
Fragmentation of Confidential Objects for Data
Processing Security in Distributed Systems*

J.-C. Fabre T. Phrennou

LAAS-CNRS & INRIA
7, avenue du Colonel Roche

31077 Toulouse, France

Abstract ing base [3]); this means that part of the system must

This paper discusses how object orientation in appli-
cation design enables confidentiality #aspects to be han-
dled more easily than in conventional approaches. The
idea, based on object fragmentation at design time, is
to reduce processing in confidential objects; the more
non confidential objects can be produced a t design-
time, the more application objects can be processed
on untrusted shared computers. Still confidential ob-
jects must be processed on non sha:red trusted work-
stations. Rules and limits of object jragmentation are
discussed together with some criteria evaluating trade-
offs between fragmentation and performance.

1 Introducticm and prolblem statement
Processing confid.entia1 information in an hostile en-

vironment is a difficult issue that has been previously
tackled through conventional solutions. A first solu-
tion is to process c:iphered inforrnat:ion [l]; this solu-
tion is mainly based on special (ciphering techniques
called privacy homomorphisms but, although attrac-
tive, it is limited in use and can be subject to sim-
ple intrusions as diescribed in [fi]. A much simpler
solution, very costl!y and of course not realistic, is to
process clear information on trusted and physically
protected non-shared computers. However, in today's
systems architecture, one should take benefits of pow-
erful shared heterogeneous computers, some of which
being specialized fo'r a given part of the application,
without making strong assumptions about their inter-
nal security and surrounding envjiron.ment .

However, distribution has been initially seen as a
conflicting paradigrn as far as confidentiality is con-
cerned. Actual solutions to distributed security rely
on protection mechanisms (notion of trusted comput-

*This work has been partially supported by the ESF'RIT Ba-
sic Research Action n'6362, PDCS2 (IPredlictably Delpendable
Computing Systems).

be trusted.
Nevertheless, an efficient protection of confidential

information in a distributed architecture may be dif-
ficult and sometimes insufficient with standard com-
puters and operating systems. Actually, applications
should take advantage of the distributed architecture
and its specialized components without endangering
confidentiality although the information is processed
in clear. The main challenge of the work reported in
this paper is to propose a new approach for designing
such applications.

The proposed approach is part of a general tech-
nique for handling both accidental and intentional
faults in distributed systems, called Fragmentation-
Redundancy-Scattering (FRS) [4, 51. We concentrate
here on its application to confidential information pro-
cessing where the core aspect is fragmentation at de-
sign time.

An application can be organized in such a way that
only a minimal part of the application needs a trusted
execution environment. According to well defined as-
sumptions and few mechanisms (section 2), the rest of
the application can be executed on untrusted shared
computers. This part of the application can thus be
replicated for fault tolerance' and scattered without
endangering confidentiality.

The approach consists first in identifying at the
design phase the information which is confidential.
Then, the application can be divided into two parts:
confidential data processing and non confidential data
processing (section 3). Minimizing confidential data
processing is the main objective of the fragmentation
process which is described in this paper. Using an
object-oriented design, the application is seen at each
design iteration as a collection of objects. The re-

' Whatever the type of fault, physical fault or sensitive infor-
mation destruction.

395
0-8186-7125495 $04.00 0 1995 IEEE

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

sult of the fragmentation process is a new collection
of objects, in which ideally few objects are confiden-
tial and must be executed on trusted non-shared com-
puters (section 4). The amount of costly non-shared
trusted resources is minimized, thus allowing more un-
trusted shared computers to be used. The method
is very application-dependent and of course in some
situations the result may be not satisfactory because
of performance overheads. Finally, quantitative and
qualitative aspects of performance evaluation are dis-
cussed (section 5).

2 System environment and related as-
sumptions

2.1 System architecture
The architecture of the system (see figure 1) is

composed of trusted user workstations and untrusted
processing servers. User workstations are non shared
devices2 with weak computing and memory resources
whereas processing servers are shared computing re-
sources where different objects belonging to various
applications can be executed simultaneously in an ef-
ficient way. The user workstations are trusted com-
puting resources in such a way that, according to their
protection mechanisms and surrounding physical en-
vironment, the probability of an intrusion during a
user session is very low. On the contrary, shared pro-
cessing servers can be subject to non restrictive intru-
sions (passive, active, malicious attacks on memory
segments, system and temporary files, etc., even per-
formed by privileged users, namely host administra-
tors). These shared processing servers can be various
specialized off-the-shelf computers with standard o p
erating systems. Confidential information is limited
and only processed on few non shared trusted work-
st at ions.

Any user application is only activated from its
trusted user workstation and may involve using un-
trusted processing servers for running parts of the a p
plication.
2.2 Software architecture and system ser-

vices
Applications will be seen at runtime as a collection

of non shared distributed runtime units (active ob-
jects) interacting by messages. The underlying run-
time system should enable active objects to be ex-
ecuted on any processing unit and to communicate
with each other. The ideal runtime support can be an
object oriented runtime layer, such as COOL [SI).

2They also can be time shared devices: only one user session
at a time and no remote access during the user session at any
abstraction level.

Non shared trusted user workstations

Shared
servers processing w w

Figure 1: System architecture and services

We also suppose that user authentication, autho-
risation mechanisms and key management are per-
formed by security services running on security servers
as in [4, 71 (see figure 1). When the application is
activated by an authenticated user, some active ob-
jects are loaded on the trusted user workstation (con-
fidential objects) and other on untrusted processing
servers (non confidential objects). Each active object
is uniquely identified by a reference. The set of objects
(references) belonging to a single application is only
known at the trusted location. Active objects located
on untrusted servers do not know each other even if
they belong to the same application. We then sup-
pose that intruders on processing servers are not able
to identify objects belonging to a given application.
Any object invocation is protected by authentication
mechanisms (using public key authentication schemes
for instance, e.g. [SI) thus preventing illegal invocation
by intruders.

3 Confidentiality and object orienta-

3.1 Confidentiality in applications
The notion of confidential information relates to the

interpretation an intruder can have about its seman-
tics in a given operational context. Information se-
mantics may be confidential depending on its value:
for instance, a, string of characters might be sufficiently
meaningful in isolation to be easily interpreted as a
confidential information independently of any usage
in a program. But this is not always the case; a nu-
merical value is most unlikely to be interpreted as a
confidential information without any knowledge of its
internal representation or of its usage in a given appli-
cation context. For example, a real variable is a confi-
dential salary information if and only if it is associated

tion

396

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

to a given person, period and currency. However, this
viewpoint is also true using a very coarse grarmlarity;
for instance] let us consider a medical record system
where the information is classified into two parts, ad-
ministrative and properly medical. I[n this quite sim-
ple example, confidentiality is preserved as soon as
the link between these two large fragments (some ref-
erences) is retained at the trusted site.

In these simple examples] we cain see that struc-
turing a confidential information enables such infor-
mation to be perceived as a set of non coniidential
items. The classica.1 approaches do not take into ac-
count any structuring of the confidential information,
often considered as a string of bite. Our alpproach
relies on a different viewpoint: at a given isbstrac-
tion level in the design of an application, most of the
confidential data processed can be perceived as a col-
lection of insignificant data items -- only the links
between such items reveals sensitive information to a
potential intruder. When the information is not struc-
tured (e.g. strings, IJnix files) confidentiality has to be
maintained through classical solutions such as cipher-
ing techniques] threshold schemes [9], IDA [lo] and
FRS [4].

3.2 Objet model and confidentiality
Designing the application as a ,set of objects enables

confidentiality to be precisely identified in the appli-
cation, since, from a software engineering viewpoint,
objects represent real abstractions whose semantics is
well known (a person, a medical record, a bank ac-
count, a key). The confidentiality of an objecl, is con-
sidered as a booleain function and thus at any level of
abstraction the set (of application objects can be easily
divided into confidential (set C) and non confidential
objects (set NC), as shown in figure 2.

Trusted workstation

/ processing

W

0 confidential objects
0 non-coifldential objects
- object reference

Figure 2: Confidential and non confidential sets
of objects

The architecture of the application will then be
composed of confidential objects that will be located
on trusted workstations with references to non confi-
dential objects located on shared processing servers;
the non confidential objects do not communicate with
each other, but only with one or several confidential
objects.

In our approach] the identification of confidential
objects starts from early stages in the design. Such
confidential objects can be designed as a set of new ob-
jects] some of which not being confidential. This idea
leads to extract as much as possible information and
processing from the confidential objects. In figure 3
the object 0 has been re-designed as set of new ob-
jects (01102,03, 0 4 , Os). The objective of this trans-
formation is to have the amount of data and/or pro-
cessing in the still confidential object 01 and 0 2 much
lower than in 0. Only objects that cannot be usefully
substituted process confidential information.

iteration

Figure 3: Confidential object transformation

This approach can be generalized to multi-level se-
curity: an application can be divided into secret ob-
jects (set S), confidential objects (set C) and non con-
fidential objects (set NC), objects with a high level of
classification being re-designed as sets of objects with
a lesser classification level.

4 Fragment at ion
Fragmentation is an iterative process and provides

the designer of a confidential application with a gen-
eral framework which is in fact a variant of a clas-
sical object oriented design (in our case similar to a
hierarchical object oriented design like HOOD). For
the sake of simplicity] we consider here as a starting
point of the fragmentation process that the applica-
tion is composed of a unique confidential object which
satisfies the functional specifications. At each step
of the design process, the designer obtains a set of
objects which satisfies the functional specifications of
the application at some abstraction level. Confiden-
tial objects are identified within the current set. As
stated in section 3, a confidential information can con-
sist of related items including non-confidential ones.
Such a structuring is used to design confidential ob-
jects as a set of (new) objects including non confi-
dential ones. Among the objects thus produced, the
confidential ones are examined at the next step. The

397

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

process stops either when no more object is confiden-
tial or when confidential objects are fine-grain or when
no substitution of a confidential object is interesting
with respect to confidentiality (e.g. when all objects
produced are confidential).

Those points are developed throughout the rest of
this section: accurate definitions are given and guide-
lines for the substitution of confidential objects are
discussed.
4.1 Definitions

this paper.
The following definitions will be used in the rest of

Objects. We consider here a simple object model,
where an object encapsulates data and provides a set
of operations to manipulate these data3. The interface
of an object 2 is denoted intf(x). Figure 4 provides an
accurate graphical representation of an object which
will be used later in this paper. Confidential objects
will be presented in grey. Let 0 be the set of objects
thus defined.

(Objectname 1
I Data I 1 Operations J

Figure 4: Extensive representation of an object

Confidentiality. As stated previously objects rep-
resent real abstractions, thus allowing the designer to
decide whether an object is confidential or not accord-
ing to the specifications. Let C: 0 - (TRUE, FALSE}
be the predicate characterizing confidential objects.

Substitution mechanism. Substitution is a de-
signer action that consists in replacing an object x
by a non empty set of objects S, such that S, pro-
vides the same functionalities as x, which we denote
by Sxla (this is read as S, substitutes for x).

If a set of objects S, substitutes for an object 2, the
services provided by x to the rest of the application
must be distributed among the objects in S,. The
interface of x is then either located in a unique ob-
ject in S, or distributed among several objects in S,.
Throughout the rest of this paper we adopt the first
solution which corresponds to a conventional object
decomposition:

3This definition does not preclude considering an object as
an instance of a hierarchy of classes from a software engineering
viewpoint.

S, c 0 cooperatively provides
the same services as a

3a' E S, , intf(x) = int€(z')
vx E 0, S,lX *

Substitutable object. A confidential object can be
usefully substituted for by a collection of objects when:

e non confidential new objects can be produced;

e gathering such non confidential objects does not
enable the confidential object to be easily ob-
tained;

e processing in non confidential objects is heavy
enough to justify the substitution.

All these conditions must be satisfied to consider
a confidential object as substitutable. For instance
when dealing with fine-grain objects such as integers
or strings the two last conditions are often unsatisfied.
Such objects must then be ciphered using conventional
techniques (e.g. strings) or be kept in the trusted
area (e.g. integers). Let S : 0 C) {TRUE, FALSE} be
the predicate characterizing substitutable objects. In
summary:

Vx E 0, S(x) * x satisfies each of the three { c(x) preceding conditions

4.2 More about the substitution mecha-

This section discusses how the designer should per-
form the substitution of a confidential object. From
the confidentiality viewpoint, the interest of substi-
tution is to produce non confidential objects. When
identifying a confidential object, the designer should
answer the following questions:

nism

1. Why is this object confidential?

2. How can it be structured and how does it per-
form the provided operations?

3. Is this structuring suitable with respect to con-
fidentiality and f or performance?

The first question should suggest part of the appro-
priate structuring requested by the second question,
while the third one evaluates the usefulness of the sub-
stitution, particularly with respect to other solutions
(including keeping the object as a whole, i.e. a still
confidential object).

398

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

At early stages in1 the design, olsjecks represent com-

ure 5, the designer identifies x as confidential and pro-
viding an operation called F . Then he determines that
2 is confidential because it includes a relation between
two objects y and z , both providing operations G and
H . So he decides to design x as an object X I holding
two references to y and z and describes the algorithm
of F in terms of y and z , and their operations G and
H (see figure 5). This substitution is suitable because:

r~,x abutra&ons. In the example illustrated by fig-

the confidential association has been broken into
separate items and non confidential ones have
been identified (Cl) ;

gathering y and z does not provide any confiden-
tial information because the link between them
is a complex algorithm F hidden in x‘ (62);

operations provided by y and z are considered
CPU-time consuming ((23).

After the substitution the relation that makes x
confidential is distributed among XI, y and z , x’ play-
ing the role of a key; x’ is therefore confidential be-
cause it holds the links allowing to rebuild the confi-
dential information.

substitution
------+)

Figure 5: Early substitution

Later in the design, defined objects become closer to
the implementation, level of the corresponding abstrac-
tion. The structure of a confidential object should
then appear to the designer as an aggregation of data
of simple types within the confidential objects, the op-
erations being series of simple instructions thus mak-
ing the link rather weak with respect to confidentiality.
Figure 6 illustrates this in terms of objects.

The structuring might seem appropriate since the
‘+’ relating y and z remains hidden in x’. But if we
look more carefully at the objects, we can see that y
and z are in fact local to X I since y = y.GET and
z = z.GET. So this decomposition is totally useless
with respect to confidentiality because x’ still fully as-
sociates y and z as x did, an also because the operator

substitution
__)_

Figure 6: Late substitution

linking them is simple. Moreover operations provided
by y and z are simple SET and G E T operations.

So why not considering such x - and more gen-
erally objects dealing with fine-grain attributes - as
non substitutable? Actually, the granularity of the ob-
jects produced is not sufficient to answer the question.
It depends on the complexity of all the operations pro-
vided by y and z : if they are CPU-time consuming
operations then it can be interesting to run them on
untrusted shared resources.

Going through the fragmentation process obviously
leads in most cases to fine-grain objects and perfor-
mance evaluation is needed to state on the usefulness
of a substitution. This issue will be discussed in sec-
tion 5.
4.3 Formal description of fragmentation

The process consists in producing recursively a set
of objects covering the functional and confidentiality
aspects of the specifications. It will be presented here
in an algorithmic form. At each step i 2 0, &i is the set
of objects not treated yet. Each step of the algorithm
can be described as follows.

4.3.1 Fragmentation algorithm

Let &o c 0 be the set of objects deducted from the
functional specifications. At each step i 2 0, &i is
partitioned in confidential objects, constituting a set
Ci, and non-confidential objects, constituting the set
NCi.

Ci = {X E €j I C (x) }
NCi = { X E €i I ~ C (X))

Among the objects of Ci , some can be substituted
for and others cannot according to the criteria defined
in section 4.1. Ci is therefore partitioned in Si and
NSi , defined as follows.

Si = {x E Cj I S(Z)}
NSi = {X E Ci I ~ S (Z) }

We now consider only the following sets, which are
a partition of € i . Si is the set of elements of &i that

399

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

are confidential and can be substituted soundly. NSi
is the set of elements of Ei that are confidential but
cannot be substituted soundly. NCi is the set of non-
confidential elements of &.

We substitute each element x E Si with a set S, C
0, i.e. Sx 12, functionally equivalent, i.e. the interface
and services provided by x are also provided by S,.
The algorithm then continues with &+I defined as:

Ei+l = U sx.
XES,

&+I holds all the objects substituted for all the confi-
dential objects at step i: step i + 1 will therefore only
study new objects produced at step i.

4.3.2 Resulting sets and algorithm properties

A sufficient condition for termination is that no more
object is confidential or can be substituted for, i.e.
31 2 0 SI = 0. Let then I = U ~ ~ i € i \ S i , C =

NC;. E is the whole set of
objects whose cooperation meets the application spec-
ifications, C is the subset of still confidential objects,
and NC the set of non-confidential objects, both sets
being a partition of 1.

This condition is in fact always satisfied since con-
fidential objects granularity eventually becomes very
small, and then by definition objects become no more
substitutable since their interface comes down only to
SET/GET operations. At one extreme, going down
to a single bit, the criteria (C2) and (C3) are obvi-
ously not satisfied! More seriously conventional solu-
tions must be used when confidential objects are sim-
ple types of unstructured data. This means that fi-
nally the application can include a large number of
medium-grain or fine-grain objects4 although large
non confidential objects can be produced during the
early stages of the design.

5 Performance evaluation
We have shown in the previous sections that a con-

fidential application can be organized as a collection
of objects, some of them being non confidential. For
the sake of clarity, we consider here that the sets C and
NC have been defined in a first step without consider-
ing performance aspects. Security is ensured as long as
objects belonging to C are executed on the trusted user
workstation (called PC i.e. some personal computer in
the rest of this section) in a physically secure environ-
ment. The non confidential objects can then be ex-
ecuted on untrusted shared processing servers (called

NSi and NC =

41t can also be noticed that the more objects become fine-
grain, the more their semantics becomes difficult to obtain.

server in the rest of this section) without threatening
the confidentiality of the whole application. We dis-
cuss in the following whether it is interesting or not
from a performance viewpoint to remotely execute ob-
jects of NC on an untrusted server rather on the PC.

The performance evaluation of a fragmented appli-
cation depends on several parameters related to both
the application (size of invocation/reply messages,
method execution time, objects implementation) and
the system architecture (relative CPU power of Pp
and processing servers, communication throughou
the network). The organization of the confidential ap-
plication in terms of distributed objects must respect
some trade-offs between security (fragmentation), per-
formance, cost and usage of the overall architecture.
Remote execution of non confidential objects is inter-
esting in several cases and for the non exclusive fol-
lowing reasons:

when the communication overhead due to the
cooperation of objects produced by the fragmen-
tation process is balanced by the better perfor-
mance obtained by executing non confidential
objects on powerful remote computers (includ-
ing computers with specialized architectures);

e when good parallelism is achieved among the
non confidential objects executed remotely;

when flexibility and extensibility of the network
configuration and fair use of existing shared re-
sources are also important goals;

when fault tolerance is a prime objective that
must be achieved through software-based fault
tolerance techniques (e.g. non confidential ob-
jects can be replicated).

Only the first of these features can be evaluated
quantitatively. However we believe that a qualitative
evaluation of other remaining features is of great in-
terest from a pure pragmatic viewpoint. These points
are now discussed in detail.
5.1 Quantitative aspects

We suppose here in a first step that the architecture
where the application is to execute is composed of a
secure PC and powerful servers, e.g. 10 times as pow-
erful as the PC. We discuss criteria for determining
whether non confidential objects should be run on the
PC or on the server and for evaluating the respective
costs.

The execution of an object on the PC is almost
immediate because it is not shared by several users;
just few user applications are simultaneously active in

400

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

a time-sharing system5. On the contrary the remote
execution of an object must include time spent on mes-
sage passing and scheduling on a multi-user processing
server.

Just for easy understanding, the balance can be il-
lustrated by the simple following example; suppose
that a method M of an object 0 is invoked by mes-
sage im (invocation message) and results are returned
by message rm (reply message). Table 1 summarizes
the results of an experiment comparing a local vs. a
remote execution of M . We denote tim,te,t,,trm the
respective average times spent on transmission of im,
execution of M , system scheduling of this execution
and transmission of rm respectively. The letters t and
r are used for the PC and for the server respectively.

Transmission of im

I Time in milliseconds I Local I R e m o m
executaon execution
ti, = 0 r,, ==

v

Transmission of rm
Total execution time

Execution I t, = 80 I re = 10
Scheduling I t, = O I r3 = 5 0

t,, = o I rrm = 10
80 80-

Table 1: Local vs. remote method execution of 0 . M

Such values can be easily obtained by simulation or
by simply running the object locally on the user PC
and also on processing servers. They can also be eval-
uated using similar techniques as those used for the
evaluation of maximum time execution of real time
application [l l] . In the experiment the method exam-
ple was run on a PC 486 DX2/33 with Unix SVR4
and a Sun Sparc server S690 with SunOS 4.1. The
transmission time values reported in the table corre-
spond to the average message time delivery between
applications on the (heavy loaded) Ethernet network
of workstations of our team for a message size of 1 kB
(most object invocation messages are short and can
be sent within such message).

In the situation depicted in this table, fragmenta-
tion is of interest because performance of the frag-
mented application is identical to the local execution
of the non-fragmented application. The invocation is
local on the PC therefore: tim = t,, = 0 s; moreover
the PC is not shared and only the current application
is active: therefore t , = 0 s. We consider also that the
mean transmission time for the invocation and reply
messages is the same: r,, = rr, = rm. Therefore the
total execution times t and r of the local object invo-
cation on a user PC and the remote object invocation

5 A Unix system with a single user for example.

on a processing server are:

t = t ,

The relative response time is given by:

{ T = 27, + ~8 + re

r - t=2~ ,+re+rs - t ,

Running 0 . M on the server is interesting if r -
t 5 0, i.e. if the remote execution is faster than the
local one. Suppose now that the execution time on
the server (including scheduling time) is proportional
to the execution time on the PC: 3X, re +rs = At,. As
the server is supposed more powerful than the PC we
have X < 1 and therefore:

2rm r - t s o

For instance, going back to the simple example
given, X = 0.6 and t, should be greater than 80 ms
for 0 . M being executed remotely. For simple meth-
ods with short execution time, and if we consider more
powerful computers (several orders of magnitude as
powerful as the user PC), the relative execution time
obtained on the processing server (including the aver-
age scheduling time) becomes negligible, i.e. 1 - X N 1
and therefore r - t 2 0 U t, 2 27,: in this case,
a non confidential object can be executed remotely
provided that the execution time of the method mea-
sured on the PC is greater or equal to the round trip
time of invocation/reply messages. Using high speed
networks this round trip time should be much lower
than some ms. Thus, objects whose average execution
time of the methods is about a few hundreds of p s
should be remotely executed without any degradation
in performance.

When considering processing servers with a specific
architecture (such as massively parallel computers)
the implementation of an object (matrix computation
and other complex numeric computations, image pro-
cessing) can also be very efficient. This can be true
not only because of the hardware architecture of the
node but also according to available software tools and
libraries. This strengthen the assumption 1 - X N 1.
On the other hand the designed objects can be imple-
mented to be run in parallel on several nodes. For the
above reasons, in some cases the scattered execution
of the fragmented application is more efficient than
the local execution.
5.2 Trade-offs between cost and perfor-

mance
We examine in this section several solutions that

could be investigated for running confidential appli-
cations and we concentrate on qualitative evaluation

40 1

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

aspects. The best solution in terms of performance
(solution A) should be to only use secured non shared
(personal) powerful processing servers. This solution
is very costly, the CPU usage very low and it prevents
using shared processing servers on which intrusions
can be performed. The worse solution in terms of per-
formance (solution C) is to only use personal low cost
user PCs in a secure environment for running sensitive
applications. The performance is very bad and, as in
the previous solution, the execution of the application
does not take advantage of existing processing servers.
The fragmented solution (solution B) lies in between.
This solution involves trusted personal user worksta-
tion at low cost and several (existing) untrusted pow-
erful processing servers. This situation is illustrated
on figure 7.

4 Ideal solution
Trusted personal
user server (A) I- peqormance

I Trusted personal user PC C?

untrusted shared servers (B)

1 0 Trusted personal user PC (C)
I *

overall architecture
cost of the

Figure 7: Trade-off between performance and cost

From a performance viewpoint solution B can pro-
vide better results than solution C as soon as paral-
lelism among objects belonging to JVC is considered
and the implementation of specific objects is opti-
mized. Solution B maximizes the use of shared (ex-
isting) computing power and reduces the cost of the
overall architecture (see figure 8).

sharing of ,

-
cost of the

overall architecture

Figure 8: Trade-off between performance and sharing

Finally, solution B is of course more flexible since
adding either trusted users PCs or processing servers
can be done independently according to the needs in
terms of users access to the system and in terms of

computing power. It is also possible to run replicated
copies of remote objects for fault tolerance purpose
(using software-based techniques) without endanger-
ing the security of an application. Fault tolerance at
the user station must be based on other solutions, e.g.
based on stable storage. Fault tolerance is thus pro-
vided with standard computers instead of more costly
specific fault tolerant computers. Finally, the flexi-
bility of our solution may allow some degradation in
terms of performance to be acceptable.

6 Conclusion
We have shown in this paper that the object ori-

ented approach to application design enables confi-
dentiality to be easily taken into account since objects
represent real abstractions with a clear semantics; it
is thus easy to decide whether an object is confiden-
tial or not. Looking more carefully to the question
why is an object confidential often leads to perceive
a confidential information (object) as a collection of
non confidential items (sub-objects). Confidential ob-
jects can thus be substituted by a collection of sub-
objects, some of which being non confidential. Links
between sub-objects are kept within still confidential
objects for which a trusted computing environment is
required. Non-confidential objects can be executed on
shared untrusted processing servers. Since the notion
of object gathers both data and processing our solu-
tion provides security of data processing in distributed
systems.

The performance aspects is one key aspect of ob-
jects fragmentation. A priori, object fragmentation
can be done independently of performance aspects,
since the aim is first to encapsulate confidential pro-
cessing within few confidential objects. The recursion
ends as soon as object substitution is not useful from
a confidentiality viewpoint (Fragmentation). Perfor-
mance aspects come into place when the placement of
objects has to be decided (Scattering). Remote execu-
tion of non confidential object replicas (Redundancy)
is sound when it does not lead to high degradation
of performances; communication overheads (on high
speed LANs) are then balanced by the high comput-
ing power of processing servers. The recent and fu-
ture advances in network technology will make this
assumption more and more realistic. As a side ef-
fect, simple objects should be executed remotely with-
out any performance degradation. Moreover, consid-
ering parallelism between non confidential objects in
the implementation of the application, but also for
some particular application objects implemented on
specific architectures, some gain in performance can
be expected.

402

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

Finally, from a system architecture viewpoint, the
p ~ ~ p o s c d =pproach to the deaign of sensitive appli-
cation provides more flexibility than other solutions.
The system architecture can be organized as a set of
low cost secured users non shared workstations and a
set of high performance shared processing servers. The
latter computers can be off-the-shelf computers with-
out any specific features with respect to security or
to fault-tolerance (just software-based mechanisms).
The two types of computing units can be added inde-
pendently according to the needs.

In the future, more and more confidential applica-
tions (even classified into different security levels) will
be run in shared existing distributed computing archi-
tectures. Our approach provides a way to take advan-
tage of the existing architectures for running confiden-
tial applications at low cost since just non shared users
workstations must be logically and physically secured.

Acknowledgements
The authors wish to thank very much Brian Ran-

dell from the University of Newcastle-upon-Tyne (UK)
who participated in the elaboration of these ideas dur-
ing the numerous discussions on the subject.

References
[I] N. Ahituv, Y. Lapid, and S. Neumann, “Pro-

cessing Encrypted Data”, Communicaiions of
the ACM, vol. 30, no. 9, pp. 777-780, Septem-
ber 1987.

121 R. L. Rivest, L. Adleman, and M. L. Dertouzos,
“On Data Banks and Privacy Homomorphisms” ,
in R. A. Demillo, D. D. Dobkin, A. K. Jones,
and R. J. Lipton, editors, Foundations of Se-
cure Computation, pp. 169-179. Academilc Press,
1978, ISBN 0-12-210350-5.

[3] NCSC, “Trusted Network Interpretation1 of the
Trusted Computer System Evaluation Criteria”,
Technical Report NCSC-TG-005, National Com-
puter Security Center, July 1987.

[4] Y. Deswarte, L. Blain, and J.-C. Fabre, “In-
trusion Tolerance in Distributed Computing Sys-
tems”, in Proceedings of the 1991 IEEE Com-
puter Society Symposium on Research in Security
and Privacy, pp. 110-121, Oakland (CA], USA,
May 1991.

[5] J.-C. Fabre, Y. Deswarte, and B. Randell, “De-
signing secure and reliable applications using frs:
An object-oriented approach”, in Proceedings of
the First European Dependable Computing Con-
ference (EDCC-I), pp. 21-38, Berlin, Germany,

1994. Springer-Verlag, Lecture Notes in Com-
puter Science 852.

[6] R. Lea and J. Weightman, “Supporting Object-
Oriented Languages in a Distributed Environ-
ment: The COOL Approach”, in Proceedings
of the Fifih Technology of Object-Oriented Lan-
guages and Systems Conference, pp. 37-47, Santa
Barbara (CA), USA, 1991. Prentice Hall.

[7] J. G. Steiner, C. Neuman, and J. I. Schiller, “Ker-
beros: an authentication service for open network
systems”, in Proceedings of the USENIX Winter
Conference, Dallas (TX), USA, Feb. 1988.

[8] B. Taylor and D. Goldberg, “Secure Networking
in the Sun Environment”, in Proceedings of the
USENIX Summer Conference, pp. 28-37, Atlanta
(GA), USA, 1986.

[9] A. Shamir, “How to share a secret”, Communi-
cations of the ACM, vol. 22, no. 11, pp. 612-613,
Nov. 1979.

[lo] M. 0. Rabin, “Efficient information dispersal
for security, load balancing and fault tolerance”,
Journal of the ACM, vol. 36, no. 2, pp. 335-348,
Apr. 1989.

[ll] H. Kopetz, A. Damm, C. Koza, M. Mulazzani,
W. Schwabl, C. Senft, and R. Zainlinger, “Dis-
tributed Fault-Tolerant Real-Time Systems: The
MARS Approach”, IEEE Micro, vol. 9, no. 1, pp.
25-40, February 1989.

403

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

