VL /
U�1� on the flow
field were found to be weak because such bubbles merely
rise through the vortices and have only a short interaction
time with each of them. These two contrasted behaviors are
in line with available experimental results19 �4 mm bubble
diameter� and Ref. 20 �2 mm bubble diameter�. Hence it
turns out that, despite the simplifying assumptions we used
�especially that of a two-dimensional flow field�, the present
two-way coupling investigation of a low-concentration bub-
bly flow, combined with a dynamical system approach of
bubble motion within the coherent vortices, was able to rec-
oncile these apparently conflicting experimental conclusions
and to provide physical explanations for the observed
behaviors.
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