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The Apparent Constant-Phase-Element Behavior of a Disk
Electrode with Faradaic Reactions
A Global and Local Impedance Analysis
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Geometry-induced current and potential distributions modify the global impedance response of a disk electrode subject to faradaic
reactions. The problem was treated for both linear and Tafel kinetic regimes. The apparent capacity of a disk electrode embedded
in an insulating plane was shown to vary considerably with frequency. At frequencies above the characteristic frequency for the
faradaic reaction, the global impedance response has a quasi-constant-phase element �CPE� character, but with a CPE coefficient
� that is a function of both dimensionless frequency K and dimensionless current density J. For small values of J, � approached
unity, whereas, for larger values of J, � reached values near 0.78. The calculated values of � are typical of those obtained in
impedance measurements on disk electrodes. For determining the interfacial capacitance, the influence of current and potential
distributions on the impedance response cannot be neglected, even if the apparent CPE exponent � has values close to unity.
Several methods taken from the literature were tested to determine their suitability for extracting interfacial capacitance values
from impedance data on disk electrodes. The best results were obtained using a formula which accounted for both ohmic and
charge-transfer resistances.
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The geometry of an electrode frequently constrains the distribu-
tion of current density and potential in the electrolyte adjacent to the
electrode in such a way that both cannot simultaneously be uniform.
The primary and secondary current and potential distributions asso-
ciated with a disk embedded in an insulating plane have been devel-
oped by Newman.1,2 Newman showed that the potential distribution
on the disk electrode is not uniform under conditions where the
current density is uniform and, conversely, the current distribution is
nonuniform under the primary condition where the solution potential
is uniform.2,3

The nonuniform current and potential distribution associated
with the disk geometry influences the transient and the impedance
response. Nisancioglu and Newman4,5 modeled the transient re-
sponse of a disk electrode to step changes in current. The solution to
Laplace’s equation was performed using a transformation to rota-
tional elliptic coordinates and a series expansion in terms of Le-
gendre polynomials. Antohi and Scherson have recently expanded
the solution to the transient problem by expanding the number of
terms used in the series expansion.6

Newman demonstrated that geometry-induced current and poten-
tial distributions cause a frequency dispersion that distorts the im-
pedance response of a disk electrode.7 Nisancioglu showed the ex-
tent to which this frequency dispersion causes an error in the values
for charge-transfer resistance and interfacial capacitance obtained
from impedance data.8,9 The discussion by Nisancioglu8,9 and by
Newman7 did not address the common practice of describing non-
ideal impedance response in terms of constant-phase elements.

The impedance response typically reflects a distribution of reac-
tivity that is commonly represented in equivalent electrical circuits
as a constant-phase element �CPE�.10-12 The impedance associated
with a simple faradaic reaction without diffusion can be expressed in
terms of a CPE as
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Z��� = Re +
Rt

1 + �j���QRt
�1�

where the parameters � and Q are independent of frequency. When
� = 1, Q has units of a capacitance, i.e., �F/cm2, and represents the
capacity of the interface. When � � 1, the system shows behavior
that has been attributed to surface heterogeneity13,14 or to continu-
ously distributed time constants for charge-transfer reactions.15-19

Independent of the cause of CPE behavior, the phase angle associ-
ated with a CPE is independent of frequency.

Huang et al.20 have shown that current and potential distributions
induce a high-frequency pseudo-CPE behavior in the global imped-
ance response of an ideally polarized blocking electrode with a local
ideally capacitive behavior. In a related work, Huang et al.21 ex-
plored the role of current and potential distribution on the global and
local impedance response of a blocking electrode exhibiting a local
CPE behavior. They were able to relate the global impedance re-
sponse to local impedance, and distinctive features of the calculated
global and local impedance response were verified experimentally.

Using both global and local impedance measurements on a mag-
nesium alloy, Jorcin et al.22 have shown that the geometry of a disk
in an insulating plane can induce CPE behavior and that this CPE
behavior can be associated with a radial distribution of local resis-
tance. The authors proposed that these results could be explained in
terms of the numerical and analytic treatment for the impedance
response of a disk electrode presented by Newman7 and by
Nisancioglu.8,9

The objective of the present work was to explore the role of
current and potential distribution on the global and local impedance
response of an electrode exhibiting a faradaic behavior. A second
objective was to describe the role of the resulting geometry-induced
frequency dispersion in terms of CPE behavior.

Mathematical Development

The mathematical development followed that presented by
Newman.7 The development in terms of rotational elliptic coordi-
nates, i.e.

y = r0�� �2�
and



r = r0
��1 + �2��1 − �2� �3�

was summarized by Huang et al. for blocking electrodes.20,21 The
key difference between the present work and that described by
Huang et al.20,21 was the boundary condition applied at the electrode
surface.

The problem was solved for two kinetic regimes. Under linear
kinetics, following Newman7 and Nisancioglu,8,9 the current density
at the electrode surface could be expressed as

i = C0
� �V − �0�

� t
+

��a + �c�i0F

RT
�V − �0� = − �

� �

� y
�y=0

= −
�

r0�

� �

� �
�

�=0
�4�

The assumption of linear kinetics applies for ī � i0. Under the as-
sumption of Tafel kinetics, the current density at the electrode sur-
face could be expressed as

i = C0
� �V − �0�

� t
− i0 exp�−

�cF

RT
�V − �0�� = − �

� �

� y
�y=0

= −
�

r0�

� �

� �
�

�=0
�5�

where the current in the Tafel regime was assumed to be cathodic. A
similar expression can be developed under assumption of anodic
currents. The results presented here are general because the imped-
ance results do not depend on whether the current is anodic or ca-
thodic.

The flux boundary conditions 4 or 5 apply at the electrode sur-
face �� = 0�. The boundary conditions 4 or 5 were written in
frequency-domain as

K�̃0,j + J�Ṽr − �̃0,r� = −
1

�
� � �̃r

� �
�

�=0

�6�

and

K�Ṽr − �̃0,r� + J�̃0,j = −
1

�
� � �̃ j

� �
�

�=0

�7�

for linear and Tafel kinetics, respectively. Here, Ṽr represents the
imposed perturbation in the electrode potential referenced to an
electrode at infinity, and K is the dimensionless frequency

K =
�C0r0

�
�8�

Under the assumption of linear kinetics, valid for ī � i0, the param-
eter J was defined to be

J =
��a + �c�Fi0r0

RT�
�9�

For Tafel kinetics, valid for ī � i0, the parameter J was defined to
be a function of radial position on the electrode surface as

J��� =
�cF	ī���	r0

RT�
�10�

where ī��� was obtained from the steady-state solution as

ī��� = − i0 exp
−
�cF

RT
�V̄�̄0����� �11�

The local charge-transfer resistance for linear kinetics can be
expressed in terms of parameters used in Eq. 9 as
Rt =
RT

i0F��a + �c�
�12�

The local charge-transfer resistance for Tafel kinetics can be ex-
pressed in terms of parameters used in Eq. 11 as

Rt =
RT

ī����cF
�13�

For linear kinetics, Rt was independent of radial position, but under
Tafel kinetics, as shown in Eq. 13, Rt depended on radial position.
From a mathematical perspective, the principal difference between
the linear and Tafel cases was that J and Rt were held constant for
the linear polarization, whereas for the Tafel kinetics, J and Rt were
functions of radial position determined by solution of the nonlinear
steady-state problem.

The relationship between the parameter J and the charge-transfer
and ohmic resistances can be established using the high-frequency
limit for the ohmic resistance to a disk electrode obtained by
Newman,1 i.e.

Re =
�r0

4�
�14�

where Re has units of 	 cm2. The parameter J can therefore be
expressed in terms of the ohmic resistance Re and charge-transfer
resistance Rt as

J =
4

�

Re

Rt
�15�

Large values of J are seen when the ohmic resistance is much larger
than the charge-transfer resistance, and small values of J are seen
when the charge-transfer resistance dominates.

The resulting set of equations were solved under the assumption
of a uniform capacitance C0 using the collocation package PDE2D
developed by Sewell.23 Calculations were performed for differing
domain sizes, and the results reported here were obtained by ex-
trapolation to an infinite domain size.

Results and Discussion

In a previous article in this series, Huang et al.20 presented a
notation that addressed the concepts of a global impedance, which
involved quantities averaged over the electrode surface; a local in-
terfacial impedance, which involved both a local current density and

the local potential drop Ṽ − �̃0�r� across the diffuse double layer; a
local impedance, which involved a local current density and the

potential of the electrode Ṽ referenced to a distant electrode, and a
local ohmic impedance, which involved a local current density and

potential drop �̃0�r� from the outer region of the diffuse double
layer to the distant electrode. The corresponding list of symbols is
provided in Table I of Huang et al.20

The local impedance z can be represented by the sum of local
interfacial impedance z0 and local ohmic impedance ze as

z = z0 + ze �16�
Huang et al.20,21 demonstrated for blocking disk electrodes that,
while the local interfacial impedance represents the behavior of the
system unaffected by the current and potential distributions along
the surface of the electrode, the local impedance shows significant
frequency dispersion. The local and global ohmic impedances were
shown to contain the influence of the current and potential distribu-
tions.

While the calculations presented here were performed in terms of
solutions of Laplace’s equation for a disk geometry, the nature of the
electrode–electrolyte interface can be understood in the context of
the schematic representation given in Fig. 1. Under linear kinetics,
both C0 and Rt were independent of radial position, whereas for
Tafel kinetics, 1/Rt varied with radial position in accordance with
the current distribution presented in Fig. 2.



The calculated results for global impedance, local impedance,
local interfacial impedance, and both local and global ohmic imped-
ances are presented in this section.

Global impedance.— The calculated global impedance response
is presented in Fig. 3a for J = 0.1 and in Fig. 3b for J = 1.0 with
dimensionless frequency K as a parameter. The real and imaginary
components are presented in dimensionless form. The impedance
results for linear kinetics at J = 0.1 match closely the impedance
response

Z�

�r0
=

1

4
+

1

�

1/J

1 + jK/J
�17�

calculated in terms of the dimensionless groups used in the present
work in the absence of frequency dispersion associated with the
geometry-induced current and potential distributions. The imped-
ance response for Tafel kinetics differs because the charge-transfer
resistance is a function of radial position. The comparison between
the impedance for linear kinetics and Eq. 17 for J = 1 shows the
distortion of the high-frequency impedance response associated with
the influence of current and potential distributions.

The calculated results for linear kinetics in Fig. 3 show good
agreement to the corresponding numerical values obtained by
Newman.7 The comparison with Newman’s calculations is seen
more clearly in the representation of the real and imaginary parts of
the impedance response shown in Fig. 4a and 4b, respectively. At
low frequencies, values for the real part of the impedance differ for

Figure 1. Schematic representation of an impedance distribution for a disk
electrode where ze represents the local ohmic impedance, C0 represents the
interfacial capacitance, and Rt represents the charge-transfer resistance.

Figure 2. Secondary current distribution for Tafel polarization at a disk
electrode with J as a parameter.
impedance calculated under the assumptions of linear and Tafel ki-
netics, whereas the values of the imaginary impedance calculated
under the assumptions of linear and Tafel kinetics are superposed for
all frequencies. The slope of the lines presented in Fig. 4b are equal
to +1 at low frequencies but differ from −1 at high frequencies. The
slope of these lines in the high-frequency range can be related to the
exponent � used in models for CPE behavior.24

The calculated derivative of log�Zj�/r0�� with respect to log�K�
�taken from Fig. 4b� is presented in Fig. 5a as a function of K
with J as a parameter. At large frequencies, the quantity
d log�Zj�/r0��/d log�K� can be considered to be equal to −� where
� is the exponent used for models of CPE behavior. The character-
istic frequency where the value of slope deviates from unity in-
creases with the dimensionless parameter J. The transition frequen-
cies correspond to the inverse of the RtC0 time constant and, as seen
in Fig. 5b, overlap when given as a function of

K

J
=

�C0RT

ī�cF
= �RtC0 �18�

The characteristic frequency for the change in slope is at K/J = 1,
i.e., at the frequency �max = 1/RtC0. The functional dependence of
d log�Zj�/r0��/d log�K� was independent of assumption of either
linear or Tafel kinetics.

Two characteristic frequencies are, therefore, evident in Fig. 5.
The characteristic frequency K/J = 1 is associated with the RtC0
time constant for the faradaic reaction, and the characteristic fre-
quency for the influence of current and potential distributions K
= 1 is associated with the capacitance C0 and the ohmic resistance
given as Eq. 14.

Local interfacial impedance.— The calculated local interfacial
impedance for Tafel kinetics with J = 1 is presented in Fig. 6 as a
function of frequency with normalized radial position on the disk
r/r0 as a parameter. At low frequencies, the local interfacial imped-
ance, for both real and imaginary, is smallest at the periphery and

Figure 3. Calculated Nyquist representation of the impedance response for a
disk electrode under assumptions of �solid lines� Tafel and �dashed lines�
linear kinetics. Open circles represent the result calculated by Newman.7 �a�
J = 0.1 and �b� J = 1.0.



largest at the center of the disk. The variation at low frequencies is
less distinguishable for smaller values of J. All the curves in Fig. 6a
and b are superposed at frequencies K 
 1.

For the linear kinetics calculation, where J is independent of
radial position, the scaled real part of the local interfacial impedance
follows

z0,r�

r0�
=

J

��J2 + K2�
�19�

and the imaginary part of the local interfacial impedance follows

z0,j�

r0�
=

− K

��J2 + K2�
�20�

Plots similar to Fig. 7 were obtained for the local interfacial imped-
ance calculated under the assumption of linear kinetics, but for lin-
ear kinetics the local interfacial impedance was independent of ra-
dial position.

The local interfacial impedance for Tafel kinetics with J = 1 is
presented in Fig. 7 as a function of normalized radial position with
frequency as a parameter. The lines for K = 0.01 and K = 100 are
superposed in both real and imaginary parts of the local interfacial
impedance �Fig. 7a and b, respectively�. The real part of the imped-
ance, presented in Fig. 7a, shows a distribution at low frequencies
due to the variation of the steady-state current density. Under the
Tafel kinetics assumption that J is a function of radial position, as
shown in Fig. 7, the real and imaginary parts of the local interfacial

Figure 4. Calculated representation of the impedance response for a disk
electrode under assumptions of Tafel and linear kinetics and with J as a
parameter. Open symbols represent the result calculated by Newman:7 �a�
real part and �b� imaginary part.
impedance change around the values given in Eq. 19 and 20 and
have minimum values at the periphery of the disk.

Local impedance.— The calculated local impedance for Tafel
and linear kinetics with J = 1 is presented in Fig. 8 in Nyquist
format with radial position as a parameter. In both cases, the imped-
ance is largest at the center of the disk and smallest at the periphery,
reflecting the greater accessibility of the periphery of the disk elec-
trode. Similar results were also obtained for J = 0.1, but the differ-
ences between radial positions were much less significant. Inductive
loops are observed at high frequencies and these are seen in both
Tafel and linear calculations for J = 0.1 and J = 1.0.

The real and imaginary parts of the local impedance for Tafel
kinetics with J = 1.0 are presented in Fig. 9a and b, respectively.
The real part of the local impedance presented in Fig. 9a reaches
asymptotic values at K → 0 and K → 100. The absolute value of
the imaginary part presented in Fig. 9b shows the change of sign
associated with the inductive features seen in Fig. 8a. The changes
in sign occur at frequencies below K = 100, indicating that the in-
ductive loop cannot be attributed to calculation artifacts.

Local ohmic impedance.— The local ohmic impedance ze ac-
counts for the difference between the local interfacial and the local
impedances. The calculated local ohmic impedance for Tafel kinet-
ics with J = 1.0 are presented in Fig. 10 in Nyquist format with
normalized radial position as a parameter. The results obtained here
for the local ohmic impedance are very similar to those reported for

Figure 5. The calculated derivative of log�Zj�/r0�� with respect to log�K�
�taken from Fig. 4b� with J as a parameter: �a� as a function of K and �b� as
a function of K/J �see Eq. 18�.



the ideally polarized electrode and for the blocking electrode with
local CPE behavior.20,21 At the periphery of the electrode, two time
constants �inductive and capacitive loops� are seen, whereas at the
electrode center only an inductive loop is evident. These loops are
distributed around the asymptotic real value of 1/4.

The calculated values for real and imaginary parts of the local
ohmic impedance are presented in Fig. 11a and b, respectively, as a
function of frequency with radial position as a parameter. The local
ohmic impedance has only real values at K → 0 and K → �, but in
the frequency range 10−2 � K � 100, ze has both real and imagi-
nary components. This range of dimensionless frequency was not
dependent on the value of J. The local ohmic impedance obtained
for linear kinetics and for different J were similar to the results
reported here for J = 1.

The representation of an ohmic impedance as a complex number
represents a departure from standard practice, and the related in-
sights constitute a major contribution of the present work. As shown
in previous sections, the local impedance has inductive features that
are not seen in the local interfacial impedance. These inductive fea-
tures are implicit in the local ohmic impedance. As similar results
were obtained for ideally polarized20 and blocking electrodes with
local CPE behavior,21 the result cannot be attributed to faradaic
reactions and can be attributed only to the ohmic contribution of the
electrolyte.

Global interfacial and global ohmic impedance.— The global
interfacial impedance for linear kinetics is independent of radial
position and is given by

Figure 6. Calculated representation of the local interfacial impedance re-
sponse for a disk electrode as a function of dimensionless frequency K under
assumptions of Tafel kinetics with J = 1.0: �a� real part and �b� imaginary
part.
Z0 =
Rt

1 + j�C0Rt
�21�

The global ohmic impedance Ze is obtained from the global imped-
ance Z by the expression

Ze = Z − Z0 �22�

The real part of Ze, obtained for linear kinetics, is given in Fig. 12a,
and the imaginary part of Ze is given in Fig. 12b as functions of
dimensionless frequency K with J as a parameter. In the low fre-
quency range Ze�/r0� is a pure resistance with a numerical value
that depends weakly on J. All curves converge in the high frequency
range such that Ze�/r0� tends towards 1/4. The imaginary part of
the global ohmic impedance shows a nonzero value in the frequency
range that is influenced by the current and potential distributions.

At high and low frequency limits, the global ohmic impedance
defined in the present work is consistent with the accepted under-
standing of the ohmic resistance to current flow to a disk electrode.
The global ohmic impedance approaches, at high frequencies, the
primary resistance for a disk electrode �Eq. 14� described by
Newman.1 This result was obtained as well for ideally polarized20

and blocking electrodes with local CPE behavior.21 The global
ohmic impedance approaches, at low frequencies, the value for the
ohmic resistance calculated by Newman7 for a disk electrode. Again,
this result was seen as well for blocking electrodes.20,21 The com-
plex nature of both the global and local ohmic impedances is seen at
intermediate frequencies. This complex value is the origin of the

Figure 7. Calculated representation of the local interfacial impedance re-
sponse for a disk electrode as a function of radial position under assumptions
of Tafel kinetics with J = 1.0: �a� real part and �b� imaginary part.



inductive features calculated for the local impedance and the quasi-
CPE behavior found at high frequency for the global impedance.

Interpretation of Impedance Results

In 1987, Nisancioglu estimated the error caused by frequency
dispersion in evaluating physical properties such as charge-transfer
resistance and capacitance.8 A parallel analysis is presented here in
terms of the commonly used CPE models.

Determination of charge-transfer resistance.— The impedance
response of a disk electrode in the absence of frequency dispersion
associated with the geometry-induced current and potential distribu-
tions can be expressed by Eq. 17. The corresponding charge-transfer
resistance evident at low frequencies is given by

Rt�

�r0
=

1

�J
�23�

The effective global charge-transfer resistance can be estimated
from the calculated impedance data according to

Reff�

�r0
= �Zr�

�r0
�

K=0
−

1

4
�24�

The value of Reff/Rt is presented in Fig. 13 as a function of J under
the assumption of linear kinetics. The results are in full agreement
with those presented in a different format by Nisancioglu.8 The in-
fluence of the frequency dispersion is greatest when J is large, i.e.,
when the ohmic resistance dominates over the charge-transfer resis-
tance. At J = 100, an error of 75% is seen in the estimation of the
charge-transfer resistance.

Determination of capacitance.— The evaluation of interfacial
capacitance is perhaps better done in terms of the CPE. The values
of � and 1 − � obtained from Fig. 5a are presented in Fig. 14 as
functions of J. The value of � ranges from 0.98 for J = 0.01 to 0.87
for J = 10, which demonstrates that nonuniform current and poten-
tial distributions on a disk electrode can yield high-frequency CPE-
like behavior. As J becomes small, i.e., as the charge-transfer resis-
tance dominates over the ohmic resistance, � tends toward unity. It
is significant that the calculated value of � shown in Fig. 14 corre-
sponds to a range of � that is frequently observed in experiments.

Figure 8. Calculated representation of the local impedance response for a
disk electrode as a function of dimensionless frequency K under assumptions
of Tafel kinetics with J = 1.0: �a� Tafel kinetics and �b� linear kinetics.
The effective CPE coefficient Qeff for electrochemical systems
can be obtained from the imaginary part of the impedance as

Qeff = sin���

2
� − 1

Zj�
� �25�

The value of effective CPE coefficient, scaled by the interfacial
capacitance, is presented in Fig. 15 as a function of J. The frequen-
cies reported in Fig. 15 are limited to those that are one decade
larger than the characteristic frequency ��max or K/J = 1� because,
in this frequency range, the value of � is well-defined. Figure 15
was developed taking into account the observation, seen in Fig. 5a,
that the value of � is dependent on the frequency at which the slope

Figure 9. Calculated representation of the local impedance response for a
disk electrode as a function of dimensionless frequency K with J = 1.0: �a�
real part and �b� absolute value of the imaginary part.

Figure 10. Calculated representation of the local ohmic impedance response
for a disk electrode as a function of dimensionless frequency K under as-
sumptions of Tafel kinetics with J = 1.0



is evaluated. Thus, the value of Qeff reported is that corresponding to
the value of � at a given frequency K.

Figure 15 is presented here because, while the dimensions are
not exactly that of a capacitance, the CPE coefficient is often as-
sumed to have approximately the same numerical value as the inter-
facial capacitance. The value of Qeff is a function of frequency. At
high frequencies, where frequency dispersion plays a significant
role, the effective CPE coefficient Qeff provides an inaccurate esti-
mate for the interfacial capacitance, even for small values of J where
� is close to unity. The errors in estimating the interfacial capaci-
tance are on the order of 500% at K = 100.

A number of researchers have explored the relationship between
CPE parameters and the interfacial capacitance. Hsu and Mansfeld25

proposed

Ceff = Q��max��−1 = Q��Kmax

C0r0
��−1

�26�

where �max �or Kmax� is the characteristic frequency at which the
imaginary part of the impedance reaches its maximum magnitude
and Ceff is the estimated interfacial capacitance. Equation 26 is
tested against the input value of interfacial capacitance in Fig. 16
where C0 is the known interfacial capacitance which was indepen-
dent of radial position. As described above, Fig. 16 was developed
using local frequency-dependent values of � and Qeff. The frequen-
cies reported in Fig. 16 are limited to those that are one decade
larger than the characteristic frequency �max. While Eq. 26 repre-
sents an improvement as compared to direct use of the CPE coeffi-
cient Q , the errors in estimating the interfacial capacitance depend

Figure 11. Calculated representation of the local ohmic impedance response
for a disk electrode as a function of dimensionless frequency K under as-
sumptions of Tafel kinetics with J = 1.0: �a� real part and �b� imaginary part.
eff
on both J and K and range between −70 and +100%.
Brug et al.10 developed a relationship for a blocking electrode

between the interfacial capacitance and the CPE coefficient Q as

Figure 12. Calculated global ohmic impedance response for a disk electrode
as a function of dimensionless frequency for linear kinetics for J = 0.1 and
J = 1.0: �a� real part and �b� imaginary part.

Figure 13. The apparent value of Reff/Rt obtained from the calculated im-
pedance response at low frequencies as a function of J.



Ceff = �QRe
�1−���1/� �27�

A similar relationship between the interfacial capacitance and the
CPE coefficient Q was developed for a faradaic system as

Ceff = �Q� 1

Re
+

1

Rt
���−1�1/�

= 
Q� 1

Re
�1 +

�J

4
���−1��1/�

�28�
Equations 27 and 28 are compared to the expected value of interfa-
cial capacitance in Fig. 17a and b, respectively. Figure 17a and b
was developed using local frequency-dependent values of � and Qeff
over the same frequency range as is reported in Fig. 15 and 16. The
frequencies reported in Fig. 17 are limited to those that are one
decade larger than the characteristic frequency �max. The error in
Eq. 27 is a function of both frequency K and J. While Eq. 27 applies
strictly for a blocking electrode, it gives the correct answer for fara-
daic systems if one chooses to calculate � at frequencies K � 5 but
fails for K 
 5. The dependence on J is reduced significantly when
both the ohmic resistance Re and charge-transfer resistance Rt are
taken into account, and the errors in estimating interfacial capaci-
tance are less than 20%. The correction for Rt in Eq. 28 is important
for frequencies K 
 5. Of the relationships tested, Eq. 28 provides
the best means for estimating interfacial capacitance when fre-
quency dispersion is significant.

Figure 14. The apparent value of 1 − � obtained from the calculated imped-
ance response at high frequencies as a function of J.

Figure 15. Effective CPE coefficient scaled by the interfacial capacitance as
a function of J.
Figure 17. Normalized effective capacitance calculated from relationships
presented by Brug et al.10 for a disk electrode as a function of dimensionless
frequency K with J as a parameter: �a� with correction for ohmic resistance
Re �Eq. 27� and �b� with correction for both ohmic resistance Re and charge-
transfer resistance R �Eq. 28�.
Figure 16. Effective capacitance calculated from Eq. 26 and normalized by
the input interfacial capacitance for a disk electrode as a function of dimen-
sionless frequency K with J as a parameter �see Hsu and Mansfeld.25�.
t



Conclusions

Geometry-induced current and potential distributions modify the
global impedance response of a disk electrode subject to faradaic
reactions. The calculated local and ohmic impedances are shown to
provide insight into the frequency dispersion associated with the
geometry of disk electrodes. While the calculated global impedance
is purely capacitive, the local impedance has high-frequency induc-
tive loops. The local impedance is influenced by the local ohmic
impedance, which has complex behavior near dimensionless fre-
quency K = 1. The imaginary part of both the local and global
ohmic impedances is equal to zero at both high and low frequencies
where the ohmic impedance has purely resistive character.

The results of the present work support the conclusion offered by
Newman7 that the apparent capacity of a disk electrode embedded in
an insulating plane varies considerably with frequency. At frequen-
cies above the characteristic frequency for the faradaic reaction, the
global impedance response has a quasi-CPE character but with a
CPE coefficient � that is a function of both frequency K and dimen-
sionless exchange current density J. For small values of J, � ap-
proached unity, whereas for larger values of J, � reached values near
0.78. The calculated values of � are typical of those obtained in
impedance measurements on disk electrodes.

Several methods were tested to determine their suitability for
extracting interfacial capacitance values from impedance data on
disk electrodes. The best results were obtained using the formula
�Eq. 28� offered by Brug et al.10 which accounted for both ohmic
and charge-transfer resistances. This work showed that, for deter-
mining the interfacial capacitance, the influence of current and po-
tential distributions on the impedance response cannot be neglected,
even if the apparent CPE exponent � has values close to unity.
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