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Abstract

In this paper, a robust multi-objective design for the control of a launcher during atmospheric flight is investigated. This approach

is based on the Cross Standard Form formulation which allows to incorporate the various specifications of the launcher problem in

a streamlined manner. An important feature of this approach is that a non-conventional LQG/LTR approach, required to satisfy

time-domain specifications, can be embedded into a more general standard problem in order to account for frequency-domain

robustness constraints. The specific form of this standard problem is also very interesting for gain scheduling.
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1. Introduction

This article presents the discrete-time version of a new
method for multi-objective synthesis presented in
Voinot, Alazard, Piquereau, and Biard (2001). This
method is based on the Cross Standard Form (CSF)
presented as a generalization of the LQ inverse problem
to the H2 and HN inverse problems. Indeed, the CSF
allows to formulate a standard problem from which an
initial compensator can be obtained by H2 or HN

synthesis. The demonstration of the properties of the
CSF is based on the possibility to determine the minimal

observer-based realization of arbitrary compensator
(Alazard & Apkarian, 1999). From a practical point of
view, the CSF is used to mix various synthesis
techniques in order to satisfy a multi-objective problem.
The general idea is to perform a first synthesis to reach
some specifications, mainly performance specifications.
Then, the CSF is applied to this first solution to initialize

a standard problem which will be gradually completed
to handle frequency-domain or parametric robustness
specifications. This approach is particularly interesting
when the designer wants to:

* take advantage of an initial compensator based on a
priori know-how and physical considerations, and

* exploit modern optimal control techniques to deal
with frequency-domain robustness specifications and
trade-offs between various specifications.

Other potentialities of this approach, like mixed
eigenstructure assignment/HN control or multi-channel
control, are proposed in Alazard and Voinot (2002) and
Alazard (2002). See also Apkarian, Tuan, and Bernus-
sou (2001) for an alternative approach.
In this paper, the low-level control loop of a non-

stationary launcher during atmospheric flight is con-
sidered. Only the yaw attitude is explored: the problem
is formulated in terms of angle-of-attack regulation in
face of a typical wind profile (disturbance rejection
problem) and consumption reduction. Robustness
specifications are expressed in the frequency domain
for a set of operating instants regularly spaced along the
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flight path: the open loop transfer (L(s)=K(s) G(s))
must satisfy templates on the Nichols chart for
various critical configurations sampled in the un-
certain parameter space. Uncertain parameters are the
main dynamic parameters on the rigid mode (aero-
dynamic coefficient, thruster efficiency, etc.) and on
the bending modes (natural frequencies, modal partici-
pation factors).
Considering the pure stationary synthesis problem at

one flight instant, there is no method, to our knowledge,
that can handle a set of specifications (time-domain
performance and open-loop frequency-domain specifi-
cations) in a streamlined manner. Multi-objective
optimization can be used in conjunction with fre-
quency-domain design (for instance, genetic algorithms
and HN design in Griffin, Schroder, Chipperfiled, and
Fleming (2000)) but these approaches might be costly in
terms of computational time. Although our approach is
also indirect, its capability to take advantage of know-
how is particularly highlighted in this application: the
time-domain performance specification (angle-of-attack
peak amplitude in response to typical wind profiles) is
handled by a non-conventional LQG synthesis in which
the LQ state feedback is computed in a two-step
procedure based on physical considerations. Then, this
synthesis is incorporated into a standardHN problem in
order to meet frequency-domain templates. The final
HN synthesis meets all the specifications and produces,
a low-order compensator in comparison with alternative
approaches applied on the same problem (Mauffrey &
Scholler, 1998; Cl!ement & Duc, 2000; Cl!ement, Duc,
Mauffrey, & Biard, 2001).
In a sense, this approach can be seen as a competitive

method for mixed H2=HN synthesis problems for which
an extensive literature has appeared in the last decade
(Doyle, Zhou, Glover, & Bodenheimer, 1994; Fan, Cliff,
Lutze, & Anderson, 1996; Shue & Agarwal, 1999). But
the main practical problem with all optimal approaches
is the expression of specifications as the minimization of
a closed-loop transfer with respect to a particular norm.
All the design is conducted in discrete-time. In

comparison with our previous paper (Voinot et al.,
2001) devoted to the continuous-time case, it is
important to note that the phase shift introduced by
the zero-order hold is now taken into account in the
synthesis model. The control law design is then
significantly simplified: the first-order phase lead re-
quired in Voinot et al. (2001) to meet the delay margin is
no longer of any use and the trade-off between low
frequency stability margins and roll-off requirement on
flexible modes is somewhat relaxed.
Considering the non-stationary problem, the station-

ary compensators synthesized by our approach at each
flight instant need to be interpolated. It is well known
that the non-stationary behavior of interpolated control
laws depends strongly upon compensator realizations

which are interpolated. Observer-based realizations are
very attractive from the gain-scheduling point of view
(Stilwell & Rugh, 1999; Pellanda, Apkarian, & Alazard,
2000). The main reason is that the compensator states
are consistent and have physical units if the model on
which the observer-based realization is built, has
physical states. Another important feature of the
proposed approach is that the final HN problem is a
pure Disturbance Feed-forward problem (Zhou, Doyle,
& Glover, 1996). It follows that the DGKF (Doyle,
Glover, Khargonekar and Francis) central solution
(Doyle, Glover, Khargonekar, & Francis, 1989) has a
pure observer-based structure. This is however not the
case when Linear Matrix Inequality techniques are used
to solve the HN control problem since compensator
realizations are entirely out of control and techniques
such as those in Alazard and Apkarian (1999) must be
used to restore an observer-based realization.
In the first part of this paper, the discrete-time

version of the CSF is presented. In the second part,
launcher model and specifications are described. In
the third part, the application of the CSF method and
the whole stationary design procedure are detailed.
The last part is dedicated to the gain scheduling of
the various compensators to solve the non-stationary
problem.

Standard notations

AT Transpose of matrix A

’x Time derivation ð ’x ¼ @x=@tÞ
s LAPLACE variable
TS Sampling period
xk Discrete-time value of x ðx ðtÞjt¼kTsÞ
z Delay operator

GðdÞ :¼
A B

C D

� �
State-space realization of transfer
GðdÞ : GðdÞ ¼ D þ CðdI2AÞ21

Bðd ¼ s or zÞ

P ¼
Pqe Pqu

Pye Pyu

� �
General standard problem between
exogenous input e, actuator signal
u, regulated output q and measure-
ment y

A B1 B2
C1 D11 D12

C2 D21 D22

2
4

3
5 Shorthand for state-space realiza-

tion of P(s)

Fl(P, K) Lower Linear Fractional Transfor-
mation of P and K

Acronyms

CSF Cross Standard Form
LQ Linear Quadratic
LQG Linear Quadratic Gaussian
LTR Loop Transfer Recovery
DGKF Doyle, Glover, Khargonekar and Francis



2. The Cross Standard Form

2.1. General inverse problem statement and definitions

Consider a stabilizable and detectable system GðzÞ
with minimal state-space realization (n states, m inputs,
p outputs):

xkþ1

yk

� �
¼

A B

C D

" #
xk

uk

� �
ð1Þ

Consider also a nKth order stabilizing compensator
K0ðzÞ (with nKXn).

Definition 2.1 (H2 Inverse problem). Find a nKth order
standard problem PðzÞ such that PyuðzÞ ¼ GðzÞ and

K0ðzÞ ¼ arg min
KðzÞ

jjFlðPðzÞ; KðzÞÞjj2

(that is: K0(z) minimizes jjFlðPðzÞ; KðzÞÞjj2).

Definition 2.2 (HN inverse problem). Find a nKth order
standard problem P(z) such that Pyu(z)=G(z) and

K0ðzÞ ¼ arg min
KðzÞ

jjFlðPÞðzÞ; KðzÞÞjj
N
:

Definition 2.3 (Cross Standard Form). If the standard
problem P(z) is such that Pyu(z)=G(z) and

FlðPðzÞ;K0ðzÞÞ ¼ 0

then P(z) is called a Cross Standard Form associated
with the system G(z) and the compensator K0(z).

Of course, the CSF solves the H2 inverse problem and
the HN inverse problem.

2.2. An observer-based solution

LQG compensator or more generally compensators
involving a state observer (with an estimation gain Kf), a
state feedback (with a gain Kc) and a dynamic Youla’s
parameter Q are quite interesting to build a CSF
(Voinot et al., 2001). In discrete-time, one can distin-
guish 2 LQG structures: the predictor structure and the
estimator structure (see Alazard and Apkarian (1999)
for more details). The discrete predictor LQG structure,
and the Youla parameterization of all stabilizing
compensators based on it, are analogous to the
continuous-time case. All the results presented in this
paper concern the discrete estimator LQG structure.
Indeed, from a practical point of view, the discrete-time
Kalman filter uses the last measurement yk at the time
t=kTs to update the estimated state #xk. Then, the LQG
compensator built on a such Kalman filter exhibits a
direct feed-through. This is the major difference between
discrete-time LQG synthesis and discrete-time H2

synthesis. This difference does not occur in continuous
time. The structure of a such LQG compensator is
depicted in Fig. 1. Also recall that this structure allows
to parameterize all stabilizing compensators. The

authors in Alazard and Apkarian (1999) proposed a
procedure to compute the parameters Kc, Kf and Q(z)
which characterize this structure from a given nKth order
compensator K(z) and a given nth order system G(z)
(with: npnK). This procedure will be very useful, in the
following, to establish the CSF associated to an
arbitrary compensator and in Section 5, to implement
and interpolate various compensators with observer-
based realizations.
The state-space representation of the compensator K(z)

associated with the structure depicted in Fig. 1 reads:

#xkþ1 ¼ A #xk þ Buk þ AKf ðyk � C #xk � DukÞ;

xQkþ1 ¼ AQxQk
þ BQðyk � C #xk � DukÞ;

uk ¼ �Kc #xk þ CQxQk
þ ðDQ � KcKf Þðyk � C #xk � DukÞ;

ð2Þ

where AQ, BQ, CQ and DQ are the four matrices of the
state-space realization of Q(z) associated to the state
vector xQ.

Proposition 2.4. The CSF, PðzÞ; associated with the

compensator defined by (2), such that

FlðPðzÞ; KðzÞÞ ¼ 0 ð3Þ

reads

PðzÞ :¼

A 0 AKf B

0 AQ BQ 0

Kc �CQ �DQ þ KcKf Im

C 0 Ip D

2
6664

3
7775 : ð4Þ

Fig. 1. The discrete Youla parameterization on the estimator LQG

structure.



The block diagram associated with this particular
standard problem is depicted in Fig. 2.

Proof. Without loss of generality, assume D ¼ 0:
Consider the augmented notation:

#xa ¼
#x

xQ

" #
; Aa ¼

A 0

0 AQ

" #
; Ba ¼

B

0

" #
;

Ka
f ¼

AKf

BQ

" #
; ð5Þ

Ca ¼ ½C 0�;Ka
c ¼ ½Kc � CQ�;Da

Q ¼ DQ � KcKf ð6Þ

Then P(z) and K(z) read, respectively,

PðzÞ :

xa
kþ1

qk

yk

2
64

3
75 ¼

Aa Ka
f Ba

Ka
c �Da

Q Im

Ca Ip 0

2
664

3
775

xa
k

ek

uk

2
64

3
75; ð7Þ

KðzÞ :
#xa

kþ1

uk

" #

¼
Aa � BaKa

c � Ka
f Ca � BaDa

QCa Ka
f þ BaDa

Q

�Ka
c � Da

QCa Da
Q

" #

	
#xa

k

yk

" #
: ð8Þ

The state-space representation of Fl (P(z), K(z)) can be
written

xa
kþ1

#xa
kþ1

qk

2
64

3
75

¼

Aa þ BaDa
QCa �BaKa

c � BaDa
QCa Ka

f þ BaDa
Q

Ka
f Ca þ BaDa

QCa Aa � BaKa
c � Ka

f Ca � BaDa
QCa Ka

f þ BaDa
Q

Ka
c þ Da

QCa �Ka
c � Da

QCa �Da
Q þ Da

Q

2
664

3
775

	

xak

#xa
k

ek

2
64

3
75:

With the change of variable using the estimation error
ea

k ¼ xa
k � #xa

k associated with the Kalman filter:

xa
k

#xa
k

" #
¼ M

xa
k

ea
k

" #
with M ¼

In	n 0

In	n �In	n

" #
and

M�1 ¼ M ; ð9Þ

the representation of Fl (P(z), K(z)) becomes

xa
kþ1

ea
kþ1

qk

2
64

3
75

¼

Aa � BaKa
c BaKa

c þ BaDa
QCa Ka

f þ BaDa
Q

0 Aa � Ka
f Ca 0

0 Ka
c þ Da

QCa 0

2
664

3
775

	

xa
k

ea
k

ek

2
64

3
75: ð10Þ

One can observe here that the states eak associated
with the estimation error are uncontrollable by ek and
that the states xa

k of the plant are unobservable by qk.

The transfer between ek and qk is thus null:

FlðPðzÞ;KðzÞÞ ¼ 0 & ð11Þ

Practical use: The CSF brings the possibility to
formulate the standard problem on which the H2

and HN synthesis allow to compute the initial compen-
sator. This result can be considered as a generalization,
for H2 and HN criteria and for dynamic output
feedbacks, of the solution to the LQ inverse problem,
extensively discussed in the Sixties and Seventies and
which consisted in finding the LQ cost whose minimiza-
tion restores a given state feedback. This CSF used as
such is not of interest since it is necessary to know gains
Kc and Kf and the Youla parameter Q(z) to set up the
problem P(z) and to finally find the initial augmented
LQG compensator. On the other hand, from an
arbitrary compensator satisfying some time-domain
specifications, one can compute an observer-based
realization (i.e. Kc, Kf and Q(z)) of this compensator
using the technique in Alazard and Apkarian (1999).
The CSF is then immediately useful to initialize a
standard setup which will be completed by dynamic
weighting functions to take into account frequency-
domain specifications. In the following application, the
CSF is used to embeding a pure discrete-time LQG
compensator designed to meet time domain perfor-
mance. Thus, the initial compensator is already an
observer-based realization and the CSF will be applied
with QðzÞ ¼ 0.Fig. 2. Setup for the Cross Standard Form.



3. Launcher control problem

3.1. Description

This application considers the launcher inner control
loop.
According to Fig. 3, the following notation is used:

G: the center of gravity,
i: the launcher angle of attack,
c: the deviation angle around axis w.r.t. the guidance
attitude reference,

Va and Vr: respectively, the absolute and the relative
velocity,

w: the wind velocity,
b: the thruster angle of deflection,
’z: the lateral drift rate.

The rigid behavior is modeled by a third-order system
with state vector: xr ¼ ½c ’c ’z�T: This rigid model
strongly depends on 2 uncertain dynamic parameters
A6 (aerodynamic efficiency) and K1 (thruster efficiency).
From Fig. 3 and under small angle assumption, one

can derive the angle-of-attack equations:

i ¼ cþ
’z � w

V
: ð12Þ

The discrete-time validation model considered in this
paper (that is the full-order model Gf (z)) is characterized
by the rigid dynamics, the dynamics of thrusters
(order 2), sensors (order 2) and the first 5 bending
modes (order 10). The launcher is aerodynamically
unstable. Finally, the characteristics of bending modes
are uncertain (4 uncertain parameters per mode).

3.2. Objectives

The available measurements are the attitude angle (c)
and rate ( _  ). The control signal is the thruster deflection

angle b. Launcher control objectives for the whole
atmospheric flight phase are as follows:

* performance with respect to disturbances (wind): the
angle of attack peak, in response to the typical wind
profile w(t), must stay within a narrow band (7imax).
This wind profile is plotted in Fig. 4 (dashed plot) and
corresponds to a worst case wind encountered during
launches with a strong gust when aerodynamic
pressure is maximal,

* closed-loop stability with sufficient stability margins.
This involves constraints on the rigid mode but also
on the flexible modes. In fact, the first flexible mode is
‘‘naturally’’ phase controlled (collocation between
sensors and actuator) while the other flexible modes
must be gain controlled (roll-off). So, the peaks
associated with the flexible modes (except for the
first) on the frequency response of the loop gain
(L(s)=K(s)G(s)) must stay below a specified level XdB

for all parametric configurations (see Fig. 9 as an
example). From the synthesis point of view, the
flexible modes are not taken into account in the
synthesis model. But a roll-off behavior with a cut-off
frequency between the first and the second flexible
modes must be specified in the synthesis,

* delay margin must be greater than one sampling
period.

All these objectives must be achieved for all config-
urations in the uncertain parameter space (22 uncertain
parameters including aerodynamics coefficient, propul-
sion efficiency and bending modes characteristics),
particularly in some identified worst cases where the
combination of parameter extremal values is particu-
larly critical. In this paper, the robustness analysis is
limited to these worst cases as the experience has shown
that they are quite representative of the robustness

β

w

Z

X
x

ψ

i

Vr Va

G

+

Fig. 3. Launcher simplified representation.

i
max
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max

Wind profile w(t) 

Angle of attack i(t) 
(worst cases) 

T
i

T
f

Fig. 4. Angle of attack i(t) (solid) obtained with K1(z) and wind profile

w(t) (dashed, normalized unit).



problem. A more complete m-analysis is presented in
Imbert (2001).

4. Launcher control design

The approach proposed to satisfy all these stationary
objectives proceeds in 2 steps: the first one aims to
satisfy time-domain specification (angle-of-attack con-
straint) and the second one is a HN synthesis based on
the CSF allowing the frequency-domain specifications
(roll-off, stability margins) to be met.
The models used for the synthesis are discrete models

including a zero-order hold. The computation of the
first step of the synthesis is directly derived from the
continuous time synthesis (Voinot et al., 2001).

4.1. First synthesis: non-conventional LQG/LTR

synthesis

4.1.1. State feedback on the rigid model

The rigid problem is characterized by 2 controlled
outputs i and ’z, 2 measurements c and ’c, 1 control
signal b and 1 exogenous input w (disturbance). This
standard problem reads:

’xr

i

’z

c
’c

2
6666664

3
7777775
¼

A B1 B2

C1 D11 D12

C2 D21 D22

2
64

3
75

xr

w

b

2
64

3
75: ð13Þ

Then, the gain Kd is computed such that the discrete
control law bk ¼ �Kdxr

k minimizes the following con-
tinuous-time LQ criterium:

J ¼
Z

N

0

ða’z2 þ i2 þ rb2Þ dt

¼
Z

N

0

ðxrTQxr þ bTRbþ 2xrTNbÞ dt; ð14Þ

with

Q ¼ CT
1

1 0

0 a

" #
C1; R ¼ r; N ¼ 03	1:

The model and the performance index are discretized by
taking into account the zero-order hold at the input bk

Jd ¼
XN
k¼1

ðxrT
k Qdxr

k þ bTk Rdbk þ 2x
rT
k NdbkÞ ð15Þ

for the discrete-time model xr
kþ1 ¼ Adxr

k þ B2d
bk: The

matrices ðAd ; B2d
; Qd ; Nd and Rd Þ involving the matrix

exponential are computed using the Van Loan’s For-
mula (Loan, 1978).
Adopting the notation

Kd ¼ ½Kc; K ’c; K’z�; ð16Þ

the gain Kd can be used to build a servo-loop of the
measured variable c, that is

bk ¼ Kcðcrefk � ckÞ � K ’c
’ck � K’z ’zk ð17Þ

where crefk is the input reference.

4.1.2. Augmented state with wind dynamic

The wind dynamics is modelled by a stable first-order
filter and is then discretized with the zero-order hold
method

wkþ1 ¼ Awwk þ *wk:

This disturbance feed-forward model introduces a new
tuning parameter Aw. The discrete-time augmented
problem corresponding to the state vector xa=[xrT,w]T

then reads

xa
kþ1

ik

’zk

ck

’ck

2
6666664

3
7777775
¼

Ad B1d
0 B2d

0 Aw I 0

C1 D11 0 D12

C2 D21 0 D22

2
6664

3
7775

xa
k

*wk

bk

2
64

3
75

¼

Aa
d Ba

1d
Ba
2d

Ca
1 0 D12

Ca
2 0 D22

2
64

3
75

xa
k

*wk

bk

2
64

3
75 ð18Þ

with B1d
¼

R Ts

0 eAZB1 dZ:
In order to compute the new state feedback gain Ka

d

associated with the augmented state xa, eq. (17) is used
with crefk

such that the angle-of-attack due to dis-
turbance w is cancelled (see eq. (12)), that is

crefk
¼

wk � ’zk

V
:

Then, the term ’zk/V is ignored because it can introduce
non-stabilizing couplings in the lateral motion. Finally,
the gain Ka

d is obtained as

Ka
d ¼ Kd ;�

Kc

V

� �
: ð19Þ

Following this procedure, the LQ state feedback closed-
loop dynamics is stable and satisfies:

specðAa
d � Ba

2d
Ka

d Þ ¼ specðAd � B2d
KdÞ,specðAwÞ

4.1.3. Kalman’s filter with LTR tuning

To compute the gain Ga
d of the Kalman’s filter on the

augmented model ðAa
d ; Ba

2d
; Ca

2 ; D22Þ; an LTR tuning is
proposed. It is well known that stability margins of the
LQ state feedback are degraded when the Kalman’s
filter is introduced in the control loop. The LTR
procedure allows these stability margins to be recovered
(Athans, 1986). Thus, the state noise is composed of 2
disturbing signals: one on the wind model input ( *w) and
the other on the control input b through a gain

ffiffiffi
r

p



(LTR effect)

W ¼
rB2B

T
2 0

0 I

" #
and V ¼ v

1 0

0 o2f

" #

W and V are the covariance matrices of continuous-time
noises on the state vector (xa) and the measurement
vector ð½c; ’c�TÞ; respectively. Therefore, the Kalman

filter tuning depends on 3 parameters: r (LTR weight-
ing), v (measurement to state noise ratio) and of (rd/s)
(rate to position measurement noise ratio), of represents
the frequency beyond which it is better to integrate the
rate measurement ’c to estimate the position #c than to
use the measurement position c directly.
The covariance matrices, Wd and Vd, of discrete-time

noises on the state vector and the measurement vector
are also discretized using Van Loan’s formulae.
This non conventional LQG/LTR design yields a

fourth-order compensator K1(z) involving the gains Ka
d

and Gd
a and the augmented model ðA

a
d ; Ba

2d
; Ca

2 ; D22Þ
and defined by equation (2) without Youla parameter
Q(z). The results obtained so far are presented in
Figs. 4 and 5.
In Fig. 4 it can be observed that the performance

requirements (angle-of-attack) are quite satisfied for all
worst cases. In Fig. 5, one can also note that the
template for low frequency stability margins is satisfied
(this templates is depicted in Fig. 5 with the vertical line
on the first critical point on the right-hand side) and the
first flexible mode remains between two critical points
for all worst cases (phase control). But the roll-off effect
is not strong enough: the template for gain margins on
flexible modes number 2 and 3 (depicted in Fig. 5 with
the horizontal line at XdB) is not satisfied in any case.
Note that Nichols plots are obtained with discrete-time
transfers: it appears that flexible modes 4 and 5 are

aliasing between flexible modes 1 and 3. These modes
are not significant for the control design.

4.2. Second synthesis: HN synthesis using CSF for

frequency-domain specifications

In order to satisfy this last frequency domain
requirement, an HN synthesis is performed on the
standard problem depicted in Fig. 6:
This standard problem can be described as follows:

* between inputs e and u and outputs q2 and y, one can
recognize the CSF presented in Section 2.2 which will
inflect the solution towards the previous pure
performance compensator (LQG/LTR design),

* the output q1 is introduced to specify the roll-off
behavior with a second-order filter F(z) in order to
fulfil the gain margin template on flexible modes
number 2 and 3.

The output q1 in fact, weighs the second-order
derivative of the control signal u. The frequency domain
response of F(z) is depicted in Fig. 7. This response
exhibits a wide hump centered on the flexible modes 2
and 3. This hump frames peak variations of flexible
modes 2 and 3 for all worst cases.
Then, the HN synthesis provides a sixth-order

compensator K2(z). Analysis results are displayed in
Figs. 8 and 9. The time-domain performance specifica-
tion is still met (Fig. 8). Fig. 9 shows that stability
margins are good enough for all worst cases and the roll-
off behavior is now quite satisfactory.

5. Gain-scheduling

The previous stationary design has been applied for
various instants ti along the flight envelope. The HN

solver which has been used is the Matlab macro-
function dhinfric because it provides the best index g

-540 -180 180

Xdb

0

Flexible modes n.  3, 4, 5, 2, 1 

Fig. 5. K1(z)Gf (z): Nichols’s plots for worst cases. Fig. 6. Pf (z): setup for the final HN synthesis.



among the various algorithms proposed in the various
Matlab toolboxes. The drawback of this algorithm lies
in the fact that the solution Ki

2ðzÞ is not the central
DGKF solution. Because of multiple variable changes

performed to increase numerical conditioning in
Riccati equations, the realization of the solution has
no physical meaning. The linear interpolation of the
four matrices ðAi

K ; Bi
K ; Ci

K and Di
K Þ provides a non-

stationary compensator noted K2(z,t) with an awkward
behavior as can be seen from the evolution of the
singular value of K2(z,t) as a function of time t during
the atmospheric flight (Fig. 10).
This problem can be easily mastered using observer-

based realizations. Thus, an observer-based realization
of each compensator Ki

2ðzÞ is computed using the
approach presented in Alazard and Apkarian (1999).
The model used in this realization is the transfer between
u and y of the standard problem Pf (z) (see Fig. 6). The
main difficulty with this approach is that the observer-
based realization is not unique and depends on the way
the closed-loop dynamics FlðPi

f ðzÞ; Ki
2ðzÞÞ is split be-

tween the state feedback dynamics and the state
estimation dynamics. Considering the particular struc-
ture of the standard problem Pf (z), this difficulty is
easily overcame:

Let
AF BF

CF DF

� �
be a realization of the weighting filter

F(z), then the realization of the augmented plant Pf (z)
depicted in Fig. 6 is given as

Pf ðzÞ :¼

Aa
d 0 Aa

dGa
d Ba

2d

0 AF 0 FF

0 CF 0 DF

Ka
d 0 Ka

d Ga
d 1

Ca
2 0 I2	2 D22

2
6666664

3
7777775
¼

A B1 B2

C1 D11 D12

C2 I2	2 D22

2
64

3
75:

One can also derive

specðA�B1C2Þ ¼ specðAa
dðI � Ga

dCa
2ÞÞ,specðAF Þ:

The first term ðspecðAa
dðI � Ga

dCa
2ÞÞÞ represents the stable

dynamics of the Kalman filter previously designed. The
second term (spec(AF)) stands for the roll-off filter
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dynamics which must be chosen stable. From Appendix
A, it can be derived that our standard problem Pf (z) is a
pure Disturbance Feed-forward (DF) problem and that
half of the closed-loop dynamics of Fl (Pf (z),K2(z)) will
be assigned to spec(A�B2C2) for any value of the final
index g. This dynamics must be assigned to the state
estimation dynamics when one wants to find the
equivalent observer-based compensator K2(z) using the
algorithm proposed in Alazard and Apkarian (1999).
Then, the observer-based realization becomes unique.
Let us note

Ai
LQG Bi

LQG

Ci
LQG Di

LQG

" #

¼
A�Bi

2K
i
s �Ki

f C
i
2 þKi

f D
i
22K

i
e Ki

f

Ki
e DQ

" #

the observer-based realization of each compensator
Ki
2ðzÞ: The linear interpolation of the four new matrices

ðAi
LQG; Bi

LQG; Ci
LQG and Di

LQGÞ provides a new non-
stationary compensator noted KLQG (z,t). The evolution
of the singular value of KLQG (z,t) w.r.t. time t is
presented in Fig. 11. This response is significantly
smoother than the one of Fig. 10.
Fig. 12 depicts the evolution of the stability margins

during the whole atmospheric flight for all worst cases.
Obtained margin to desired margin ratios (in percent)
are plotted w.r.t. time for the low frequency gain margin
(LF margin: above the right-hand critical point in the
Nichols chart), the high frequency gain margin (HF
margin: under the right-hand critical point in the
Nichols chart), the attenuation of the flexible modes
below XdB (corresponding to horizontal line in the
Nichols chart) and the delay margin. One can notice
that the specifications are met at each instant of the
flight (ratios must be positive to fulfil specifications).

6. Conclusion

The multi-objective synthesis approach based on the
Cross Standard Form (CSF) presented in this paper
gives interesting results on the launcher problem. It has
been shown that the CSF leads to a very specific
synthesis setup in which a priori knowledge can be easily
captured. Because of the particular 2 steps computation
of the gain Ka

d (see eq. (19)), it is not possible to build
directly a standard (H2 or HN) problem equivalent to
this non-conventional LQG/LTR design. The use of the
CSF overcomes this problem.
On the non-stationary problem, the interest of

observer-based structure to obtain a smooth gain-
scheduling is highlighted. The computation of obser-
ver-based realizations of each stationary compensator is
straightforward when regarded as a pure Disturbance
Feed-forward structure of the final HN problem.

Appendix A. The disturbance feed-forward problem

The Disturbance Feed-forward DF problem is dis-
cussed in Zhou et al., (1996) with some additional
normalization assumptions. The results presented here
are performed in continuous-time domain for clarity but
can be transformed to the discrete-time case. The
realization of the general DF problem is taken to be
of the form:

PðsÞ ¼

A B1 B2

C1 D11 D12

C2 I D22

2
64

3
75 ðA:1Þ

with the followings assumptions:

1. (A, B1) is stabilizable and (C1, A) is detectable.
2. (A, B2) is stabilizable and (C2, A) is detectable.
3. A�B1C2 is stable.
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The central sub-optimal compensator K(s) such that
jjFlðP; K jj

N
og involves the solutions XN and YN of

two coupled Riccati equation associated with the
following Hamiltonian matrices (Zhou et al., 1996):

HN ¼
A 0

�CT
1 C1 �AT

" #
þ

B1 B2

�CT
1 D11 �CT

1 D12

" #

	
g2I � DT

11D11 �DT
11D12

�DT
12D11 �DT

12D12

" #�1
DT
11C1 BT1

DT
12C1 BT2

" #
;

ðA:2Þ

JN ¼
AT 0

�B1B
T
1 �A

" #
þ

CT
1 CT

2

�B1D
T
11 �B1

" #

	
g2I � D11D

T
11 �D11

�DT
11 �I

" #�1
D11B

T
1 C1

BT1 C2

" #
:

ðA:3Þ

The development of JN leads to

JN ¼
ðA � B1C2Þ

T 


0 �ðA � B1C2Þ

" #
: ðA:4Þ

As A–B1C2 is stable, the solution of the associated
Ricatti equation is null for any value of g:

YN ¼ 0:

Then, the condition r(XNYN)og2 is always satisfied for
any value of g and the central solution (with the choice
Dc=0 in the Parrott problem) has the following
observer-based form:

KNðsÞ :
Ac Bc

Cc Dc

" #
¼

A � B2K � GC2 þ GD22K G

�K 0

" #

ðA:5Þ

with

* K ¼ Dþ
12ðD

þT
12 BT

2 XN þ C1Þ ,
* G=B1,
* and the notation : M+=(MTM)–1MT.

So, for any value of g, the HN sub-optimal central
compensator on the problem (eq. (A.1)) is a pure

observer-based compensator on the model (A, B2, C2,
D22). Only, the state feedback gain depends on g. The
closed-loop dynamics of Fl (P(s)K(s)) is split between
spec(A–B1C2) (independent of g) and spec(A–B2K)
(dependent on g).
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