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Abstract—It looks interesting the idea of obtaining more than
a controller after designing a control system. In fact, given
some conditions, it is possible to rearrange the controllerstates,
revealing an observer structure, without changing the original
system. Such proposition does not only means that the estimations
of the plant states are available, but also that fault estimators
can be built, providing an unexpected horizon of fault tolerance
and even control reconfiguration. In order to illustrate that, a
generalization aimed at obtaining observer-based forms from
augmented, reduced or full order controllers will be applied to a
launcher model, subject to sensor faults and external disturbance.

I. I NTRODUCTION

For aerospace applications, control system design is not only
a matter of satisfying important requirements such as stability,
performance, robustness to parameter variations and external
disturbances, and so on, but there are also practical issues
related to on-board implementation or even Fault Detection
and Isolation (FDI), which draw the attention of the control
engineer; it would not be surprising if complexity, flexibility,
and memory storage could influence and even decide the
choice between rivalling structures.

In such aspect, linear quadratic or PID controllers, which
rely on single sets of scalar gains, would be preferable to
H∞ controllers, the latter ones typically possessing the same
order than the plant model used for design (normally a
simplified version of a even more complex validation model).
By the other side, one may argue if and what additional
features and benefits can be uncovered when using these larger
realizations. Fortunately, it can be shown that almost any
controller has an observer-based realization, as demonstrated
by the deterministic separation principle [1]. By that principle,
controller states can be made to correspond to the plant states,
which can be conveniently arranged according to a suitable
model realization so that they represent meaningful physical
variables. In other words, the controller is redesigned as an
observer and provides the estimates of the plant state vector,
and maybe other desired estimates as external disturbances,
biases, or faults, based on an augmented on-board model.

Starting from simple and practical techniques to compute
the observer form [2], a generalization [3] was developed
to augmented and reduced order controllers, where the Q-
parametrization (YOULA form) and Luenberger formulation
were exploited and produced explicitly separated structures,
encompassing non-strictly proper models and the discrete
domain as well. The generalization fits perfectly to robust
control techniques such asH∞ and µ syntheses, where the

dynamics of the weightings (if any) can be accommodated
in the YOULA parameter. Furthermore, the closed-loop poles
partition of the resulting control system should be chosen
with care, since the deterministic separation principle relies
on reduced sets of state-feedback poles, state-estimator poles,
and remaining YOULA parameter poles (or a static one), as it
will briefly reviewed in this work.

Observer-based realizations can supply signals to be used
in the detection and isolation of sensor or actuator faults
and failures (bias), and to estimate external disturbancesas
well. Indeed, for a given controller, several observer-based
realizations involving different on-board models (each ofthem
taking into account a particular condition) can be devised;for
each on-board model, one have to choose the best closed-loop
eigenvalue distribution to satisfy given indexes on maximum
estimation error and noise levels. One intends to cover the
following subjects :

• The section II presents briefly the new techniques for de-
termining the observer-based realization of any controller
with arbitrary order.

• The section III presents the decoupled full pitch plane
launcher model used in this study, the generalH∞

standard problem adopted for the attitude control and the
design procedure combiningH∞ control and computa-
tional intelligence (CI).

• In the section IV, the CI-designedH∞ controller and
an on-board model are used to redesign the original
controller as an observer, providing estimates not only
of the plant states but also of the angle of attack and
plant output bias, when noise and external disturbance
are simultaneously acting on the system.

• In the section V, simulation results are supplied to validate
the overall approach.

• The last section states the main conclusions and the next
steps toward non-linear digital and hardware-in-the-loop
simulations.

II. OBSERVER-BASED STRUCTURE WITHYOULA

PARAMETER

The general block diagram of the closed-loop system in-
volving an observer-based controller is shown in the figure 1.
In this section we recall (from [3]) the procedure to compute
the observer-based realization (that is : the YOULA parameter
Q(s), the state feedback gainKc and the state estimator gain
Kf ) of a given controllerK(s) for a given on-board-model
G0(s) of the plant.
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Figure 1. Observer-based structure using YOULA parameterization.

Consider the stabilizable and detectablenth order on-board
modelG0(s) (m inputs andp outputs) with state-space real-
ization (1a) and the respective stabilizingnth

K order controller
K(s) with minimal state-space realization (1b) :

[
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(1a)

[
˙xK

u

]
=

[
AK BK
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xK

y

]
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Remark : at first, input and output external disturbances
(resp.ud andyd seen in the figure 1) are not considered, so
that AO = AP, BO = BPu andCO = CPy.

The key idea is to express the controller as an LUENBERGER

observer with a state vectorz = Tx and thus, we will denote
xK = ẑ = T̂x = Tx̂. It can be shown [3] thatT is the
solution of a generalized non-symmetric RICCATI equation :

[−T I]

Acl︷ ︸︸ ︷[
AO + BODKCO BOCK

BKCO AK

] [
I

T

]
= 0. (2)

The characteristic matrixAcl associated with the RICCATI

equation (2) is nothing else than the closed-loop (c.-l.) dy-
namic matrix built on the state vector[xT xK

T ]T . Such a
RICCATI equation can then be solved inT ∈ R

nk×n by
standard subspace decomposition techniques, that is :

• compute an invariant subspace associated with
the set of n eigenvalues spec(Γn), chosen
among n + nK eigenvalues in spec(Acl), that

is, Acl

[
U1

T U2
T
]T

=
[
U1

T U2
T
]T

Γn, where

U1 ∈ R
n×n and U2 ∈ R

nK×n. Such subspaces are
easily computed using SCHUR decompositions ofAcl.

• compute the solution

T = U2 U1
−1 . (3)

Then, 3 cases can be encountered :

• Full-order controller (nK = n) : one can compute a state
feedback gainKc = −CK T−DK CO, a state estima-
tion gainKf = T−1BK − BO DK and a static YOULA

parameterQ(s) = DK such that the observer-based
structure fitted with the YOULA parameter (depicted in
the figure 1) is equivalent to the initial controller form
according its input-output behaviour.

• Augmented-order controller (nK > n) : the YOULA pa-
rameter becomes a dynamic transfer of ordern − nK .

• Reduced-order controller (nK < n) : in this case, the
observer-based structure shown in the figure 1 is no
longer valid. However, ifnK ≥ n − p (p stands for the
number of plant measurements), one can built a reduced-
order estimator with a static YOULA parameter, involving
an estimatêx = H1ẑ + H2 y by a linear function of the
controller statêz and the plant outputy, with the con-
straintH1 T + H2 CO = In. Otherwise, ifnK < n−p,
a model reduction is required to built a (partial) state-
observer realization.

Note that there is a combinatoric set of solutions accordingto
the choice ofn auto-conjugate eigenvalues amongn+nK c.-l.
eigenvalues. The range of solutions can be reduced according
to the following considerations :

• a set of auto-conjugated eigenvalues must be chosen in
order to find a real parametrization,

• an uncontrollable (resp. unobservable) eigenvalue in the
system must be selected in the state-feedback dynamics
(resp. state-estimation dynamics),

• lastly, the state-estimation dynamics
(spec(AO − KfCO)) is usually chosen faster than
the state-feedback dynamics (spec(AO − BOKc)).

Remark : Note that an observer-based realization cannot be



computed if the model of the system exhibits an unobservable
and uncontrollable (stable or unstable) eigenvalue. Indeed this
eigenvalue is also a closed loop eigenvalue and it is not
possible to affect it to state-feedback dynamics and state-
estimator dynamics at the same time. (This remark will be
considered in section IV to set-up the on-board model taking
into account a model of the disturbance.)

The separation principle of the observer based realization
allows to state that :

• the c.-l. eigenvalues can be separated inton c.-l.
state-feedback poles (spec(AO − BOKc)), n c.-l. state-
estimator poles (spec(AO − KfCO)) and the YOULA

parameter poles (spec(AQ)),
• the c.-l. state-estimator poles and the YOULA parameter

poles are uncontrollable bye,
• the c.-l. state-feedback poles and the YOULA parameter

poles are unobservable fromεy. The transfer function
from e to εy always vanishes.

Finally, as long as the order condition (nK ≥ n−p) is met,
it is possible to augment the state of the on-board modelGO

to take into account a model of external disturbances or faults
(ud andyd in Figure 1). Therefore it will be possible to have
on-line estimates of these disturbances for monitoring or FDI
purposes. This property will be used in section IV. For instance
it is possible to take into account a bias termb associated with
a single output. Then the correspondent on-board model could
be given by equation 4.
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III. L AUNCHER MODELS AND DESIGN PROCEDURE

The full pitch plane decoupled modelGL of the Brazilian
launcher VLS ([4], [5]) will be chosen to illustrate the design
method. The generalized model used for theH∞ technique is
depicted in the figure 2.

The following transfer functions will be considered :

1) Gθβ and Gθd are the transfer functions of the linear
rigid body decoupled model from control inputsβz and
wv to the outputθ = θL (see the equation 5, wherēZα,
M̄α, M̄q, Z̄βz and M̄βz are aerodynamic coefficients,
Ū is the velocity component in the vehicle body axis
Xb, w is the linear velocity component according to
the vehicle body axisZb, q is the angular velocity
component according to the vehicle body axisYb, θ is
the pitch angle,̄xe is the length of the gases exhaustion
arm (≈ length of the pitch control arm),̄g is the gravity
acceleration and̄m and ¯̇m are the launcher mass and its

derivative).
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2) GB1 andGB2 are the transfer functions of the1st and
2nd bending modes, given by the expression :

GBi(s) =
K̄Bi

s2 + 2 ζM ω̄B,i s + ω̄2

B,i

, i = 1, 2 (6)

where K̄B,i, ω̄B,i and ζB,i are respectively the gain,
the frequency and the damping factor of theith bending
mode. Note that the complete modelGL comprises the
modelsGBi, Gθβ andGθd, and is associated to the state
vector[w q θ θB11 θB12 θB21 θB22 ]

T , where the latter
four variables describe the bending dynamics.

3) Geθ is the transfer function representing the (approxi-
mated) integral of the error signalkwθ wθ − θ :

Geθ(s) =
1

s + ǫeθ

(7)

This transfer function is required to reduce the steady-
state error to a step function at inputwθ (or otherwise
reference inputθref ). The parameterǫeθ is necessary
to comply with the properties of the generalized model
required by theH∞ technique.

4) Wu is the weight on the control signalu :

Wu(s) =

(
s

au2

+ 1

)
−1 (

s

au1

+ 1

)
with: au2 > au1

(8)

The design procedure is based on computational intelligence
and is illustrated by the figure 3, where the genetic algorithm
(GA) is the sole responsible by the generation, combination,
mutation and selection of the candidates1 used in the controller
design, according to the engineering requirements stored in a
fuzzy system. Some of the main characteristics of the GA
employed in the CI-based design mechanism are :

• Each gene is a binary number in the form2n, wheren
is the number of bits.

• Each weightk•• used in theH∞ standard problem
depicted in the figure 2 is composed of two genes in the
form g1/g2 producing a numeric interval from1/2n to
2n/1. An entire set of weightings is called an individual.

• The roulette wheel is used for the reproduction of the
individuals.

1Due to the text limitations, the reader is asked to refer to the existing
literature (e.g., [6]) on the definition of each term used in this section.



K

Gθβ

∑
kwu

GB1

GB2

Gθd

∑

∑

∑

kzθ

kzq

−

−s

θL

qL

wq

wθ

wd

wu

u

zu

zq

zθ

q̃

θ̃






z

}
v

w






P

kwd

kwθ

kwq

wv

βz

Geθ

zeθ

GL

kzu Wu

Figure 2. Generalized standard control problem for the VLS launcher.
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• Each run is finished by a stop criterion, based on the
standard deviation of the lastn ratings.

• A record of every individual is kept in order to avoid
wasted time in repeated evaluations.

• The fitness function is a fuzzy system.

The fuzzy system is composed of linguistic variables, fuzzy
sentences and fuzzy rules. The fuzzy sentences adopted in this
work are Mamdani ones, based on mathematical expressions
such as Gaussian or polynomial functions, with engineering
specifications as linguistic input variables (rise time -tr,
settling time -ts, overshoot -Mp, maximum amplitude of the
control signal -umax, gain margin -mg, phase margin -mp

and dynamics of the closed-loop poles -pcl, see the section
IV). The linguistic output variable is “Rating” (the global
rating). Each linguistic variable comprises the respective fuzzy
sentences and an universe of discourse. An hypothetical ex-
ample according to the specification “gain margin” would be :

• The linguistic variablemg is associated with the control
system gain margin, where its universe of discourse is
[0, 20] [dB]. The fuzzy sentence{Unsatisfactory mg} is
defined by a z-polynomial function (equation 9) and the

pair 〈a, b〉, with a = 0 andb = 6.

f(x) =






1, x ≤ a

1 − 2 [(x − a)/(b − a)]
2
, a < x ≤ (a + b)/2

2 [b − x/(b − a)]
2
, (a + b)/2 < x ≤ b

0, x > b
(9)

The fuzzy system rules are given by the equation (10).

E , (“ tr is Satisfactory”) and (“ts is not Large”)
and (“umax is Satisfactory”)
and (“mg is not Unsatisfactory”)
and (“mp is not Unsatisfactory”)
and (“pcl is Slow”)

R1 : If E and (“Mp is Satisfactory”)
then (“Rating is Good”)

R2 : if E and (“Mp is not Satisfactory”)
then (“Rating is Regular”)

R3 : If not E then (“Rating is Bad”)

(10)

Remark : a further implicit specification is represented by
the initial upper bound on the costγ used in theH∞ design,
associated with system robustness.



IV. OBSERVER-BASED REALIZATION

Remark : To prevent numerical problems when solving
in T the RICCATI equation (2) required to compute the
observer-based realization, it is recommended to adopt bal-
anced realizations of both the on-board modelGO and the
initial controllerK. Particularly for the former, such balancing
will most probably produce state variables without physical
meaning. However, it is possible to keep the original state-
space matrices and states by recalculating the state feedback
and the state estimator gains such thatKc = K̄c M and
Kf = M−1 K̄f , whereM is the transformation matrix from
the original meaningful state vectorx to the new onēx (i.e.
x̄ = M x). A second approach (which is used in this work) is
to keep the original controllerK, and to recover the estimates
of the original states by means of the equivalent transformation
x̂i = Ti

−1xK, whereTi
−1 is the ith row of the inverse of

T, a compound matrix built upon the balanced realization and
the observer-based redesign transformation matrices.

Observer-based redesign. In few words, the closed-loop
control system composed by the on-board modelGO and
the original controllerK is used to compute the equivalent
observer-based controllerKOBC. In this work, the on-board
modelGO (equation 11b) is built from the balanced realiza-
tion GL (figure 2) added to the estimatesb̂q (output bias on
qL) and ŵv (formerly disturbance inputwv). It follows that
GO has one state more thanK, the condition “reduced-order
controller (nK > n − p)” stated at the section II is applied,
and two matricesH1 andH2 must be calculated (see [3]).
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Comment on the choice of the estimation dynamics. The
steady state of the variablewv cannot be observed, according
to the transfer functionGθd (there is a zero ats = 0). By the
other side, if one replaces the state variablew in the equation
5 by the expression̄Uα+wv (whereα is the angle of attack),
then one realises that the steady state ofwv has no effect on
α, θ andq (equation 12), only its time derivative.
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Therefore, these variables can be observed even if the steady
state of the disturbance is not observable (clearly, the lateral

velocity w cannot be observed at this level of the attitude
control loop but could be observed at the level of the guidance
loop taking into account other measurements). For that reason,
one considers also the estimation of the attack angleα̂ as
given by the expression(ŵ − ŵv) Ū−1. Assigningλα = 0
means to follow a constant steady state of the variablewv,
which is not only unobservable, as noted before, but is also
uncontrollable. Therefore, this choice is prohibited as the
resulting on-board model would have an unobservable and
uncontrollable eigenvalue and it would not possible to affect
it to state-feedback dynamics and state-estimator dynamics at
the same time, according to the remark stated at the end of
section II; asλα 6= 0, one choosesλα = −1. By the other
side, the variablebq is observable, and one assignsλq = 0,
a common choice for unknown input estimation; hence, the
model of the biaŝbq is a pure integrator with an unknown
initial condition and, as the initial controller is a stabilizing
controller, the statêbq will converge to this unknown initial
condition (i.e. bias steady state) with the state-estimation
dynamics(AO − KfCO).

Choice of the closed-loop poles. As stated in the section
II, once thatK is a reduced-order controller, the YOULA

parameter is static, and no pole is assigned to it. Therefore,
only the controller and the observer share the poles, and
the two uncontrollable ones (n. 16 and 17 in the table I)
are allocated to the state-feedback dynamics, and also the 7
slowest poles of the remaining set, forming the option “A”
in the table I; option “B” results from the exchange of one
of the slowest poles (no. 15) with a faster one (pole n. 11).
The reason for defining these two options will be clarified
later (see section V). Furthermore, it should be told that the
choices above were defined manually according to the noise
levels and estimation errors, but an automatic procedure could
also be adopted.

A further point related to the closed-loop poles is associated
with their natural frequencies : sets with faster poles most
probably imply noisier estimates; that was the reason to add
the design specificationpcl to the fuzzy system (see the
section III), which gives better ratings to candidates withmore
compressed sets of poles near the origin of the complex plane.

V. EVALUATION OF THE COMPLETE DESIGN

The validation model used in the simulations includes the
actuator dynamics, a realistic wind profile, noise sources and a
bias profile applied to one of the plant outputs. The estimates
were produced with the expressionsα̂ = Hα1 ẑ +Hα2 y and
b̂q = Hq1 ẑ +Hq2 y. There is a reason for using independent
matricesHαi andHqi : during the simulations, it was noted
that the option “A” is beneficial to the estimatêbq but not
to α̂ regarding noise levels. By the other side, the effect
of option “B” is opposite. However, on doing the redesign
for each option and then composing the matricesH1 and
H2 respectively for each estimate, it was possible to profit
better noise levels as shown in the figures 4 and 5, where a
disturbance signal (wind gust profile) and a bias level on the
qL output (combined with noise sources added to both outputs)



Table I
CLOSED-LOOP DISTRIBUTION, OPTIONS“A” AND “B”.

Closed-loop poles Option
no. Value “A” “B”

1,2 −1.3887 ± 80.4553 i Kc Kc

3,4 −3.2979 ± 80.5979 i Kf Kf

5,6 −2.3452 ± 29.6751 i Kc Kc

7,8 −4.1625 ± 29.6290 i Kf Kf

9,10 −5.3201 ± 4.3009 i Kf Kf

11 −4.6420 Kf Kc

12 −3.4123 Kf Kf

13 −0.0062 Kc Kc

14 −0.0919 Kc Kc

15 −0.8594 Kc Kf

16 (UC) −1.0000 Kc Kc

17 (UC) 0.0000 Kc Kc

UC = uncontrollable.
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Figure 4. Estimation of the attack anglêα (grey line) with simultaneous
occurrence ofqL output bias (abrupt variation at 10 seconds) and external
disturbance (wind gust profile); noise sources added to bothplant outputs.
Black line: real attack angle.

were applied simultaneously into the system. The estimateb̂q

could be used in fault detection and isolation (bias fault).The
abrupt variation of the biasbq at 10 seconds yields a small and
temporary deterioration of the estimateα̂. Finally, the estimate
θ̂ is not only insensitive to that variation, but is also very close
to the real attitude angleθ.

VI. CONCLUSION

As it was shown in this work the controller structure can
be employed not only in the control action but also to provide
estimates of the plant state variables and other relevant signals,
as faults acting on the system. The procedure demonstrated
here relies on a CI-based mechanism combined with anH∞

design technique with further observer-based redesign, and one
intends to expand that mechanism to find the best combinatoric
of the c.l.-poles as well. Non-linear and hardware-in-the-loop
simulations are also previewed in the future work, and the
same strategy [7] that provided linear-quadratic gain scheduled
controllers will be employed, that is, to include a specification
in the fuzzy system taking into account the smoothing of a
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Figure 5. Estimation of the biaŝbq at the qL output (grey line) with
simultaneous occurrence of external disturbance (wind gust profile); noise
sources added to both plant outputs. Black line: real bias.
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Figure 6. Estimation of the output̂θ (grey line) with simultaneous occurrence
of qL output bias (abrupt variation at 10 seconds) and external disturbance
(wind gust profile); noise sources added to both plant outputs. Black line: real
attitude angleθ.

particular characteristic of the controller (for instance: gains
Kc andKf ).
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