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Among the various numerical schemes developed since the '80s for the computation of
the compressible Euler equations, the vast majority produce in certain cases spurious
pressure glitches at sonic points. This flaw is particularly visible in the computation
of transonic expansions and leads to unphysical "expansion shocks" when the flow
undergoes rapid change of direction.

The analysis of this flaw is presented, based on a series of numerical experiments.
For Flux-Vector Splitting methods, it is suggested that it is not the order of different
iability of the numerical flux which is crucial but the way the pressure at an interface
is calculated. A new way of evaluating the pressure at the interface is proposed, based
upon kinetic theory, and is applied to most current available algorithms including Flux
Vector Splitting and Flux-Difference Splitting methods as well as recent hybrid schemes
(AUSM, HUS),
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t. INTRODUCTION

It has been common practice for most numerical
schemes designers to concentrate on the capability
of a given numerical scheme to adequately capture
shock waves and contact discontinuities. Indeed,
intense shock waves can be challenging to compute
because they require a fairly important amount of
numerical dissipation. At the same time, contact
discontinuities require as little numerical dissipa
tion as possible in order for a given method to
predict the actual effects of natural viscosity, not

·Corresponuing author.

\43

the effects of the numerical viscosity. Recently,
many efforts have been made to design numerical
schemes that satisfy this double requirement
(Liou and Steffen, 1993; Coquel and Liou, 1992;
Moschctta and Pullin, 1997). These recent ef
forts have demonstrated that it is ambiguous to
speak about the "dissipation" of a givcn numerical
scherne without specifying in which situation this
dissipation becomes active. Numerical dissipation
is a twofold concept in which the "good" dissipa
tion allows to capture shock waves and nonlinear
phenomena in general, and the "bad" dissipation
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144 J.-M. MOSCHETTA AND J. GRESSIER

where

F(VL, VR) = MZ(a<I»L + Mi(ai.f»R

+ PZ .PL + Pi .PR (3)

(5)

In the above expression, M ± and -p« are scalar

functions of the local Mach number M, based on
the velocity component normal to the interface,

and a is the local sound speed. Actually, all FVS

methods presented above have been modified ac

cording to the suggestion of Hanel (Hanel, 1987)

so that the energy flux has the following form:

where V L and V R are the left and right state vec

tors respectively. Although based on fairly differ

ent mathematical or physical approaches, the

three corresponding numerical fluxes can all be

expressed as

i.f>=(f~). p=(D (4)

where V = (p, pu, pE)7" is the state vector of

conservative variables, F = ipu, (Jl/ + p, puH)T is

the Euler flux and H is the total enthalpy defined

as H = E + pip. Consider the following family

of Flux-Vector Splitting (FVS) schemes: Steger

Warming (Steger and Warming, 1981); Van Leer

(Van Leer, 1982) and EFM (Pullin, 1980). All

three schemes are FVS schemes in the sense that

their numerical flux function can be expressed as

in order for a stationary inviscid solution to ensure

constant total enthalpy H throughout the flow

field. Therefore, the three flux functions considered

here only differ from one another by the expres

sion of their scalar functions M± and P±. The

pressure function -p> can actually be interpreted

as a normalized weight coefficient ranging from 0
to I which allows to evaluate the interface pressure

from pressure values at either sides of the inter

face. For the three FVS methods considered here,

the following pressure functions are used
(I)

Consider the discretization of the ID Euler

equations

2. ANALYSIS

artificially broadens boundary layers and requires

high Icvcl or grid resolution.

However, few authors have considered to assess

the capability or numerical schemes to correctly

compute expansion waves. Sod's problems, which

belong to thc very first test cases which one is

usually advised to start with, include a traveling

shock wave, an expansion ran and a contact discon

tinuity. In the supersonic Sod problem, the expan

sion f~1J1 contains a sonic point where virtually

all numerical schemes produce an unphysical

glitch. Evcn such elaborate schemes as Osher

scheme, or God unov scheme produce the same

kind or glitch in the vicinity or the sonic point.

To the best or the authors' knowledge, the only

schemes which do not seem to be affected by this

llaw arc kinctic schemes (or Boltzmann schemes)

such as EFM (Pullin, 1980). EFMO (Moschetta

and Pullin, 1997) or BGK (Xu et al., 1995), and

the recent box-scheme proposed by Chattot
(Challot, 1998). The sonic point glitch problem

is not limited to the supersonic ID Sod problem

but is closely related to the spurious focusing of

pressure contours when the flow gets round a cor
ncr in the case of an irregular 2D body shape. It is

therefore important to get rid of this flaw parti

cularly when irregular shapes are considered.

This paper addresses some of the mathematical

questions which underlie the sonic point glitch

problem, with a particular focus on a simple modi

Iication which contributes to cure the flaw for a
large number of current available shock-capturing
schemes. Thc proposed modification reproduces

some or the mathematical properties satisfied by

kinetic schemes that seem to be decisive for the

problem considered and does not affect the capa

bility or a numerical method to exactly capture

contact discontinuities.
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A CURE FOR THE SONIC POINT GLITCH 145

Steger- Warming

p± _ {~(I ± sign (M))
sw > ±~(M±I)

iflMI> I,
otherwise.

(6)

Close observation of the different expressions for

P and M reveals that EFM functions differ from
the two other FVS methods by two specific
properties:

± I
PEFM = 2: (1 ± erf(aM)) (8)

where a = J,/2 "" 0.84. The error function erf is
defined as

The physical interpretation of scalar functions
M ± is more subtle to establish. First, they have
the dimension of a Mach number and conse
quently are not bounded. Second, in the special
case where pressure values are equal on either
sides of the interface, such as in the case of a
steady contact discontinuity, they account for
the averaging of the left and right fluxes. Third,
the upwinding mechanism of the method totally
relies on their expression and is then of major
importance for shock-capturing properties. For
the three FVS methods considered here, the Mach
number functions M ± are defined as

Steger- Warming

ifML > I

I. EFM functions are infinitely differentiable (COO)
with respect to the Mach number M while
Steger- Warming's and Van Leer's are not

infinitely differentiable at M = ± I (Steger
Warming functions are only CO and Van Leer
functions are C I),

2. EFM functions are not fully upwind in the
sense that there is always a relatively small
contribution from downstream even if the local
Mach number is greater than I.

The second property results from the fact that
EFM is based upon a statistical description of
gases in which there is always some probability to
find a particle of gas going backward in a super
sonic flow. In the following, the expression fully
upwind will refer to a method in which there is no
influence from downstream when the 110w is local
ly supersonic. For a FVS method, this requirement
will read

F+(UR) = 0, F-(UR) = FR, if Mil <-I

(13)

where FLand FR stand for the exact flux taken at
ULand UR respectively. Since EFM is the only
FVS method that is not affected by the sonic point
glitch, it is interesting to identify which of the two
cited properties is involved in the sonic point
problem. In order to sort this out, a fourth FVS

method called Upwind Infinitely Differentiable
scheme (UID) is constructed in such a way that

the functions P and M, and consequently the
numerical flux itself, is infinitely differentiable and
fully upwind at the same time. A suitable choice
for P and M is giyen below

UID

(7)

(9)

( II )

(10)

iflMI> I,
otherwise.

if IMI > I,
otherwise.

2 t
erf(s) = y1i io exp(-t2)dt

± {HM±IMI) ifIMI>I,
M VL = ±!{M±I)2 otherwise.

EFM

± _ {~(M ± IMI)
M sw - ±t;[,M±(r-I)IMI±I]

Van Leer

p± _ {W ± sign (M))
VL- ±!(M±I)2(2=j=M)

EFM

Van Leer

( 14)
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146 J.-M. MOSCHEITA AND J. GRESSIER

with

Y = arg tanh ((3M) (16)

The parameter {3 accounts for the closeness of
the functions with respect to their asymptotes. In

the present study, (3 = 3/2 has been selected. It
must be pointed out that the UIO functions are
eN which means that, like EFM functions, their

derivatives of any order are zero in the vicinity of
sonic points. However, as opposed to EFM func

tions. UIO functions ensure full upwinding
when the local Mach number is greater than I.
Figure I shows the different functions P and M
which completely define the following numerical
schemes: Stcger- Warming, Van Leer, EFM and
UIO.

A USM differs from FVS methods in the sense that
the weighting functions M ± for the convective
fluxes can depend on both states and not only on

the state associated with the corresponding con
vective flux. In other words, referring to Eq. (3),

the numerical flux for AUSM can be expressed as:

FAUSM(UL, UR) = Mi(R(a<l»/. + MijR(a(I»R

+Pt·p,.+Pi/.PR (18)

where M!:;R are functions of both left and right
states and not functions of just only one state as
in regular FVS methods. This idea gives an addi
tional degree of freedom to ensure exact resolu

tion of contact discontinuity. The actual functions

M!:;R are defined as

with

3. NUMERICAL RESULTS (20)

3.1. Test Case (I)

A first series of computations have been carried
out on the supersonic I D Sod's problem which
can bc defined by the following initial conditions:

(I/. = I,
(17)

(lR = 0.01, PR = 103
, IIR = 0

Numerical results can be compared with the
anulyticul solution at , = 0.03 before the 0 waves
reach thc tube cnds. Figurc 2 shows numerical

results obtaincd with a uniform grid of 100 points
using the following methods: Van Leer, UIO and

EFM. It can be observed that Van Leer and UIO
results display a clear gap in the vicinity of the

sonic point. The sonic point glitch seems to be
even more pronounced with UIO than with Van

Leer showing thai smoothness of the numerical
flux function docs not solve the problem at all.
Following the same idea, AUSM scheme (Liou,
1993) is modified using EFM pressure function.

At this point, there is some flexibility in the
choice of scalar functions M ±, In the original

AUSM method, Van Leer's functions are used.
Obviously, other choices, such as those mentioned
in the present paper, are available, In the present
study, the original approach using Van Leer's
Mach number function has been followed. Only
the pressure functions have been modified. For
mally, the resulting AUSMK method only differs
from the original A USM method in the way P is
evaluated, Instead of using Van Leer's pressure

function, which contains a switch according to the
value of IMI, AUSMK consists of using EFM
pressure function (defined by Eq. (8» which has a
unique expression regardless of the relative posi

tion of IMI with respect to I. It is interesting to
observe on Figure 3 that the sonic point glitch
associated with the original version of AUSM

is perfectly cured by this simple modification.
Because it only affects the pressure term in the
numerical flux, it does not degrade the ability
of A USM to exactly capture stationary contact
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FIGURE 2 Supersonic Sod problem: computed Mach numbers for Van Leer UID and EFM schemes.
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FIGURE 3 Supersonic Sod problem: computed Mach numbers for AUSM and AUSMK schemes.

discontinuities. A similar modification could be ap
plied to the Mach number function but numeri
cal experiments have shown that although the
sonic point glitch is also removed, shock waves
arc then slightly thicker. In the present form,

the difference between AUSM and AUSMK con
sists of the addition to a kinetic pressure correction
term (KPC) of the following form

pAUSMK (V . V ) = pAUSM (V V)
~, H ~, R

+ 6.Pt· PI. + 6.P;· PI? (21)

where

From the previous expression, it is clear that
AUSMK reverts to the original formulation of

AUSM in the case of the computation of a
stationary boundary layer where M L = 11'1 R = 0,
thus 6.p± = O. The proposed correction does not
add the "bad" dissipation which would artificially

broaden boundary layers. Furthermore, Eq. (21)
shows that any flux function can be modified by
adding to the original function the KPC term
defined by 6.p±. Following this idea, Roe scheme

(Roe, 1981), which is known to suffer from a
tendency to expansion shocks, is modified by

adding the KPC term as follows

(22) P ROE-K = P ROE + 6.P (23)
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A CURE FOR THE SONIC POINT GLITCH 149

with

in which !::l.P± are defined by Eq. (22). When Roe

scheme is modified along these lines, the resulting
Ree-K scheme produces no glitch at the sonic

point and yet maintains the same capability of

exactly resolving contact discontinuities or,

equivalently, boundary layers. However, like the

entropy fix of Harten, the use of the KPC term

does not maintain the exact resolution of steady

shock waves. This modified version of Roe scheme

has been compared with the usual entropy-fixed

version of Roe scheme which consists of replacing

the absolute value applied to the wave speeds
u- a, II, u + a with Harten's function (Harten and

Hyman. 1983) defined as:

Roe scheme, the entropy-fixed Roe scheme with

80 = 0.2 and the modified Roe-K scheme. It can

be observed that the usual entropy fix applied to

Roe scheme using a typical value for Harten's

parameter does not completely remove the typical

glitch at the sonic point as opposed to the present

modification which leads to perfect smoothness
around the sonic point.

3.2. Test Case (2)

In order to specify the problem encountered in the

vicinity of sonic points when computing a tran

sonic expansion. an additional test case is pro

posed which consists of computing a shock tube

problem starting from initial conditions which cor

respond to a pure transonic expansion fan. The
initial conditions are defined as follows:

if IAI < 8

otherwise

(25)

PI. = I, PI. = 105
, UL = 0 (27)

The right state is calculated so that the following

relations are satisfied:

where 8 is related to the spectral radius of the

Euler flux Jacobian matrix as:

(28)

8 = 80 . (lui + a) (26) (29)

On Figure 4, numerical results for the super
sonic Sod problem are shown using the original (30)

20

1.'

'0

0.'

R·oe-(~~,;;·o:2f
Ro.K

50

..•
• --0-- - Roe

-- exacttlOl.

. Roe (6... 0.2)
-"-"-0--- Roe-K

M 1.0

'0

• x

FIGURE 4 Supersonic Sod problem: computed Mach numbers for Roc. entropy-fixed Roe and Roc-K schemes.
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ISO J.-M. MOSCHElTA AND J. GRESSIER

The above relations completely define the right
state in such a way that a pure expansion fan
develops between thc initial interface. Figure 5
shows a series of computations of the expansion
fan at time I = 5.0 x 10- 4 s in terms of the Mach
number distribution magnified around the sonic
point region. For this computation, a uniform grid
of 200 points is used. Figure 5(a) compares nu
mcrical results obtained with Van Leer and Van
Lccr-K methods respectively. Figure 5(b) com
pares numerical results obtained with A USM and
AUSMK methods respectively. In both cases, a
clear improvement is obtained with regard to the
problem considered. Two additional FDS schemes,
namely Osher (Osher and Solomon, 1982) and

Godunov (Godunov, 1959) schemes are also modi
fied according to the present modification, giving
the corresponding Osher-K and Godunov-K
schemes. Numerical results are shown on Figures
5(c) and 5(d). For Osher scheme, the order chosen
for the eigenvalues is the natural order but further
analysis showed that the original version of Osher's
scheme using the inverse order suffers from the
same flaw. Actually, both versions can be cured by
the present modification. Surprisingly, Godunov
scheme which is based on an exact Riemann solver,
leads to the same unphysical glitch. It should be
pointed out that in the case of a pure expansion
fan, the computation of Godunov numerical flux
does not require any Newton iterations which

·0.04 ·002 o 0.02 0.04 ·004 -002 o 0.02 0.04

1.2

o.a oe oe o.e

-0.04 -002 0 0.02 0.04 -0.04 -0.02 0 0.02 0.04
X X

(e) -0.04 -0.02 0 0.02 0.04 (d) -0.04 -002 0 0.02 0.04

1.2 1.2 1.2 1.2

.c
:;: 1 -I ., ..
::;

De

-0.04 -002 o
X

0.02

s:
:;: 1
::;

o.e oe o.e

FIGURE 5 Transonic expansion: computed Mach numbers for (a) Van Leer/Van Lccr-K, (b) AUSM/AUSMK. (c) Osher/Osher-K
LInd (d) Godunov/Godunov-K,
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A CURE FOR THE SONIC POINT GLITCH 151

A USM flux reduces to the same expression since,
when M R > I and 0 < M L < I

might have introduced some numerical errors.
One explanation for the sonic glitch problem
might be that at the interface corresponding to
the sonic point, all classical methods, with the ex
ception of kinetic schemes, produce a numerical
flux which is only dependent on the left subsonic
state. This can be easily checked for FVS methods:
since M R > I, the pressure and Mach number
functions PI; and MI; return zero. Hence, the
flux at the interface only depends on the left state
through the following relation

(34)

"L l-¢z l+¢-
I Wj+I/2 = ")+-T6j-I/2+-4-6j+I/2

R I+¢Z l-¢-
WJ+I/2 = Wj+1 ---4-6j+1/2 --4-6j+3/2

extended Van Leer's pressure correction on Fig
ure 6('1). This comparison indicates that the glitch
can be also adequately removed by using Van
Leer's extended pressure correction term (33).
However, Figure 6(b), on which the gradient of
the computed Mach number is plotted, reveals
that although Van Leer's extended pressure cor
rection term provides smooth transition through
the sonic point, it brings a slight bump immediate
ly downstream the sonic point as opposed to
the kinetic pressure correction term.

Using the same test case, two additional calcu
lations have been performed. The first one was
aimed at determining whether the sonic point
glitch would disappear or not when the grid reo
solution is increased. On Figure 7(a), three numeri
cal results are compared with the exact solution
using 200, 400 and 800 points equally spaced in
the computational domain. The gap size is ap
parently of the order 0(11) since it is reduced by a
factor of 2 when the number of points is multi
plied by two. However, when plotting the gradi
ent of the Mach number (see Fig. 7(b)) one can
observe that the peak associated with the sonic
glitch does not vanish when the grid resolution is
increased. Therefore, resorting to a higher grid
resolution is not the clue for solving the problem.
The second calculation (see Fig. 8) illustrates that
the use of high order methods leads to a drastic
reduction in the sonic gap. A standard MUSCL
reconstruction applied to the primitive variables
W = (p,lI,pl with the minmod limiter and an
upwinding parameter ¢ = -I has been used to
upgrade the original Van Leer's scheme to second
order accuracy in space.

(32)

M L / R =Mi,
M + -M+

L/R - L ,

MjJR = O.

Therefore, it will take longer for a fully upwind
flux function, such as the regular AUSM method,
to let a continuous solution (e.g., an expansion
fan) replace an initial discontinuous solution since
acoustic waves will remain blocked on the super
sonic side of the sonic region.

In the present correction term, one may argue
that the use of the error function is not manda
tory in principle since the Coo properly cannot,
by itself, remove the sonic point glitch. There
fore, a different way of implementing the partial
upwinding mechanism within the numerical flux
function has been developed. It simply consists of
using Van Leer's pressure function on an ex
tended range as follows. Instead of using 6p± =

PfFM - P~L (22), which require the error func
tion, one can simply use:

In which IL = 0.9. This leads to an "extended"
Van Leer's pressure correction term which equally
ensures the upstream influence in supersonic
region (at least where I < IMI < lIiL). The kinetic
pressure correction term is compared to the

with

(35)
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FIGURE 6 Effect of partial upwinding using different pressure correction terms in Van Leer's first order flux: (a) kinetic pressure
correction term, (h) extended Van Leer's pressure function.

and

(36)

In the present calculations, the compression
parameter b has been set to I. The resulting second

order method has been applied to the transonic
expansion problem on a grid which contains 400,
800 and 1600 points (Fig. 8). Compared to a first
order result, the second order method leads to a
reduced gap around the sonic point. This gap can
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FIGURE 7 Effect of grid resolution for the transonic expansion problem using Van Leer first order method: (a) computed Mach
numbers I'S. exact solution. (b) computed Mach number gradient I'S. exact solution.

be further decreased by increasing the grid resolu
lion. However, the surprising result is that the
gap does not decrease as 0(112

) but only at best as
an optimistic 0(11). This is confirmed by plotting
the Mach number gradient using different grid

resolutions (Fig. 9). Figure 9 confirms that 1Il

creasing the grid resolution does not remove the
spurious gradient across the sonic line. On the
contrary. it even tends to locally grow around
the sonic point, as opposed to first order results
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FIGURE H Effect of high order resolution for the transonic expansion problem using Van Leer's method: first and second order
scheme.
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FIGURE 9 Effect of grid resolution on the computed Much number gradient using Van Leer second order method; comparison
with Van Lccr-K.
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obtained using the proposed pressure correction
term which perfectly agree to the exact solution.
It should be noticed that the second-order recon
struction makes use of neighboring points which
may be located on either sides of the sonic line.
Therefore, the reconstruction process leads to a
scheme which is not fully upwind since, owing
to the presence of the slope limiter, some down
stream influence is allowed throughout the sonic
line. However, we have no explanation regard
ing the fact that the glitch amplitude across
the sonic point does not locally decrease with the
same order of accuracy as the theoretical one.

To conclude on test case (2), one can observe
that although the numerical solution does ap
proach the exact solution when the grid resolution
is increased, gradients of computed quantities dra
matically failed to converge toward the correct
solution if an appropriate pressure correction
term is not applied, regardless of the high-order
extension. This might have some consequences
onto the computations of high-temperature gas
flows including active chemistry. In these cases,
gradients of the computed solution may trigger

M, 2.85

30

20

10

spurious chemical reactions because stiff source
terms are presen t.

3.3. Test Case (3)

In order to illustrate that the sonic point glitch
problem is not limited to one-dimensional config
uration, a two-dimensional inviscid unsteady
problem is now considered. This problem consists
of the diffraction of a traveling shock wave around
a diamond shape (see Fig. 10) which lateral sides
make an angle of 45 deg. with the horizontal axis,
while the tip angle equals 90 deg. The shock wave
Mach number M, is defined as M, = Us/as = 2.85
where Us is the shock wave speed and as is the
sound speed of the flowfield at rest. The computa
tional domain is shown on Figure 10 where only
every 4 points are represented for clarity. The
actual grid size is 200 x 200. Numerical results at
t = 16 obtained with AUSM and AUSMK respec
tively are presented on Figure II in terms of pres
sure contours with a magnified view around the
tip of the diamond to better appreciate the effect
of the present modification on the unphysical

o
o 10 20 30 40 50

FtGURE 10 Computational domain for the diffracting shock problem.
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FIGURE) I Pressure contours for the diffracting shock problem-Numerical results with AUSM scheme und the modified
A USM K scheme.

discontinuity within the expansion fan. Close ana
lysis reveals that the clustering of iso-pressure lines
occurs in the vicinity of the sonic line. Two
observations can be made from Figure I I: one is
thai the spurious clustering of contours has com
pletely vanished when using the KPC term. The
second observation is that the KPC term has not
significantly affected the solution elsewhere ex
cept for the shock thickness ahead of the triangle
obstacle which has been slightly broadened.

3.4. Test Case (4)

As a linal test case, the shock diffraction around a
90 dcg. corner is computed. The advantage of this
test case is that the grid is now Cartesian and

uniform with 400 grid points in each direction.
Therefore, there is no possible influence of the grid
skewness on the sonic line problem. This problem
consists of the diffraction of a traveling shock
wave of Mach number M" = 5.09 into a domain
where the gas is initially at rest. The computational
domain consists of a square which sides arc 1.0
grid unit-long and whose lower left-hand corner is
located at (-0. I, -0.5). The corner is located at the
origin of the coordinates system. Post-shock
boundary conditions arc imposed along the left
hand boundary and first order extrapolation of
the conservative variables is applied to the upper,
lower and right-hand boundaries. Wall boundary
conditions are implemented along the corner
sides. Figure 12 shows a side-by-side comparison
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0.0 0.2 0.4

(b)

0.6 0.8

FIG URE 12 Vertical Mach number contours for aM., = 5.09 corner expansion - Numerical results with A USM scheme (.1) and the

modified AUSMK scheme (b).

of numerical results obtained with AUSM (Fig.
12(a)) and A USM K (Fig. 12(b)). Results are
shown in terms of contours of vertically projected

Mach numbers M; defined as

(37)
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FIGURE 13 Kinetic pressure correction contours for a M.I = 5.09 corner expansion - AUSMK method.

where I' is the vertical component of the velocity
and a is the local sound speed value. This quantity
is useful here since it allows to understand that in
two-dimensional flows, the sonic line glitch occurs
whenever the normal projection of the Mach
number with respect to the interface reaches 1.0.
As observed in the previous test case, it appears
that the "sonic line" problem has completely
vanished when using the KPC term. Moreover,
in order to check that the added pressure term
becomes active only in restricted areas, a contour
of the vertical component of the pressure correc
tion 6.Fis shown on Figure 13. It is noticeable that
thc kinetic pressure correction essentially affects
the region where the isolines tend to focus. As ex
peered. because of its formal dependency on pres
sure levels, it also reaches significant values in the
shock profile but to a lower degree.

4. CONCLUSIONS

A simple and straightforward modification of
various numerical flux functions which removes
the sonic point glitch problem produced by almost

all current numerical algorithms has been pro
posed. By using an upwind infinitely differentiable
(UI D) flux function, it is demonstrated that the
flaw does not come from an insufficient smooth
ness of the flux functions but is dependent upon
some specific properties of kinetic schemes in
which the full upwinding of the numerical flux is
not enforced when the flow is locally supersonic.
One-dimensional and two-dimensional compres
sible Euler flow problems have been selected in
which the sonic point glitch problem is clearly
visible. In all encountered situations, the KPC
term has been found to cure the unphysical focus
ing of iso-lines in regions where the normal Mach
number is close to unity without affecting the
rest of the computed solution. The KPC term
can be easily added to any flux function, ranging
from every FVS method to all FDS and hybrid
methods such as A USM. The addition of the KPC
term only slightly increases the shock thickness in
some cases and simultaneously maintains the ex
act resolution of steady contact discontinuities
if this property was already satisfied by the
original scheme. As an example, A USM method,
for which the kinetic pressure correction comes
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naturally, results in an improved version called
AUSM K which proved to be very helpful for the
computation of unsteady compressible flow prob

lems where discontinuous initial conditions are
used and for all compressible flow problems in
which a geometrical singularity is present. Final
ly, this study has revealed that full upwinding

of the numerical nux functions may not be a
desirable property to construct future upwind
methods.
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