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The theoretical linear stability of a shock wave moving in an unlimited homogeneous
environment has been widely studied during the last fifty years. Important results
have been obtained by Dýakov (1954), Landau & Lifchitz (1959) and then by Swan
& Fowles (1975) where the fluctuating quantities are written as normal modes. More
recently, numerical studies on upwind finite difference schemes have shown some
instabilities in the case of the motion of an inviscid perfect gas in a rectangular channel.
The purpose of this paper is first to specify a mathematical formulation for the
eigenmodes and to exhibit a new mode which was not found by the previous stability
analysis of shock waves. Then, this mode is confirmed by numerical simulations which
may lead to a new understanding of the so-called carbuncle phenomenon.

1. Introduction
The stability of a shock wave is of considerable interest from both a fundamental

and a practical point of view. L. Landau made the first attempts to determine the
stability of shock waves. Small disturbances were introduced on both sides of a steady,
non-dissipative, plane shock wave. Landau & Lifchitz (1959) and Xu (1987) obtained
the stability criterion M0 > 1, M1 < 1 for small disturbances which are travelling in
the direction perpendicular to the shock wave (one-dimensional perturbations case).
This stability criterion is simply a consequence of the requirement of the second
law of thermodynamics. A fundamental paper dealing with the stability of a shock
wave containing two-dimensional small disturbances in an infinite homogeneous
environment with an arbitrary equation of state is that of Dýakov (1954). He found
that the shock is unstable when

j2 ∂V
∂P

∣∣∣∣
H

< −1 and j2 ∂V
∂P

∣∣∣∣
H

> 1 + 2M1, (1.1)

where j2 = (P 1−P 0)/(V0−V1) is the slope of the Rayleigh line, (dV/dP )H the slope
of the Hugoniot curve in the pressure–volume (P ,V) plane, M1 the downstream Mach
number and V = 1/ρ the mean specific volume. Swan & Fowles (1975) completed
the calculations of Dýakov by giving a physical interpretation of these instabilities. In
their analysis, the marginal case Im(kx) = 0 (no spatial amplification), Im(ω) = 0 (no
temporal amplification) was also considered. This case corresponds to pure acoustic,
entropic and vorticity waves which are neither amplified nor damped; it corresponds
in fact to a spontaneous emission of sound by a discontinuity. This emission had
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already been studied by Dýakov (1957), Kontorovitch (1957) and Fowles & Houwing
(1984). A new possible zone of instability has been obtained:
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H

< 1 + 2M1. (1.2)

However, for a perfect gas, it can be easily shown that

j2(dV/dP )H = −1/M2
0 .

Thus, for such a gas, the instability criteria (1.1) and (1.2) can never be satisfied; con-
sequently according to these criteria, in a perfect gas, a shock wave is unconditionally
stable.

More recently, the linear stability of a shock wave has been used in the framework
of self-sustained oscillations of shock waves in a transonic nozzle flow. Many experi-
ments carried out by Sajben, Bogar & Kroutil (1981) have highlighted some critical
configurations for which the shock in the nozzle exhibits well-defined oscillations.
The previous stability analyses have been generalized for this non-analytical case and
interesting results have been obtained in comparison with the experimental ones, see
Casalis & Robinet (1997). In this case also (with a perfect gas), the stability analysis
leads to the conclusion that the mean flow is stable; the mean shock along with the
downstream core region actually plays the role of a noise selecting system.

From the previous studies, it could be inferred that the shock wave is intrinsically
stable. This is not true. First, the analysis performed by Dýakov and Swan & Fowles
has some deficiencies: one of the two acoustic waves is discarded but the reason why
is not clear, and the existence of disturbances in the upstream region is not clearly
stated. Moreover none of the previous analysis took into account a strange mode.
The shock wave stability must be inspected again.

In a seemingly different scientific area, the so-called carbuncle phenomenon has
been observed and discussed in the CFD community for many years and so far has
been considered as a purely numerical instability by numerical scheme designers. One
of the main findings of this paper is that the carbuncle phenomenon may be the
numerical symptom of a more fundamental instability mechanism associated with a
shock wave in inviscid flow. The carbuncle phenomenon was first observed by Peery
& Imlay (1988) for blunt body computations using Roe’s method (Roe 1981). It
consists of a spurious steady-state solution obtained when computing a blunt-body
flow problem at supersonic speeds. The unphysical solution, although converged in
time, includes a non-symmetrical recirculation region ahead of the bow shock in
the vicinity of the stagnation line. On figure 1, a comparison between a physically
acceptable solution and a spurious solution including the carbuncle phenomenon is
presented to illustrate the importance of the flaw. The free-stream Mach number is
M∞ = 10 and the geometry is a two-dimensional cylinder whose axis is perpendicular
to the incoming flow. Both numerical solutions are obtained by solving the Euler
equations in time, starting from an initially uniform flow which corresponds to the
free-stream conditions. It is remarkable that both numerical solutions shown on
figure 1 are steady-state solutions, i.e. converged in time, obtained using exactly the
same geometry, the same grid and the same initial and boundary conditions. The
only difference between the two lies in the numerical method used to reach the final
solution. This is the reason why aerodynamicists have long attributed the carbuncle
phenomenon to a purely numerical mechanism with no connection to the physics.
For stable and consistent conservative methods, one might expect the numerical
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Figure 1. Temperature contours for a forward facing cylinder, M∞ = 10, 80× 160 computations:
(a) 10× 20 mesh, (b) HLLE method, (c) Roe’s scheme.

procedure to converge toward a unique physical solution according to Lax–Wendroff’s
theorem. However, one should remember that this convergence theorem applies to a
convergence in time and space and is not in contradiction with the occurrence of the
carbuncle phenomenon obtained on a grid of finite resolution. By using a grid series
with increasing spatial resolution, one should eventually obtain an unstable solution.

The carbuncle phenomenon was first closely studied from a numerical point of view
by Quirk (1994) who introduced a simplified test case, dubbed ‘Quirk’s test’, in which
a planar moving shock wave is computed as it is propagating down a duct. In Quirk’s
test case, the symmetry line is slightly perturbed from a uniform grid to initiate the
instability. Ever since, many authors, using other upwind schemes, have reported the
strong connection between the carbuncle phenomenon and Quirk’s test: all numerical
schemes which fail Quirk’s test also fail the blunt-body problem and vice versa. The
main interest of Quirk’s test is that it is not as strongly grid-dependent as in the
case of the carbuncle phenomenon and that it is easier to study mathematically. In
the following, only Quirk’s test will be considered but the strong connection between
both problems should be kept in mind when considering the relevance of the present
study for practical gas dynamics applications.

Amongst the different researchers who have studied the carbuncle phenomenon,
many have noticed that the instability is more likely to appear when the bow
shock is almost perfectly aligned to grid lines (Quick 1994) and when grid cells
are very elongated along a direction normal to the shock (Pandolfi & D’Ambrosio
1998). Consequently, some schemes may produce flawless solutions on one set of
grids but can fail on a different grid. In the carbuncle phenomenon, the shock
instability is caused by the shock strength itself and all problems vanish when a
shock-fitting technique is used as opposed to a shock-capturing technique (Pandolfi &
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D’Ambrosio 1998). Some schemes have a reputation for never producing the carbuncle
phenomenon. These are the upwind schemes which do not exactly solve the contact
waves, such as all the Flux Vector Splitting methods (van Leer 1982; Pullin 1980;
Steger & Warming 1981) or some upwind schemes based on the integral approach
such as the HLLE method (Harten, Lax & van Leer 1983). These schemes are suitable
for Euler problems but are much less attractive for Navier–Stokes applications since
they dramatically broaden boundary layers by adding an overwhelming amount of
artificial dissipation.

Among the upwind schemes which exactly resolve grid-aligned contact waves,
the vast majority, including an exact Riemann solver such as Godunov’s method
(Godunov 1959), produce the shock instability. Furthermore, when a very small
amount of extra numerical dissipation is added to contact waves, all instability
problems disappear but that seriously compromises the accuracy of the solution.

Hence, there exists a trade-off between an exact solver for contact waves, which
would allow the confident computation of boundary layers, and the addition of
a limited amount of dissipation to contact waves where intense shocks waves are
present. This trade-off is the basis of some solutions which have been proposed to
date, to remove the carbuncle phenomenon from computed solutions. Some cures
(Quirk 1994; Wada & Liou 1997) consist of flagging the cell interfaces, which are
located in the vicinity of the shock wave, according to an arbitrary test based for
instance on the pressure ratio across the cell interface. A dissipative scheme is used
to compute fluxes through flagged cell interfaces while a non-dissipative method
is used elsewhere. In this family of solutions, all methods differ in the flagging
procedure, some involving a tunable parameter, some taking into account the intrinsic
multidimensional mechanism associated with the shock instability.

Other ad hoc solutions are specified for a given family of schemes such as Roe’s
method (see Sanders, Morano & Druguet 1998 and Pandolfi & D’Ambrosia 1998), of
the HLL family (see Flandrin, Charrier & Dubroca 1994) and can be described as
built-in limiters which selectively add some extra numerical dissipation to damp out
spurious oscillations near shocks.

Liou’s (1997) analysis includes an interesting conjecture discussed in Xu (1998)
which states that a necessary condition for a numerical flux to develop the carbuncle
phenomenon is to have a mass flux which depends on the pressure. Liou makes
the observation that not only do all tested numerical fluxes which produce the
carbuncle phenomenon have a pressure dependence in the mass component, but that
all tested numerical fluxes which do not show the carbuncle phenomenon have mass
components which are independent of the pressure. Yet, Liou’s conjecture, if true,
would imply that one can design a numerical flux function which would not produce
the carbuncle phenomenon and still maintain the exact resolution of contact waves.
However, this conclusion would be in contradiction with Gressier’s theorem which
states that strict stability for Quirk’s problem and exact resolution of contact waves
are incompatible (Gressier & Moschetta 1998b). This theorem only applies to first
order schemes which only depend on two neighbouring states.

This brief review of the carbuncle phenomenon and its various possible solutions
has emphasized the practical importance of this bizarre instability. It has shown that
the carbuncle phenomenon has been long regarded as a purely numerical pathology
for which the CFD community would have to face a dilemma between the use
of upwind schemes which exactly solve contact waves but are prone to develop the
carbuncle phenomenon and the use, either local or global, of stable methods which add
too much numerical dissipation to the solution to be applied in shear flow regions.
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Figure 2. The geometry of the flow field considered.

Indeed, there is no doubt that there is a strong influence of the whole numerical
procedure (grid stretching, numerical flux functions, higher-order upgrading methods,
etc.) on the development of the carbuncle phenomenon. However, this study will
demonstrate that the numerical aspects are not the only indication of this phenomenon
and that a more fundamental stability mechanism is at stake. Furthermore, this paper
aims at highlighting new viewpoint for the CFD community with regards to upwind
schemes for the compressible Navier–Stokes equations. It has been common practice
for many years to focus on the capability of upwind schemes to exactly solve contact
waves and all existing solutions for the carbuncle phenomenon are based on the
modification of the linear path in the Riemann problem. This study will suggest that
the shock-capturing capability of upwind schemes must be revisited to include the
multidimensional interaction between contact waves and shock waves.

To summarize, the general objectives of this paper are first to demonstrate the exis-
tence of a new instability mode, and secondly to show that the carbuncle phenomenon
seems to have a strong link with this intrinsic instability mode.

The paper is divided into six parts. Following this introduction, the second part
is devoted to the theoretical analysis. The linear stability theory of a shock wave
is fully analysed, leading to the existence of a new unstable mode (the ‘strange
mode’). A brief description of Quirk’s original problem is given in § 3. The proposed
methodology is divided in two steps. First, the observed numerical instabilities are
shown to follow a linear instability threshold for a given shock-wave Mach number.
To the best of our knowledge, this result is not known or not established in the CFD
community. These points constitute the fourth part of the report. The second step
demonstrates that when a numerical instability occurs it is in agreement with the
‘strange mode’ highlighted in § 2. Therefore the key point is to check the theoretical
dispersion relation and the shape of the theoretical eigenfunction. This is achieved in
§ 5. A summary constitutes the last part of the report.

2. The linear stability of plane shock waves
2.1. Presentation of the problem and assumptions

The practical configuration corresponds to a planar shock wave propagating at a
constant speed Wc in a tube, where the mean flow upstream of the shock is at
rest. However, in order to simplify the theoretical approach, the Cartesian coordinates
system Oxyz is fixed on the shock: the x-coordinate coincides with the axis of channel,
and the undisturbed shock front is located at x = 0. Both upstream and downstream
flows are assumed to be constant and one-dimensional. By convention, the flow moves
from region x < 0 to region x > 0. The flow is considered as a perfect inviscid gas
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and the downstream quantities are denoted by subscript 1 and the upstream ones by
subscript 0. The geometry and notation are shown in figure 2.

2.2. Governing equations and boundary conditions

The general equations of motion for the instantaneous flow are the Euler equations,
the energy equation, written for the total enthalpy and the equation of state for a
perfect gas:

∂ρ

∂t
+ (U · ∇)ρ = 0, (2.1a)

ρ
∂U

∂t
+ ρ(U · ∇)U = −∇P , (2.1b)

ρ
∂hi

∂t
+ ρ(U · ∇)hi =

∂P

∂t
, (2.1c)

P = rρT , (2.1d)

hi = CpT + 1
2
U 2, (2.1e)

where U = (U,V )t represents both velocity components of the flow. In the channel
considered, three types of boundary conditions must be imposed. The first one
corresponds to the slip condition on the walls of the channel:

V |y=±h = 0. (2.2)

For each part of the flow, the second boundary condition is imposed at the shock,
which is considered as a discontinuity. The instantaneous shock jump relations
are the Rankine–Hugoniot relations. The last boundary condition is that there is
no fluctuation far from the shock. For all quantities q, the following condition is
imposed:

∀y, t ∂

∂t

(
lim
x→±∞ q(x, y, t)

)
= 0. (2.3)

2.3. Mathematical form of the perturbation

The present stability theory is based on the classical small-perturbations technique
where the instantaneous flow is the superposition of an imposed mean flow and
unknown fluctuations. All the physical quantities q (velocity, pressure, etc.) are de-
composed into a mean value and a fluctuating one:

q(x, y, t) = q̄ + qf(x, y, t). (2.4)

The mean value is assumed to be a constant. In fact, this implies that two decompo-
sitions are written: one upstream of the shock, the other one downstream. According
to the homogeneous form of the boundary conditions as well as the constant form of
the mean flow, the perturbation can be described as a normal mode with respect to
the different variables x, y, t:

q(x, y, t) = q̄ + q̃ei(kxx+kyy−ωt) + c.c., (2.5)

where q̃ is the amplitude of the fluctuations, k = (kx, ky)
t is a wavenumber vector

with kx ∈ C and ky ∈ R, c.c. denoting the complex conjugate. The circular frequency
ω is a complex number: its real part ωr represents the frequency of the perturbation
and its imaginary part ωi a temporal growth rate. The physical meaning of ωi is
in accordance with the classical definition of stability: for ωi > 0, the mean flow is
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unstable whereas for ωi < 0 the mean flow is stable. Usually, for a stability analysis,
either a temporal or a spatial theory is used, depending on the physical nature of the
phenomenon. The spatial theory is prefered when the phenomenon takes its origin at
a specific place, which corresponds to a complex wavenumber kx and a real circular
frequency ω (Laplace transform with respect to x and Fourier transform with respect
to t). The temporal theory is prefered when a temporal origin is defined. In this case,
the wavenumber kx is real and the pulsation ω complex. In our configuration, a
space origin in x (the shock) and a temporal origin (t = 0 corresponds to the starting
position of the shock on the wind tunnel in the computation which will be described
in § 3) may be introduced. This leads us to consider a space origin in x, in t, and thus
to make a Laplace transform in x and in t. In the present case, both kx and ω are
therefore complex numbers.

2.4. Linearized Euler equations

The decomposition (2.5) is introduced into equations (2.1a) to (2.1e). The resulting
equations are then simplified, first by taking into account that the mean quantities
satisfy the equations and secondly by assuming that the fluctuating quantities are
small, so that these equations can be linearized with respect to the disturbance.
Finally, the linearized Euler equations become a homogeneous algebraic system:

(M1 − kxM2)Z = 0, (2.6)

where kx is the eigenvalue of this problem, Z stands for (T̃ , ρ̃, ũ, ṽ) and M1 and M2

are (4× 4) matrices which depend on the mean flow and the coefficients ω and ky .
A non-zero solution in (2.6) exists if det (M1 − kxM2) = 0. This condition provides

four different wavenumbers:

k(1)
x =

−ωU − āΩ
ā2 −U2

, k(2)
x =

−ωU + āΩ

ā2 −U2
, k(3)

x = k(4)
x =

ω

U
, (2.7)

where Ω = (ω2 − k2
y(ā

2 −U2
))1/2, ā = (γrT )1/2.

The corresponding eigenvectors are

V 1,2 =

[
− (Uk(1,2)

x − ω)

Cp
, − ρ̄(Uk(1,2)

x − ω)

ā2
, k(1,2)

x , ky

]t
,

V 3 =

[
1,− ρ̄

T
, 0, 0

]t
, V 4 =

[
0, 0, 1,−k

(3)
x

ky

]t
.

 (2.8)

These eigenvectors can build a base if the determinant of the matrix Mv , whose
columns are the four eigenvectors V 1, V 2, V 3, V 4, is different from zero:

detMv 6= 0⇔ ω 6= ±ikyU and ω 6= ±ky(a2 −U2
)1/2. (2.9)

Physically, if one has ω = ±ikyU, then the second acoustic mode has the same phase

speed (wavenumber) as the vorticity mode. On the other hand, ω = ±ky(a2 −U2
)1/2

implies that the both acoustic modes coincide. However, this case is eliminated by the
boundary conditions. If the condition (2.9) holds, the general solution of (2.6) can be
written

qf =

(
4∑
j=1

CjV je
ik

(j)
x x

)
ei(kyy−ωt). (2.10)

The four coefficients Cj , j = 1, . . . , 4, are unknown integration constants which are
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respectively related to both acoustic waves (j = 1, 2), the entropy wave (j = 3) and
the vorticity wave (j = 4).

2.5. Introduction of the boundary conditions

2.5.1. Wall conditions

For the fluctuating quantities, the boundary conditions (2.2) become

vf |y=±h = 0. (2.11)

These relations impose that the wavenumber ky must have discrete values only if
ky = nπ/h for n ∈ Z.

2.5.2. Conditions at infinity

For the fluctuating quantities, boundary condition (2.3) becomes

lim
x→±∞ qf(x, y, t) = 0, ∀y, t. (2.12)

The amplitudes of the disturbed physical quantities should vanish at infinity. That
leads to studying the intrinsic stability of the shock itself and not an external
excitation. According to condition (2.12), the following inequalities must be satisfied:

Im
(
k(i)
x

)
> 0 (resp. < 0) for x > 0 (resp. x < 0) for i = 1, 2, 3, (2.13)

where Im(z) is the imaginary part of z. In the present analysis, when the shock wave
is temporally unstable (Im(ω) > 0), equations (2.4) lead to

Im
(
k(1)
x

)
< 0, Im

(
k(2)
x

)
> 0, Im

(
k(3)
x

)
> 0 for x > 0

Im
(
k(1)
x

)
> 0, Im

(
k(2)
x

)
> 0, Im

(
k(3)
x

)
> 0 for x < 0.

}
(2.14)

Thus, the constants C1, C2, C3, C4 of the upstream flow must be equal to zero.
Therefore no unstable fluctuation may exist in the upstream region. On the other
hand, downstream of the shock, only the constant C1 which corresponds to an acoustic
wave must be equal to zero. Finally, the fluctuating quantities are written as

Tf =

(
−C2

Uk(2)
x − ω
kyCp

eik
(2)
x x + C3e

ik
(3)
x x

)
E,

ρf =

(
−C2

ρ̄(Uk(2)
x − ω)

kyā2
eik

(2)
x x − ρ̄

T
C3e

ik
(3)
x x

)
E,

uf =

(
k(2)
x

ky
C2e

ik
(2)
x x + C4e

ik
(3)
x x

)
E,

vf =

(
C2e

ik
(2)
x x − ω

kyU
C4e

ik
(3)
x x

)
E,


(2.15)

with E = ei(kyy−ωt).
This analysis clearly shows the reason why Dýakov (1954) removed one of the

acoustic waves in his analysis. It also explains and justifies why Dýakov (1954) and
Swan & Fowles (1975) did not consider any fluctuation upstream of the shock.

2.5.3. Linearized Rankine–Hugoniot relations

The same small perturbation technique (2.5) is used for the shock equations. The
perturbed position of the shock is written as

x = f(y, t) = x̄c +Xei(kyy−ωt) + c.c., (2.16)
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where x̄c is the mean shock position (here x̄c = 0 due to the choice of the coordinate
system) and X represents the shock oscillation amplitude. The latter is assumed to be
a small (complex) quantity. The expressions for the normal vector n and the tangential
vector τ can be deduced from equation (2.16). At first order:

n = (1,−∂f/∂y)t = (1,−ikyXE)t

τ = (∂f/∂y, 1)t = (ikyXE, 1)t.

}
(2.17)

The Rankine–Hugoniot relations are then linearized by performing a first-order
Taylor expansion with respect to the fluctuating quantities. For example, q1 is the
value of the quantity q, which is itself the sum of the mean and the fluctuating
quantities. Both are evaluated just downstream of the perturbed shock position. q1 is
expressed as

q1(x̄c +XE, y, t) = q̄1(x̄c +XE) + q1f (x̄c +XE, y, t). (2.18)

As the coordinate system is such that x̄c = 0, q1 and q0 are expanded into

qi(XE, y, t) = q̄i(0) + q̆iE, for i = 0, 1, (2.19)

where q̆ is the amplitude of the fluctuation at the mean shock position. After some
calculation, the linearized shock relations lead to an algebraic system of equations:

A1Z1(0) = ξX + A0Z0(0), (2.20)

where Z i(0) (for i = 0, 1) is the fluctuating-amplitude vector calculated at the mean
shock position. ξ is a complex vector and A0, A1 are fourth-order complex matrices.
As explained above, the stability analysis of the Euler equations showed that no
intrinsic fluctuation can exist upstream of the shock (Z0 ≡ 0). Thus, for a one-
dimensional constant flow on both sides of the shock, the general linearized equations
of Rankine–Hugoniot (2.20) can be simplified into

U1ρf + ρ̄1uf = iω(ρ̄0 − ρ̄1)XE,

(rT 1 +U
2

1)ρf + rρ̄1Tf + 2ρ̄1U1uf = 0,

CpTf +U1uf = iω(U0 −U1)XE,

vf = iky(U0 −U1)XE.

 (2.21)

2.6. Eigenvalue problem

Substituting the expressions for Tf, ρf, uf, vf (2.15) at x = 0 into the shock relations
(2.21) leads to an algebraic system:

Gχ = 0, (2.22)

where χ = (C2, C3, C4, X)t is the unknown vector and G is a fourth-order matrix,
which depends on ω, ky and the mean flow values:

G =



ρ1

ky

(
(1−M2

1) k
(2)
x +

ωM1

a1

)
ρ1U1

T 1

ρ1 −iω [ρ]

ρ1

ky
(2U1k

(2)
x − (1 +M

2

1)(U1k
(2)
x − ω))

ρ1U
2

1

T 1

2ρ1U1 0

ω

ky
Cp U1 −iω[U]

1 0 − ω

kyU1

−iky[U]


. (2.23)
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A non-zero solution can exist if the rank of this system of four relations is less than
four. Hence, that the determinant must be zero: detG = 0. This condition yields a
dispersion relation.

After tedious calculations, this dispersion relation has been analytically obtained
as

2
U1

U0

ω

(
k2
y +

ω2

U
2

1

)
−
(

ω2

U1U0

+ k2
y

)(
ω −U1k

(2)
x

)(M2

0 − 1

M
2

0

)
= 0. (2.24)

One can immediately note that this relation is identical to the one obtained by Dýakov
and by Fowles & Houwing, in the case of a perfect gas.

2.7. Explicit resolution of the dispersion equation

Let us solve (2.24) in more detail. Substituting k(2)
x into the dispersion relation (2.24)

leads to an algebraic equation in ω. Then, defining Θ = ω/(a1ky), the dispersion
relation (2.24) becomes

2
U1

U0

(1−M2

1)Θ(Θ2 +M
2

1)−
(
U1

U0

Θ2 +M
2

1

)
(Θ −M1(Θ

2 +M
2

1 − 1)1/2)φ = 0, (2.25)

with φ = (M
2

0 − 1)/M
2

0.After some calculations, the dispersion relation (2.25) becomes

(Θ2 +M
2

1)(f1Θ
4 + f2Θ

2 + f3) = 0, (2.26)

with

f1 =
U2

1

U2
0

(φ2 − 4φ+ 4(1−M2

1)),

f2 = 2
U1

U0

(
φ2 − 2φ+ 2

U1

U0

(1−M2

1)

)
,

f3 = (M
2

1φ)2.

The dispersion relation (2.26) has a solution given by Θ = ±iM1, where only the
positive root is the solution of the dispersion relation (2.25). It corresponds to

ωr = 0 and ωi = kyU1. (2.27)

This mode corresponds to a value of ω which has been excluded, see (2.9), and a
special analysis is necessary, see § 2.8. The other roots of (2.26) lead to real values
of ω.

However, although these roots are mathematical solutions of (2.25), they are not
physically acceptable. Indeed, the conditions (2.14) are not satisfied. This result is
in agreement with those of Kontorovitch (1957). He showed that the existence of
the marginal mode, corresponding to real and undamped sound waves and entropic
waves moving away from a discontinuity, i.e. to the spontaneous emission of sound
by the shock wave, is possible for real gas only.

2.8. The unstable mode

The dispersion equation (2.24) has been obtained for all complex values of ω, with
some exceptions, (2.9), for which the form of the disturbance (2.10) is no longer
valid. Surprisingly, this is the case for the mode considered (2.27). To sum up, a
stability analysis has been performed assuming that the four eigenvectors in (2.8) are
linearly independent (four values of ω are thereby eliminated). A unique mode has



Shock wave instability and the carbuncle phenomenon 247

been obtained, but it corresponds to one of the four excluded values. The previous
analysis must be therefore performed again from the beginning (§ 2.4) by writing the
disturbance in an adapted base. In principle, this must be done for each of the four
eliminated values. In fact only ω = iU1ky leads to a non-zero solution compatible
with the boundary conditions.

For ω = ikyU1, the eigenvalues of (2.6) are given by

k(1)
x = −iky

1 +M
2

1

1−M2

1

and k(2)
x = k(3)

x = k(4)
x = iky with ky ∈ N. (2.28)

We will now focus on this mode alone. The eigenspace Ek(1)
x

= Ker
(
M1 − k(1)

x M2

)
associated with the eigenvalue k(1)

x is of dimension 1 and is generated by

V̂ 1 =

(
1,

ρ1

(γ − 1)T 1

,− a2
1 +U

2

1

2(γ − 1)U1T 1

,−i
a2

1 −U2

1

2(γ − 1)U1T 1

)t

.

The eigenspace Ek(2)
x

= Ker
(
M1 − k(2)

x M2

)3
associated with the eigenvalue k(2)

x is of

dimension 2 only, and is hence generated by two vectors V̂ 2, V̂ 3. Thus there is no
base in which the matrix M−1

2 M1 is diagonal. The last vector V̂ 4 is sought such that
the matrix M−1

2 M1 is in the Jordan form, i.e.(
M1 − k(2)

x M2

)
V̂ 4 = M2V̂ 3.

Finally

V̂ 2 =

(
1,− ρ1

T 1

, 0, 0

)t
, V̂ 3 = (0, 0, 1,−i)t , V̂ 4 =

(
iU1

rky
, 0,

1

ky
,−1 + i

ky

)t
.

In this base, the matrix M−1
2 M1 is given by

J =


−iky

1 +M
2

1

1−M2

1

0 0 0

0 iky 0 0
0 0 iky 1
0 0 0 iky

 . (2.29)

The primitive fluctuating quantities, (T̃ , ρ̃, ũ, ṽ) can be found by

Z = PeixJĈ ,

where P is the base transformation matrix, the columns of which are the eigenvectors
of matrix M−1

2 M1 and Ĉ is the vector (Ĉ1, Ĉ2, Ĉ3, Ĉ4)
t formed with the integration

constants. Ultimately, the general solution of (2.6) for the mode ω = ikyU1 is

qf = [Ĉ1V̂ 1e
ik

(1)
x x + Ĉ2V̂ 2e

ik
(2)
x x + (Ĉ3 + ixĈ4)V̂ 3e

ik
(3)
x x + Ĉ4V̂ 4e

ik
(3)
x x]ei(kyy−ωt). (2.30)

For the same reasons as before, Ĉ1 is equal to zero. Expression (2.30) where x = 0 is
then introduced into the linearized Rankine–Hugoniot relations (2.21). The following
algebraic system is obtained:

Ĝχ̂ = 0, (2.31)

where χ̂ = (Ĉ2, Ĉ3, Ĉ4, X)t is the unknown vector and Ĝ is a fourth-order matrix,
which depends on ky and on the mean flow values. The mode ω = ikyU1 only exists
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if the determinant of Ĝ is equal to zero. It can be easily shown that the determinant
of Ĝ is only a function of the upstream Mach number M0 and γ:

det Ĝ ∝ (γ2 − 3γ)M
4

0 + (γ2 + 6γ − 3)M
2

0 + γ + 5. (2.32)

A first consequence of this result is that the wavenumber ky does not act upon the
condition of instability. The roots of this biquadratric equation are

M
(1)

0 = i(γ)−1/2, M
(2)

0 = −i(γ)−1/2, M
(3)

0 =

(
5 + γ

3− γ
)1/2

, M
(4)

0 = −
(

5 + γ

3− γ
)1/2

.

(2.33)
The only acceptable solution is:

M0c =

(
5 + γ

3− γ
)1/2

. (2.34)

This instability is very surprising because it exists only for one value of the upstream
Mach number; for example: M0c = 2 for γ = 1.4. Using the critical upstream Mach
number M0c as a function of γ, one can calculate the associated critical downstream
Mach number M1c with the Rankine–Hugoniot relations:

M
2

1 =
2 + (γ − 1)M

2

0c

2γM
2

0c
− (γ − 1)

=
1

3
,

which shows a surprising independence an γ.
To determine the shape of the eigenfunctions, the coefficients Ĉj are calculated

according to the amplitude of the shock displacement X. The resolution of the system
Ĝχ̂ = 0 gives

Ĉ2 =
U1[U]

Cp

2(2γ − 1)

(γ − 1)((2γ − 1)M
2

1 + 3)
kyX,

Ĉ3 = −[U]
2(i + 1)

((2γ − 1)M
2

1 + 3)
kyX,

Ĉ4 =
2ik2

y[U]

((2γ − 1)M
2

1 + 3)
X.


(2.35)

The general solution (2.30) becomes

pf = κpe
−ky(x−U1t)eikyy,

uf = κu
(
1 + kyx

)
e−ky(x−U1t)eikyy,

vf = κvkyxe−ky(x−U1t)eikyy,

 (2.36)

with: κp = −κ1ρ1U1, κu = −κ1, κv = iκ1 and κ1 = 2[U]kyX/[(2γ − 1)M
2

1 + 3].
It is remarkable that the transverse fluctuation speed (and only this quantity) is

continuous through the shock. To calculate these eigenfunctions, non-dimensional
quantities have been defined:

x∗ =
x

h
, t∗ =

a0t

h
and v∗f =

vf

a0

, u∗f =
uf

a0

, p∗f =
pf

ρ0a
2
0

.

Figure 3 shows the evolution of the amplitude of u∗f , v∗f and p∗f for n = 1 (ky = nπ/h)
and the same X.
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Figure 3. Eigenfunctions of the mode ω = ikyU1.

This stability analysis of a shock wave has highlighted an unknown unstable
mode, which exists for one, and only one, value of the upstream Mach number, and
furthermore characterizes the above eigenfunctions. The existence of this intrinsic
instability in the continuous Euler equations has significant consequences for the
numerical resolution of these equations. The following sections aim to show that the
intrinsic instability of the continuous equations allows a different explanation of the
phenomenon, up until now regarded as numerical pathology: Quirk’s problem.

3. The computational instability
First, a general description of the numerical method is given. Some features of

the various schemes used in this study are described. Then, a review of the available
knowledge concerning the carbuncle phenomenon and the odd–even decoupling is
detailed.

3.1. Numerical background

Let us consider the Euler equations in the conservative form

∂U
∂t

+ ∇ ·H = 0, (3.1)

where U is the vector of conservative variables (ρ, ρU , ρe)t where ρe denotes the
total energy and H the tensor of convective terms (ρU , ρU · U t + P , ρUhi)

t. Partial
differential Euler equations are written in integral form, by integrating over a volume.
According to the finite volume method, cells are∫

Ωi,j

∂U
∂t

dΩ +

∮
∂Ωi,j

H · ndS = 0. (3.2)

If Ui,j denotes the average value of U in Ωi,j , conservative explicit methods on a
structured mesh can be expressed in the following form:

Un+1
i,j −Un

i,j +
∆t

Ωi,j

([
SF?n

]
i+1/2,j

− [SF?n ]i−1/2,j
+
[
SF?n

]
i,j+1/2

− [SF?n ]i,j−1/2

)
= 0, (3.3)
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where Si+1/2,j is a measure of the interface between Ωi,j and Ωi+1,j and (F?n )i+1/2,j the
numerical flux evaluated on the same interface with the associated normal vector
ni+1/2,j . The numerical flux is a function of two states and completely depends on the
scheme used. In first-order schemes, both these states are the average states of cells
separated by the interface considered. The numerical flux must satisfy the consistency
condition

F?n (U,U) =H(U) · n =

 ρun
ρUun + pn
ρunhi

 , (3.4)

where un = U · n.
Several schemes are used in this study. Most of them share the same origin: the

numerical flux involves a more or less sophisticated solution of the local Riemann
problem. This includes the classical Roe (1981) and Osher & Chakravarthy (1983)
schemes and the more recent HLLC scheme first proposed by Toro, Spruce &
Speares (1994) and modified by Batten et al. (1997). All of them share the property of
exact resolution of a stationary contact discontinuity. In other words, the numerical
dissipation vanishes transversely to a contact discontinuity. In order to investigate
numerical dependences, another scheme which does not share this property is used in
the numerical study: the EFM kinetic scheme has been proposed by Pullin (1980) and
yields both robustness and a great deal of numerical dissipation on contact waves.
It belongs to the class of flux vector splitting schemes and generates similar results
to those obtained by van Leer (1982) scheme or the two-wave variants of the HLL
family, see Harten et al. (1983) and Einfeldt et al. (1991).

All these methods are originally put forward with first-order accuracy. Some higher-
order computations are presented using the classical MUSCL extension of van Leer
(1979).

Note that the time step is computed from a classical CFL-like condition. It is
checked that it is ruled by the longitudinal flow and does not depend on the crosswise
size of cells for all computations presented.

3.2. Description of Quirk’s original problem

This test has been proposed by Quirk (1994). It consists of an unsteady computation
of the propagation of a planar shock in a duct, where the flow is initially at
rest. Although initial conditions and the expected solution are one-dimensional, the
computation involves the two-dimensional Euler equations on a two-dimensional
structured grid. The physical problem only depends on the shock-wave Mach number
Ms. It is defined as us/a0 where us is the speed of the travelling shock wave and a0 is
the speed of sound of the upstream flow, i.e. the flow at rest. Ms was set to 6 in the
original test case.

Although the computation is unsteady, one can include the basis of the theoretical
analysis by choosing a shock-related coordinate system. The upstream Mach number
M0 is then the shock-wave Mach number Ms.

The computational mesh is initially a uniform Cartesian grid of 800 × 20 cells
for a 40 × 1 length unit duct. However, the centreline of the mesh has been slightly
perturbed as

yi,jmid = yjmid + (−1)i × 10−6. (3.5)

A sketch of the grid where the perturbation of the centreline has been exaggerated to
make it visible is presented in figure 4. Initial conditions are for a flow at rest. As a
left-hand boundary condition, the flow is set to the right inflow state computed from
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Figure 4. Sketch of the grid in Quirk’s problem.
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Figure 5. Temporal evolution of the unstable shock wave in Quirk’s problem: density contours.

the Rankine–Hugoniot equations so that the shock propagates with the right speed.
The right-hand boundary condition is a simple extrapolation technique. The upper
and lower bounds are treated as symmetry lines to simulate the wall condition for
inviscid flows.

This test is known to result in an unexpected disturbance of the shock shape.
The expected solution is a discrete representation of a sharp shock with a constant
velocity, which is one obvious solution of the continuous equations. Quirk reported
this insidious failing and linked it to high-resolution computations of planar shock
waves. This instability has been named odd–even decoupling and is the unexpected
growth of perturbations along planar shock which are aligned with the mesh.

A classical example of this instability follows: in figure 5, the time evolution
is represented through six successive snapshots which have been superimposed on
the same duct. As the shock propagates downstream, perturbations appear at the
intersection of the shock and the centreline. They grow in the transverse direction
and dramatically perturb the shock shape the velocity of which increases slightly until
it completely breaks down.

In the same paper, Quirk (1994) proposed an analysis of Roe’s scheme and the
HLLE Einfeldt et al. (1991) scheme. A more detailed analysis has been proposed by
Gressier & Moschetta (1998a) and links this pathological behaviour to the marginal
or neutral stability of the method in a simplified form of the discrete conservation
equation (3.3). The same results have been confirmed for many schemes by Pandolfi
& D’Ambrosia (1998). Later, all schemes which yield vanishing numerical dissipation
on contact waves were proved to be neutrally stable and then exposed to highlight
the instability (see Gressier & Moschetta 1999).

However, in the following section, numerical computations are performed in order
to demonstrate the connection with the analysis presented in § 2. The numerical
schemes will be analysed not for their discrete stability properties but for their
capability of reproducing the right dynamics of the continuous equations which have
been discretized.
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Figure 6. Instability threshold for two values of the mesh perturbation
(Roe’s scheme, CFL = 0.45).

4. Numerical results and dependences
The aim of this section is to compare the shock instability presented by the

theoretical analysis (§ 2) with the numerical disturbance of the shock profile observed
in Quirk’s problem. Although the time evolution observed in figure 5 is numerical
evidence of this instability, that behaviour appears in the nonlinear regime and cannot
be used to study the linear stability of the flow.

Perturbations must be extracted when their magnitudes are still small enough com-
pared to the average flow quantities. But perturbations around the shock are extremely
difficult to extract: the computation is not stationary and the shock is thick. Since
the variations in the shock thickness are not known, one cannot extract perturbations
without introducing errors which could be larger than the perturbations themselves.

On the other hand, since the propagation of a stable shock is one-dimensional,
the transverse velocity is expected to remain zero. Then, every non-zero value of
the transverse velocity directly stands for the perturbation of this quantity. In the
following, the state of the perturbed flow has therefore been represented by the
maximum value of the transverse velocity in the flow.

The instability of the shock is produced using Quirk’s problem with different
shock-wave Mach numbers Ms.

4.1. Instability threshold

The classical test case is performed with a shock-wave Mach number of 6. When com-
puting the same problem with different shock-wave Mach numbers Ms, a threshold
is found: the shock instability does not appear when Ms is below a threshold Mc

s .
In figure 6, the magnitude of the transverse velocity when the shock arrives near
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Figure 7. Instability threshold dependence on the CFL number (Roe’s scheme).

the end of the duct is plotted versus Ms, the shock-wave Mach number. When Ms is
below approximately 2.3, perturbations are about the mesh perturbation magnitude
(10−6 or 10−4) at the end of the computation. This magnitude can be observed even for
very dissipative schemes which do not make the shock instability appear: it is just a
consequence of a mesh perturbation as a forced mode. Indeed, the mesh perturbation
produces small perturbations of the physical quantities but they remain at a low level
and are restricted to around the centreline. In this case, the instability is not expected
to appear even for longer ducts. On the other hand, when the shock Mach number
is above the threshold, at the end of the duct, perturbations have been amplified and
are expected to carry on growing. Using the same numerical choices, the threshold
is about Mc

s = 2.35 and is thus almost independent of the mesh perturbation. This
result confirms a linear instability mechanism for which the initial amplitudes do not
play any role.

However, the numerical threshold is somewhat larger than the theoretical one,
M0c = 2. Moreover, it should also be pointed out that the theory predicts an unstable
mode only for this singular Mach number while numerical computations demonstrate
a threshold. However, to the authors’ knowledge, this intrinsic stability threshold has
never been mentioned.

Similar curves are plotted in figure 7 using different CFL numbers. The thresh-
old Mc

s is shown to be dependent on the CFL number. This is one of the direct
dependences on numerical parameters, which obviously cannot be predicted by the
theoretical analysis of continuous equations. However, all the numerical thresholds
Mc

s are greater than the theoretical one M0c , given by (2.34). Furthermore, the higher
the CFL number, the closer to M0c the numerical threshold Mc

s is. For numerical
stability reasons, one cannot use CFL numbers higher than 0.7 in order to avoid
numerical oscillations in the flow.
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Figure 8. Relative independence of instability threshold of schemes (CFL = 0.7).

This dependence is not surprising since the CFL number is intrinsically involved
in the numerical dissipation of a given scheme.

Some remarkable results are presented in figure 8: three of the schemes presented
yield the same numerical threshold Mc

s . These three schemes are Godunov-type
methods, which yield the exact resolution of contact discontinuities and are known
to make the odd–even decoupling appear, see Gressier & Moschetta (1998b) and
Pandolfi & D’Ambrosio (1998). The linear amplification is the same for the three
schemes. Only the nonlinear response differs.

As expected, the EFM kinetic scheme is very robust and does not make the
instability appear. Only the forced response can be observed: it does not depend on
the shock Mach number Ms and remains at the same level (3× 10−7).

These results tend to raise an intrinsic instability in numerical schemes if they
are not too dissipative. In other words, the better a scheme is able to solve Euler
equations, the more it could suffer from the shock instability.

The final results (figure 9) are aimed at proving that second-order methods do not
avoid this instability, see Gressier & Moschetta (1999) for additional results. Moreover,
using the same CFL number, which must be low in second-order computations, the
shock instability is shown to appear more easily with the second-order scheme since
the threshold has decreased. The second-order computation has been performed with
a classical MUSCL extension of Roe’s scheme (van Leer 1979).

4.2. Temporal amplification

In this section, the aim is to determine a numerical amplification factor for comparison
with the theoretical one ωi = kyU1. This test is severe because high numerical
dependences are expected. Nevertheless, the aim is to show similar behaviours of
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Figure 9. Instability threshold for first- and second-order schemes (CFL = 0.2).
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Figure 10. Temporal amplification dependence on the CFL number (Roe’s scheme, Ms = 6).
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Figure 11. Temporal amplification dependence on the number of cells
(Roe’s scheme, Ms = 6, CFL = 0.7).

Ny 10 20 40

ωi 6.34 10.8 16.6

Table 1. Temporal amplification coefficients.

numerical and theoretical amplification factors. Several computations are performed.
The maximum transverse velocity perturbation is plotted at successive time intervals.

Figure 10 shows a marked dependence on the CFL number. This dependence
prevents any attempt at precisely recovering the theoretical one. But, as expected,
points are more or less aligned for small amplitudes. This indicates, therefore, an
exponential growth.

The transverse wavenumber ky is inversely proportional to the wavelength. Hence,
the theory predicts that the smallest wavelengths are the most amplified. The minimum
wavelength is the length of two cells. It is verified that oscillations are sawtooth-like.
Since ωi is proportional to ky , it is predicted that the amplification factor should be
related to the number of cells Ny (for a fixed width of the duct). Using successive
levels of perturbations, one can compute numerical amplifications factors. Points are
expected to be aligned in order to represent an exponential growth. Values between
10−5 and 10−2 are used to compute the slope in order to avoid the influence of forced
responses for low perturbation magnitudes and of the nonlinear response for high
perturbation magnitudes.

Figure 11 presents three computations with successively halved sizes of crosswise
computing cells. They have been performed using the same shock-wave Mach number
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Ms and the same CFL-like condition, i.e. the same time step. While the amplification
factors can be expected to double with successive refinement, the computational
factors are underestimated and the linear dependence on Ny is not proved. However,
the expected trend of the evolution of the amplification factors is clearly confirmed.

5. Theoretical and numerical agreements
5.1. Space–time behaviour

The aim of this section is to prove that the numerical instability originates in the shock
instability detailed in the first section. In the linear stability context, the space–time
behaviour of the instability is ruled by the dispersion equation. It links the temporal
amplification ω to the spatial behaviour, which is represented by kx and ky . Hence,
the following relations strongly characterize the instability:

ω = ikyU1 and kx = iky. (5.1)

In order to check these relations, the spatial behaviour of the fluctuating quantities in
the numerical computations are compared with theoretical predictions. The method
used is to measure the temporal amplification of the perturbations from the numerical
results. Then, one can derive the wavenumbers kx and ky and compare the spatial
behaviour of the fluctuating quantities in the numerical computation to the behaviour
which is theoretically predicted from the amplification factor via the dispersion
relation.

Applying this general framework to a given computation, which has a shock-wave
Mach number of 6 and a CFL number of 0.7, the eigenfunctions will be compared
to the theoretical predictions at the time t = 1 s. Only the evolution of the fluctuating
transverse velocity is presented: extracting the fluctuations of the other quantities
from the instantaneous field generates errors that are too significant to be properly
compared. Moreover, comparisons are performed far away from the centreline where
the mesh perturbation is likely to perturb the accuracy of the comparisons.

Figure 12 shows the temporal evolution of the maximum value of the transversal
velocity in the computation. The comparison should be performed in the linear zone:
it must not have too low an amplitude, otherwise it would be disturbed by the
forced regime which is caused by the mesh perturbation (3 × 10−7), and have small
enough amplitude to avoid saturation where nonlinear effects cannot be neglected
any more (see figure 12). Between these two zones, one can observe the exponential
growth of the perturbation: this corresponds to the linear zone. The evolution of
the slope of the transverse fluctuation velocity in this zone allows evaluation of the
numerical amplification factor ωi = 10.8. Note that this amplification factor does
not depend on the magnitude of the mesh perturbation (see figure 12). Using the
temporal amplification factor ωi, one can write the spatial evolution of the fluctuating
transverse velocity eigenfunction as

v∗f = Re
[
Ax∗eikxx

∗] Dispersion relation⇒ v∗f = Re
[
Ax∗e−(ωi/U1)x∗],

where A is an arbitrary complex amplitude.
Figure 13 shows the comparison between the numerical spatial evolution and

the prediction through the dispersion relation. Several evolutions have been plotted
using different heights y. Since they are extracted from the same computation, the
amplification factor ωi is the same. The four spatial evolutions are then predicted to
be proportional to each other. Since the theoretical perturbation is defined within a
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Figure 12. Temporal amplification (Ny = 20, CFL = 0.7).
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Figure 14. Instability threshold dependence on γ (Roe’s scheme, CFL = 0.7).

constant of proportionality, the amplitude A of the theoretical eigenfunction has been
tuned to fit the numerical evolution in x; this amplitude has been determined for each
y independently. Results in figure 13 show good agreement for each section in the
channel and so establish the strong link between the theoretical dispersion relation
and the computation.

The principal features of the transverse fluctuation velocity are retrieved. The
fluctuating velocity is continuous across the shock (see (2.36)), it yields a maximum
before decreasing far from the shock and the location of its maximum is correct.
Theoretically, the location of this maximum, xm, is proportional to U1/ωi.

The validation of the theoretical dispersion relation which strongly features the
instability proves that both numerical and theoretical phenomena are related. Indeed,
this numerical pathology would be an intrinsic instability of the continuous Euler
equations.

Even if absolute values cannot be predicted by the theory, mainly because of
unavoidable numerical dependences, the link between both temporal and spatial
behaviour has been confirmed.

5.2. Gamma dependence

Several computations have been performed using Roe’s scheme, two different CFL
numbers (0.45 and 0.7), a large range of shock-wave Mach numbers Ms, and several
values of the ratio of specific heats γ. Some of these results are presented in figure 14.

Then, one can determine some numerical thresholds, which are plotted in figure
15(a) and which are compared to the theoretical prediction. There is striking agreement
between theoretical and numerical results in the physical range of 1.0 to 2.0 for γ. For
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Figure 15. (a) Upstream and (b) downstream instability threshold versus γ (Roe’s scheme).

larger values of γ, the numerical thresholds are more sensitive to the CFL numbers
used and do not follow the theoretical value as closely.

However, the slight discrepancy observed in the vicinity of γ = 3 has no bad
consequence for practical gas dynamics applications. It should be noticed that γ = 3
corresponds to a pure one-dimensional gas even though the instability studied is
two-dimensional. Furthermore, it was expected that the stiff asymptotic behaviour in
the vicinity of γ = 3 would be difficult to reproduce, see (2.34). The corresponding
downstream Mach numbers M1c have been plotted in figure 15(b) and are compared

to the theoretical prediction which is 1/
√

3. In the vicinity of γ = 3, the downstream
Mach number is more important to retrieve since the upstream Mach number increase
to infinite values and the downstream flow becomes insensitive to the upstream Mach
number. Since the numerical thresholds M0c are minimum values, M1c are maximum
values. There is a striking agreement between theoretical and numerical results.

Initially, the existence of a threshold for this numerical behaviour was not known.
Moreover, the dependence on γ shows a remarkable agreement with the theoretical
prediction of the shock stability analysis. This tends to prove that the two phenomena
are closely related.

6. Conclusions
The analytical methodology of the present work is based on three successive steps:

identification of a ‘strange mode’ of the continuous inviscid equations; proof that
the numerical carbuncle phenomenon is triggered by an instability mechanism; and
demonstration that the two instabilities coincide. Let us summarize in turn the major
points of each step.

1. General solutions of linearized perturbed Euler equations are obtained upstream
and downstream of the shock respectively. This study has allowed clarification of the
mathematical formalism used by Dýakov (1954) and Swan & Fowles (1975). In each
zone, the disturbance is written as the sum of four waves, the magnitudes of which are
unknown constants. These constants are determined by boundary conditions. These
are the linearized Rankine–Hugoniot relations, the slip conditions at the sidewalls
and the damping condition for fluctuation far away from the shock. Considering a
temporally amplified mode, it is proved that all four unknown constants which feature
in the perturbations upstream of the shock should be zero, i.e. there is no amplified
mode upstream. Downstream of the shock, one of two acoustic-like perturbations
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should vanish (i.e. the corresponding constant should be zero). Finally, the remaining
three unknown constants and an additional one which represents the amplitude of
the shock displacement, are determined by the shock relations. A dispersion relation
is then obtained. After analysing this dispersion relation, one ‘curious’ unstable mode
is shown to satisfy it, although this has never been found by previous analysis. This
mode is curious because it does not have the classical form of a normal mode, it
comes in fact from a Jordan decomposition of the stability matrix. Moreover, this
instability is very surprising because it only exists for one value of the upstream Mach
number, M0c. With the exception of this value this instability does not exist. From
a theoretical point of view, the linear stability of a shock wave in a constant and
uniform mean flow is now completely solved.

2. The first consequence of the present study affects the field of numerical calcu-
lation of shock waves. For many years, a pathological phenomenon, the so-called
carbuncle phenomenon, has been encountered when computing shock waves. In the
CFD community, this behaviour has been usually considered as a purely numerical
instability. The carbuncle phenomenon is one example of the numerous situations in
which multiple solutions to the Euler equations can be obtained starting from the
same initial conditions (Ivanov, Gimelshein & Beylich 1995; Li & Ben-Dor 1997).
Even the presence of viscosity does not guarantee the uniqueness of a solution to
the Navier–Stokes equation at high Reynolds numbers (Hafez & Guo 1999). In this
present paper, a numerical study of the pathology has been performed through a
simplified test case, namely Quirk’s problem which is likely to be represented by the
following analysis. The development of the instability has been proven to be ruled
by a linear instability mechanism. Indeed, the temporal growth of the perturbation
fits an exponential curve and does not depend on the magnitude of the mesh per-
turbation. An intrinsic numerical threshold has been determined. It yields a relative
independence from the numerical schemes used. This result is totally new, although
it was known that the carbuncle phenomenon would be more likely to appear when
the Mach number is high (Quirk 1994).

3. Concerning the link between the numerical simulations and the ‘curious mode’ the
following results have been obtained. First, the numerical computations, if unstable,
exhibit an instability thresholdM

c

s in terms of the shock-wave Mach numberMs which
is independent of the forced perturbation. The value of M

c

s obtained is somewhat
larger than the theoretical critical value M0c. Moreover, in the computations, M

c

s

appears as a threshold whereas M0c is a theoretically unique value. These aspects
may be due to unavoidable numerical dissipation and to shock thickness. It can be
guessed that the instability occurs when the numerical local Mach number crosses
the theoretical M0c in the shock thickness. We can propose the following explanation.
The computed shock has a small but non-zero thickness (there are typically 3 or 4
cells in x in the shock thickness). When the upstream Mach number M0 is higher than
the critical Mach number M0c , there necessarily exists a cell in the shock thickness
for which the Mach number that enters is higher than the Mach number M0c and
that leaving is lower. One can think that in this cell, the local system to solve is
more or less singular; in any case the determinant of the linearized system (for the
continuous case) passes through zero. It is the crossing of this singular value which
is likely to start the mechanism of instability. Since the numerical shock is not a pure
discontinuity, unlike the case of the continuous Euler equations, the critical Mach
number appears for higher value than the mechanism of instability. Additional effort
must be made in terms of discrete dynamics in order to understand precisely the flow
structure in the 3 or 4 cells present in the shock thickness. The key result however is



262 J.-Ch. Robinet, J. Gressier, G. Casalis and J.-M. Moschetta

that this numerical instability is already present in the continuous equations. The two
instability mechanisms coincide, as demonstrated by the space–time structure of the
perturbation. If unstable, the numerical results exhibit an exponential growth. Due to
unavoidable numerical dependences, absolute values are difficult to retrieve. However
it is possible for a given computation to extract a theoretical growth rate ωi. Then
the theory predicts the spatial wavenumbers kx and ky (from the dispersion relation)
and consequently the shape of the eigenfunction. As the latter is in perfect agreement
with the numerical results, it can be concluded that the numerical instability coincides
with the theoretical mode. Moreover, concerning the link between the threshold M

c

s

and the coefficient γ, the behaviour is well represented by the theoretical expression.
For many years, it was tacitly assumed in the CFD community that the carbuncle

phenomenon was a purely numerical problem. The present work demonstrates that
this is not true. The findings of this paper point the way to further analysis which
would include a particular form of the numerical flux in order to account for
the observed numerical dependences. Since the pathology is intrinsic to the Euler
equations, the numerical scheme should be designed in the framework of the Navier–
Stokes equations.

The authors thank the French Centre National d’Études Spatiales (CNES) and the
French Government (DGA) for their financial support of the present work.
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