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Abstract. To get a better understanding of oxidation behavior of Ni-base alloys in PWR primary 

water, a numerical model for oxide scale growth has been developed. The final aim of the model is 

to estimate the effects of possible changes of experimental conditions. Hence, our model has not 

been restricted by the classical hypothesis of quasi-steady state and can consider transient stages. 

The model calculates the chemical species concentration profiles, but also the vacancy 

concentration profiles evolution in the oxide and in the metal as a function of time. It treats the 

elimination of the possible supersaturated vacancies formed at the metal/oxide interface by 

introducing a dislocation density at the interface and in the metal bulk. This latter density can be 

related to the cold-working state. Its effect on the vacancy profile evolution is studied in the case of 

a pure metal. Eventually an extension of the present model to the oxidation of Ni-base alloys is 

discussed regarding a recent vacancy diffusion model adjusted on Ni-base alloys.  

Introduction 

The understanding of the oxidation behavior of Ni-base alloys in PWR primary water is of major 

importance due to the cations released due to corrosion of the steam generators which is a source of 

the radioactivity of the primary circuit. Moreover, the oxidation process is the reason of the 

initiation of intergranular stress corrosion cracking (IGSCC) in alloys 600, 82 and 182.  

The oxide layers formed on alloy 600, and alloy 690, in primary PWR water at 360°C are similar 

[1] in nature but two or three times thicker for the alloy 600. A typical oxide scale is composed of a 

thin Cr-rich inner layer at the metal/oxide interface, probably made of Cr2O3, under a Cr-rich oxide 

layer composed of a mixed Fe-Ni-Cr oxide of spinel structure such as NiCr2O4 [2]. Moreover, an 

outer Cr free oxide layer consists of crystallites spread over the surface containing Fe and Ni only. 

Extensive studies [2-10] on the oxidation processes of Ni-base alloys in PWR primary coolant have 

demonstrated the importance of characterizing and modeling the initial stages of oxidation. Indeed, 

oxidation experiments on Ni-base alloys have demonstrated the occurrence of two different types of 

base metal damage: penetration of oxygen in the grain boundaries and the formation of a Cr-

depleted metal layer immediately below the Cr2O3 oxide inner sub-layer as a consequence of the 

selective oxidation of Cr [1]. Nevertheless, the simple calculation of the mean free path of the Cr 

diffusion coefficient in the alloy from experimental profile [3] leads to a value a few orders of 
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magnitude greater than the theoretically calculated one [11, 12]. Similar Cr-depletion has been 

observed by Seo and Sato [13, 14] in gaseous atmospheres at higher temperature (450-550°C). 

There is a continuing debate about the nature of the mechanisms involved in this accelerated 

diffusion. Several hypotheses have been proposed to explain this accelerated diffusion, such as the 

presence of a perturbed layer near the alloy surface that contains small grains and large density of 

defects [3] or a massive injection of vacancies into the metal caused by the growth of the oxide 

layer [13-15]. 

Therefore, modeling the oxide scale growth with an explicit treatment of the vacancy fluxes in the 

oxide and in the substrate should lead to a better understanding of the evolutions in the substrate 

and of the possible origin of the IGSCC in alloy 600. And then, it will allow to evaluate the safety 

margin of the alloy 690. 

For a cationic transport mechanism, every models derived from Wagner’s theory assume that all the 

vacancies are annihilated at the interface. Hence, the interface motion relative to the metal lattice is 

straightforwardly deduced from the quantity of metal recession due to oxide growth, and as a result, 

the movement of the interface follows parabolic kinetics. On the other hand, as revealed by voids 

formation which are sometimes evidenced, vacancies are not always all annihilated at the interface 

[16]. Indeed it should be more appropriate to consider that vacancies are neither all eliminated at 

interface nor all injected in the metal, but rather partially annihilated at the interface and hence 

partially injected. Pieraggi et al. [17] have linked the capacity of interfaces to annihilate incoming 

vacancies to the ability for interface dislocations to climb. In the case of pure cationic growing 

scales, they showed that cationic vacancies could only be annihilated by climbs of disorientation or 

misfit dislocations in the metal, these latter being energetically favored. 

The aim of this work is then to build a numerical model to simulate an oxide scale growth taking 

into account vacancies as non-conservative species. This model should be able to calculate the 

evolutions of concentration profiles of the species and of their point defects in the oxide and in the 

substrate. Hence, this model called EKINOX (Estimation KINetics OXidation) should be an 

innovative tool for a better understanding of the oxidation behavior of Ni-base alloys in PWR 

primary water. 

Presentation of the numerical model EKINOX for a pure metal M forming an oxide MOγγγγ 

General description. The numerical model EKINOX is a one dimensional model that simulates the 

growth of an oxide layer whose composition is MOγ, using the explicit finite differences method as 

the integration algorithm. A description of the model EKINOX has already been given in [18]. It is 

divided into Ns layers of equal initial thickness. The substrate of metal M extends from the first to 

the Ni
th
 layer and the oxide scale extends from the layer Ni+1 to the layer Ns γ. In the oxide, the two 

sub-lattices are considered for the cations and for the anions, whereas only one lattice is considered 

in the metal. Each sublattice is occupied either by the corresponding chemical species (metal M, 

oxygen O) or  by the corresponding vacancies (VM , VO). In the present version of the model, 

oxygen is supposed to be insoluble in the substrate. The model EKINOX does not make the 

classical steady-state hypothesis, and is thus able to study transient stages, evolutions in a finite size 

substrate due to oxidation and effects of microstructural changes, such as grain growth or 

dislocation density evolution. 

Equations governing the evolution of the concentration profiles. Species transport is calculated 

from slab to slab with the explicit treatment of vacancy fluxes, following Fick’s first law: 
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Equation 1 gives the flux J
k

n

V  of vacancies Vk from slab n to n+1 in the reference frame 
corresponding to the nature of the considered slab n. e

n
 is the thickness of the layer n, n

Vk
X  is the 

concentration in sites fraction of the vacancies Vk in the layer n, 
n

Vk
D  is the diffusion coefficient of 

the vacancies Vk in the layer n and 
nΩ  is the molar volume of the layer n. Then, the variation of 

concentration  X n

Vk

•

 of vacancies Vk in the layer n is given by the Eq. 2. A mirror condition is 
considered in the slab 1 which means that the model calculates the oxidation of a finite size sample. 
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Interface motion. For the layers beside the interfaces (Ni, Ni+1 and Ns) the conservation equation 

(Eq. 2) leads to a thickness variation of the slabs. Thus both interfaces are mobile, because of 

cationic and anionic fluxes. The corresponding variation with time of the slab thickness, Nse
•

 and 
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The implementation of the algorithm for moving boundaries is described in [19]. 

Different hypothesis at the interfaces. At the surface of the oxide scale, the thermodynamic 

equilibrium is supposed to be reached instantaneously. At metal/oxide interface, one can either 

consider an instantaneous thermodynamic equilibrium or a kinetics for the transfer of metallic 

species from the substrate to the oxide. The flux for such a transfer is then considered to be 

proportional to the transfer coefficient “α” and the difference between the effective and the 
equilibrium concentrations for cationic vacancies at metal/oxide interface (Eq. 5) [20] : 

( )i
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V XX 
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+
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Vacancy treatment. Metallic vacancies are treated as non-conservative species : the total amount 

of vacancies evolves during the simulation. They can be eliminated in the substrate by dislocations 

and at the metal/oxide interface by misfit dislocations between the oxide and the substrate. The 

velocity of the vacancy concentration variation is given by Eq. 6 where nρ  refers to the dislocation 

density in the slab n, and leads to the decrease of the corresponding layer thickness (Eq. 7) 

following [21]. 
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The dislocation density is not necessarily uniform in the substrate and can decrease from the surface 

into t the metal bulk which corresponds better to surface cold working 

Results obtained with the model EKINOX for a pure metal and discussion 

To explore the consequences of various hypothesis made on the treatment of vacancies, on the 

shape of concentration profiles and on the oxidation kinetics, three different illustrations of 

calculation results obtained with EKINOX are presented in the following part. All calculations have 

been done with an initial number of slabs Ns =132 having a typical initial thickness of 0.25 µm. 

Mixed diffusion mechanism controlling oxide scale growth. The parameters used for the 

calculation are given in Table 1. The cationic vacancies data are taken from the literature for the 

nickel oxide (NiO) growth at 1000°C [22]. The same values are arbitrarily chosen for the anionic 

vacancies in order to illustrate an anionic and cationic oxide scale growth with the same diffusivity 

for both species. The oxide scale growth kinetics is shown on Fig. 1. It is parabolic and the 

parabolic kinetics constant kp is equal to 2.64 10
-11
 cm

2
.s
-1
. The interface motion is shown on Fig. 2. 

Both interfaces move and their displacement is symmetrical as we could expect from values given 

to input data. 

Table.1 Input data for the simulation of an anionic and cationic diffusion controlled oxide scale 

growth. 

Cationic vacancies Anionic vacancies 

i

M

eq

VX  
s

M

eq

VX  MVD  

(cm
2
.s
-1
) 

i

O

eq

VX  
s

O

eq

VX  OVD  

(cm
2
.s
-1
) 

kp (steady-

state) 

(cm
2
.s
-1
) 

10
-6
 6.15 10

-5
 1.08 10

-7
 6.15 10

-5
 10

-6
 1.08 10

-7
 2.61 10

-11
 

 

Time (h)

O
xi

d
e 

th
ic

kn
es

s 
(c

m
)

Time (h)

O
xi

d
e 

th
ic

kn
es

s 
(c

m
)

 

Fig. 1. Oxide scale growth kinetics calculated 

with the same diffusivity for the anions and the 

cations. 
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Fig. 2. Interfaces motions in the reference frame 

linked to the oxide lattice calculated with the 

same diffusivity for the anions and the cations. 

Partial control of the oxide scale growth by the interfacial reaction. In this case, only cations are 

considered as mobile species. The cationic vacancy diffusion data are the same as in the previous 

case, and the transfer coefficient at the metal/oxide is chosen so that the steady-state ratio  

kp/kl = 10
-3
 cm. Used parameters are summarized in Table 2. For this calculation, the initial 

concentration profile for the cationic vacancies is chosen linear, with at both interfaces the 
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equilibrium concentrations. Figure 3 shows the evolution of the cationic vacancy concentration 

profile for the 1000 first iterations of the simulation, corresponding to 1.25 s. A curvature appears in 

the concentration profile near the metal/oxide interface and the vacancies concentration at the 

interface increases. Indeed, the transfer coefficient is an obstacle to the exchange of cationic 

vacancies with metallic atoms in the substrate. Then, for longer durations, the cationic vacancies 

concentration profile keeps on being linear, and the concentration at metal/oxide interface decreases 

with time toward the equilibrium value (Fig. 4). It has been confirmed that after the transient stage, 

the cationic vacancy concentration at metal/oxide interface follows the stead-state evolution, given 

by the following equation [23]: 

e αD

X e αX D
)(X

M

i

M

s

MM

M

V

eq

V

eq

VV

state
steady

i

V +

+
=−    (8) 

The shape of the simulated growth kinetics is a complete parabola (t= A + B.e + C.e²) (Fig. 5) as 

expected from calculation of the steady state case. The kinetics constant evaluated from EKINOX 

simulations using the analysis given in [24], are kp =1.30 10
-11
 cm

2
.s
-1
, and kl = 

1.39 10
-8
 cm.s

-1
. The small variation between the steady-state and the simulated values comes from 

the transient stage. This small difference can be even less important if smaller values are chosen for 

the spatial division step and the time step for the numerical integration. 

Table.2 Input data for the simulation of an oxide scale growth controlled by the cationic vacancy 

diffusion and by the metal transfer at the metal/oxide interface. 
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Fig. 3. Evolution of the cationic vacancies 

concentration profile during the 1000 first 

iterations (1.25 s) when the oxide scale growth 

is controlled by diffusion and interfacial 

transfer. 
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Fig. 4. Evolution of the cationic vacancies 

concentration profile during the simulation 

(111 h) when the oxide scale growth is 

controlled by diffusion and interfacial transfer. 

Vacancy concentration profile evolution in the substrate during oxide scale growth. This 

section illustrates the influence of the hypothesis made for the vacancy treatment on their 

concentration profile evolution in the substrate. In this case, the oxide scale growth is chosen to be 

controlled by cationic diffusion (Table 3) and thus the kinetics is parabolic. The data are taken from 

the literature for the nickel oxide (NiO) growth at 1200°C [22] and metallic vacancy diffusion in 

pure nickel [16]. 
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Table.3 Input data for the simulation of oxide scale growth controlled by cationic diffusion . 

Metallic vacancies Cationic vacancies 

eq

VNi
X  

NiVD  (cm
2
.s
-1
) 

i

Ni
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VX  
s
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VX  
NiVD  (cm

2
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-4
 7.57 10

-7
 

 

Two different hypothesis are made for the vacancy treatment, both considering dislocation density. 

The first one considers only misfit dislocations at the metal/oxide interface (ρmisfit=10
10
 cm

-2
), and 

the second one considers also a non uniform dislocation density in the substrate, decreasing from 

the surface toward the depth of the substrate, simulating for example the effect of surface cold-

working. The dislocation density profile chosen in this case is given on Fig. 6.  
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Fig. 5. Calculated oxide scale growth kinetics 

when  controlled by diffusion and interfacial 

transfer. 

ρ profile
substrate oxide
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distance from the center of the sample 

Fig. 6. Schematic representation of the 

dislocation density profile in the substrate chosen 

in order to study the evolution of the vacancy 

concentration. 

In the case where only interfacial dislocations are considered, the vacancy concentration profile 

follows several stages. The whole evolution is given in the reference frame linked to the metal 

lattice in Fig. 7a. The vacancy concentration first increases in the substrate. Indeed the dislocations 

are not able to eliminate all the incoming vacancies. Then, when the oxide scale grows, incoming 

vacancy flux decreases due to the decrease of the concentration gradient in the growing oxide scale. 

Thus, the misfit dislocations become a sink efficient enough to eliminate all the incoming 

vacancies. Then, as there is no more vacancy injected in the substrate, the shape of the 

concentration profile evolves: vacancies that were accumulated in the core of the substrate diffuse 

backward toward the vacancy sink which is localized at the metal/oxide interface (Fig. 7b). Then 

the vacancies concentration profile in the substrate becomes flat and the concentration decreases 

uniformly. 
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Fig. 7. Evolution of vacancy concentration profile in the substrate in the metallic reference frame 

when the oxide scale growth is controlled by cationic diffusion and vacancies are eliminated by 

interfacial dislocations (ρmisfit=10
10
 cm

-2
) a) entire simulation (1.8 h) – b) intermediate stage of the 

simulation (0.09 h). 

In the second case, vacancy sinks are also distributed in the substrate (Fig. 6), the evolution of the 

vacancy concentration profile is much simpler as shown in Fig. 8. Indeed, the concentration first 

increases near the metal/oxide interface because the rate of vacancy injection is initially high. But, 

those injected vacancies are eliminated in the entire volume of the metal by dislocations and so they 

do not accumulate in the substrate. Then, at longer durations, the rate of vacancy injection decreases 

and the concentration profile in the substrate becomes flat and decreases uniformly.  
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Fig. 8. Evolution of vacancy concentration profile in the substrate (metal lattice as reference frame) 

when the oxide scale growth is controlled by cationic diffusion and vacancies are eliminated by 

dislocations (density profile given on Fig. 6). 

 

Finally, these latter simulations results applied in the plain case of a pure metal show that the 

hypothesis for the treatment of vacancies in the substrate strongly affects the vacancy concentration 

profile. Vacancy injection could play a major role on the Cr depleted profile in the case of oxidation 

of Ni-base alloys. However to tackle the case of multi-element alloys, cross-diffusion coefficients in 

the substrate need to be handled. This can be done following previous work on a model developed 

to simulate the irradiation assisted segregation at grain boundaries of austenitic steels [25-26]. 
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Future developments: Simulation of the oxidation of an alloy 

From now, the EKINOX model will be adapted to simulate the oxidation of an alloy ABC that 

forms an oxide scale AOγ. To achieve this goal, the developments are made together with a 

segregation code already developed for multi-component alloys. This model uses a Self-Consistent 

Mean Field (SCMF) method to calculate the species and the vacancy transport in the substrate. The 

atomic diffusion model used in the SCMF model has been validated on different alloy compositions 

and is now suitable for Ni-base ternary alloys: Ni-Fe-Cr [11, 12]. The diffusion fluxes of the species 

of the alloy are calculated from a microscopic model of atom-vacancy exchange, which depends on 

temperature and local composition of the alloy through thermodynamic and kinetic parameters and 

guarantees a coherent treatment of kinetics and thermodynamics. Thus diffusion coefficients are not 

extrapolated from high temperature but calculated from the mean exchange frequencies and 

differences between energy contributions at the saddle point and the initial point, both expressed in 

terms of nearest neighbor pair interaction energies [11]. The final model reaches a good agreement 

with the experimental data, as shown in Fig. 9 for binary alloys Ni-Cr, and it predicts that the mean 

exchange frequencies of Ni, Fe and Cr respectively should stay on a ratio approximately (3,4,9) for 

any composition, even at lower temperatures [11, 12]. The SCMF model can thus support the 

development of the EKINOX model for the diffusion in the substrate composed of a ternary alloy 

ABC (Ni-Fe-Cr).  
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Fig. 9. Tracer diffusion coefficients of Cr and Ni in the Ni-Cr alloy at (a) 1373 K and (b) 1273 K as 

a function of the composition, obtained experimentally (squares) and by the SCMF model (solid 

lines). The dotted lines express the non-correlated part of the diffusion coefficients [12]. 

Conclusion 

In order to understand the behavior of nickel based alloys in PWR primary water, the EKINOX 

numerical model is under development. It simulates an oxide scale growth, taking into account the 

classical mechanisms of high temperature oxidation, and does not make the classical steady-state 

hypothesis. The vacancy fluxes are explicitly calculated considering a dislocation distribution acting 

as vacancy sinks in the substrate. Several EKINOX simulation examples were exposed, in the case 

of a pure metal, to illustrate different kinds of oxidation kinetics control. It has been shown that 

whether only interfacial dislocations are taken into account or whether dislocations are also 

considered in the volume of the substrate, the evolutions of vacancies concentration profiles are 

strongly different. As vacancy supersaturation and vacancy fluxes should obviously influence the 

Cr depleted profile in the case of Ni base alloys oxidation, ternary alloys will be handled in future 

developments, following the SCMF method to calculate the species and vacancies transport in the 
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substrate. Future simulations will be confronted to experimental studies on oxidation of nickel 

based alloys (600 and 690) in high temperature water. 
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