
 

  

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID: 2255 

To cite this document: GARION, Christophe. ROUSSEL, Stéphanie. 
CHOLVY, Laurence. A modal logic for reasoning on consistency and 
completeness of regulations. In: Normative Multi-Agent Systems, 15-20 
Mars 2009, Dagstuhl, Allemagne, pp.1-17. 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@inp-toulouse.fr 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12040605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr


A modal logic for reasoning on consistency and
completeness of regulations

C. Garion1 and S. Roussel1,2 and L. Cholvy2

1 ISAE
10 avenue Edouard Belin,
31055 Toulouse, France

2 ONERA Centre de Toulouse
2 avenue Edouard Belin
31055 Toulouse, France

Abstract. In this paper, we deal with regulations that may exist in
multiagent systems in order to regulate agent behaviour. More precisely,
we discuss two properties of regulations, consistency and completeness.
After defining what consistency and completeness mean, we propose a
way to consistently complete incomplete regulations. This contribution
considers that regulations are expressed in a first order deontic logic.

1 Introduction

In a society of agents, a regulation is a set of statements, or norms, which rule
the behaviour of agents by expressing what is obligatory, permitted, forbidden
and under which conditions. Such a regulation is for instance the one which
applies in most countries in EU: smoking is forbidden in any public area except
specific places and in such specific places, smoking is permitted. Another example
of regulation is the one which gives the permissions, prohibitions (and sometimes
the obligations) of the different users of a computer system for file reading, file
writing and file execution. Regulations are means to regulate agent behaviour
so that they can live together. But in order to be useful, regulations must be
consistent and, in most cases, they must also be complete.

Consistency is a property of regulations that has already been given some at-
tention in the literature. For instance, as for confidentiality policies, consistency
allows to avoid cases when the user has both the permission and the prohibition
to know something [2]. More generally, according to [4] which studies consistency
of general kind of regulations, a regulation is consistent if there is no possible
situation which leads an agent to normative contradictions or dilemmas also
called in [20] contradictory conflicts (a given behaviour is prescribed and not
prescribed, or prohibited and not prohibited) and contrary conflicts (a given
behaviour is prescribed and prohibited). Following this definition, consistency of
security policies has then been be studied in [5].

Completeness of regulations has received much less attention. [2] proposes a
definition of completeness between two confidentiality policies (for each piece of

Dagstuhl Seminar Proceedings 09121 
Normative Multi-Agent Systems 
http://drops.dagstuhl.de/opus/volltexte/2009/1904

1



information, the user must have either the permission to know it or the prohibi-
tion to know it), definition which has been adapted in [8] for multilevel security
policies.

More recently, we have studied the notion of completeness for particular reg-
ulations which are policies ruling information exchanges in a multiagent system
[6]. A definition of incompleteness for such policies has been given and a way
to reason with incomplete policies has been defined. The approach taken in this
work was rather promising and we have extended it for general regulations in
[7]. The formal language used in those papers is classical first-order logic (FOL)
following the ideas developed in [4]. In particular, deontic notions (obligation,
permission, prohibition) are represented using predicate symbols. Because this
leads to a rather complicated partition of the language between deontic predicate
symbols and predicate symbols representing objects properties, this approach
can be criticized. Moreover, deontic notions are classically represented in modal
logic since [19, 14]. This is the reason why, in this present paper, we aim at using
first order modal logic [12] to express regulations in a more elegant manner. Our
objective is thus to reformulate the work described in [7] in a first-order modal
framework.

This paper is organised as follows. Section 2 presents the logical formalism
used to express regulations, the definitions of consistency and completeness of
regulations. Section 3 focuses on the problem of reasoning with an incomplete
regulation. Following the approach that has led to the default logic [17] for
default reasoning, we present defaults that can be used in order to complete an
incomplete regulation. In section 4, we present a particular example of regulation,
information exchange policy. Finally, section 5 is devoted to a discussion and
extensions of this work will be mentioned.

2 Regulations

The basic formalism used to model regulations is SDL (Standard Deontic Logic),
a propositional modal logic [3]. We extend SDL to FOSDL (First-Order Standard
Deontic Logic) in order to be able to express complex regulations implicating
several agents. This is done in the way developed in [12].

2.1 Language

The alphabet of FOSDL is based on the following sets of non logical symbols: a
set P of predicate symbols, a set F of function symbols and a modality symbol O
representing obligation. The set of functions with arity 0 is called the constants
set denoted C. We define also the following logical symbols: a set V of variable
symbols, ¬, ∨, ∀, ( and ). We call a term a variable or the application of a
function symbol to a term.

We will use roman uppercase letters as predicate symbols, roman lowercase
letters as function symbols and {x1, . . . , xi, . . .} as variable symbols.

Definition 1. The formulae of FOSDL are defined recursively as follows:

2



– if t1, . . . , tn are terms and P a predicate symbol with arity n, then P (t1, . . . , tn)
is a formula of FOSDL.

– if ϕ is a formula of FOSDL, then Oϕ is a formula of FOSDL.
– if ψ1 and ψ2 are formulae of FOSDL and x1 a variable symbol, then ¬ψ1,
ψ1 ∨ ψ2, ∀x1 ψ1 are formulae of FOSDL.

If ψ1, ψ2 and ψ3 are FOSDL formulae and x1 is a variable symbol, we also
define the following abbreviations: ψ1 ∧ ψ2 ≡ ¬(¬ψ1 ∨ ¬ψ2), ψ1 ⊗ ψ2 ⊗ ψ3 ≡
(ψ1 ∧ ¬ψ2 ∧ ¬ψ3) ∨ (¬ψ1 ∧ ψ2 ∧ ¬ψ3) ∨ (¬ψ1 ∧ ¬ψ2 ∧ ψ3), ψ1 → ψ2 ≡ ¬ψ1 ∨ ψ2,
ψ1 ↔ ψ2 ≡ (¬ψ1 ∨ ψ2) ∧ (ψ1 ∨ ¬ψ2), ∃x1 ψ1 ≡ ¬∀x1 ¬ψ1.

The modalities for permission, noted P , and prohibition, noted F , are defined
from O in the following way:

Fϕ ≡ O¬ϕ
Pϕ ≡ ¬Oϕ ∧ ¬O¬ϕ

It must be noticed that our definition of permission does not correspond to
the usual definition of permission defined in SDL. According to SDL, something
is permitted if its negation is not obligatory. However, it has been shown by
lawyers [13] that the cases where permission is bilateral (permission to do and
permission not to do) are the only valid ones. If not bilateral, permission to do
entails obligation to do1. Our definition of bilateral permission corresponds to
the notion of optionality [15] (something is optional iff neither it or its negation
is obligatory).

A formula of FOSDL without modality is said to be objective. A term of
FOSDL without variable symbols is said to be ground. The set of all ground
terms in FOSDL is said to be the Herbrand universe HU . A formula of FOSDL
without variable is said to be ground. A formula of FOSDL without the ∨, ∧,
⊗, → nor ↔ connectives is said to be a literal. Finally, we will call a ground
substitution any function χ : V → HU . If ϕ(x) is a FOSDL formula with free
variable x, ϕ(χ(x)) is the formula ϕ in which occurrences of x have been replaced
by χ(x).

2.2 Semantics

Semantics for propositional modal logics are classically defined using Kripke
models. Models are defined by a frame 〈W,R〉, where W is a set of worlds and
R an accessibility relation between worlds, and a relation 
 between worlds and
propositional letters. In the first-order case, we define models using an augmented
frame and a first-order interpretation instead of 
.

The semantics of first-order languages is based on a set of symbols (the objects
of discourse), called the domain. The domain represents the objects on which
the predicates will be evaluated by opposition to terms which are purely mathe-
matical notions. In the case of first-order modal logic, we have to choose between
1 For instance, when smoking is permitted, this implies that not smoking is also per-

mitted. If not, that would mean that smoking would be obligatory.

3



a constant domain augmented frame and a varying domain augmented frame. In
the first case, the domain is fixed for all the worlds in W, in the second case, each
world of W can have its own domain. We choose here a constant domain. As we
study norms concerning only fixed elements, this choice is intuitively justified2.

Definition 2. Let W be a set of worlds, RO a relation on W2 and D a non
empty set of symbols representing the domain, then 〈W,RO,D〉 is called a frame.

To define a model, we have to define an first-order interpretation which is
done classically.

Definition 3. An interpretation I in a frame 〈W,RO,D〉 is an application such
that:

– for all n-ary function symbol f in F and all world w ∈ W, I(f, w) is a
function Dn → D independent of the world w;

– for all n-ary predicate symbol P in P and all world w ∈ W, I(P,w) is a
relation on Dn.

Notice that we impose a particular condition on the interpretation of func-
tions: the interpretation of a given function f is the same in every world w of
W (this is possible because we use constant domain frames). This restriction
allows us to escape from complicated technical details3, for instance predicate
abstraction. See [12] for more details.

Definition 4. A model M is a structure 〈W,RO,D, I〉 where 〈W,RO,D〉 is a
frame and I an interpretation on 〈W,RO,D〉.

Finally, we only use a class of frames that capture the correct behaviour of
the modal operator O by constraining the accessibility relation RO.

Definition 5. A FOSDL model is a model 〈W,RO,D, I〉 such that RO is serial.

In order to define a satisfiability relation between models and formulae, we
have to define the valuation notion which maps variables to elements of D:

Definition 6. Let D be a domain. A valuation on D is a complete function
V → D. A valuation σ′ is a x-variant of a valuation σ if σ and σ′ are identical
except on x.

Let t be a term and V(t) the set of variables in t, χ(t) is the term t in which
each xi in V(t) has been replaced by χ(xi).

2 Notice that varying domain can be useful. For instance in the study of doxastic
first-order modal logic, an agent can learn the existence of a particular object, or a
new object can appear.

3 The main problem is to be able to characterize the meaning of a formula such as
OF (c) where c is a constant: does it mean that ”it is obligatory that the object
represented by c in the current world has F property” or ”it is obligatory that in
each world, the object represented by c has the F property”.

4



The satisfiability relation |= is defined as follows:

Definition 7. Let M = 〈W,RO,D, I〉 a FOSDL model, w a world of W and
σ a valuation on D. Then:

– if P is a n-ary predicate symbol and t1, . . . , tn are terms, then M, w |=σ

P (t1, . . . , tn) iff 〈I(σ(t1), w), . . . , I(σ(tn), w)〉 ∈ I(P,w).
– if ψ is a FOSDL formula, then M, w |=σ ¬ψ iff M, w 6|=σ ψ.
– if ψ1 and ψ2 are FOSDL formula, then M, w |=σ ψ1 ∨ ψ2 iff M, w |=σ ψ1

or M, w |=σ ψ2.
– if Oϕ is a FOSDL formula, M, w |=σ Oϕ iff for every v ∈ W such that
wROv holds, M, v |=σ ϕ.

– if ψ is a FOSDL formula, M, w |=σ ∀x ψ iff for all valuations σ′ x-variant
of σ, M, w |=σ′ ψ.

Let ψ be a FOSDL formula. If for all valuations σ M, w |=σ ψ, we will note
M, w |= ψ. If M, w |= ψ for all w in W, we will note M |= ψ. Finally, if M |= ψ
for all FOSDL models M, then we will note |= ψ.

2.3 Axiomatics

We will now define an axiom system for FOSDL following the approach presented
in[12]. In the following, ϕ(x) denotes a formula in which the variable x may have
free occurrences. We will say that a free variable y is substitutable for x in ϕ(x)
if no free occurrence of x in ϕ(x) is in the scope of ∀y in ϕ(x).

Definition 8 (Axioms). The formulae of the following forms are axioms:
(Taut) all classical FOL tautologies
(KO) O(ϕ→ ψ) → (Oϕ→ Oψ)
(DO) Oϕ→ ¬O¬ϕ
(Bar1) O(∀x ϕ) → ∀x Oϕ
(Bar2) ∀x Oϕ→ O(∀x ϕ)

Definition 9 (Inference Rules).

(MP)
ϕ ϕ→ ψ

ψ

(Gen)
ϕ

∀x ϕ
(NO)

ϕ

Oϕ

Proposition 1 (Validity and soundness). The previous system is valid and
sound w.r.t. FOSDL semantics.

The proof is given in [12].
We will define a proof of ϕ from the set of formulae Σ, noted Σ ` ϕ, as a

sequence of formulae such that each one of them is an axiom, a formula of Σ, or
produced by the application of an inference rule on previous formula.

In the following, ⊥ will denote every formula that is a contradiction and >
will denote every formula that is a tautology.

5



2.4 Regulation and integrity constraints modelling

In this section we define the notion of regulation and integrity constraints. First,
we define the notion of rule, which is the basic component of a regulation. In
this definition, rules have a general form, in particular they can be conditional.

Definition 10. A rule is a formula of FOSDL of the form ∀−→x l1∨ . . .∨ ln with
n ≥ 1 such that:

1. ln is of the form Oϕ or ¬Oϕ where ϕ is an objective literal
2. ∀i ∈ {1, . . . , n − 1}, li is an objective literal or the negation of an objective

literal
3. if x is a variable in ln, then ∃i ∈ {1, . . . , n − 1} such that li is a negative

literal and contains the variable x
4. ∀−→x denotes ∀x1 . . .∀xm where {x1, . . . , xm} is the set of free variables ap-

pearing in l1 ∧ . . . ∧ ln−1.

In this definition, constraints (1) and (2) allow rules to be conditionals of the
form ”if such a condition is true then something is obligatory (resp. permitted or
forbidden)”. Constraint (3) restricts rules to range-restricted formulae4. Finally,
rules are sentences, i.e. closed formulae, as expressed by constraint (4).

Notice also that we restrict in the definition of rules the formulae that can be
defined as obligatory in the regulation: only objective literals can be obligatory
or not obligatory.

We will write ∀−→x l1∨ . . .∨ ln−1∨Pϕ as a shortcut for the two rules {∀−→x l1∨
. . . ∨ ln−1 ∨ ¬Oϕ,∀−→x l1 ∨ . . . ∨ ln−1 ∨ ¬O¬ϕ}.

Definition 11. A regulation is a set of rules.

Let us consider an example which will help us to illustrate our purpose all
along section 2 and 3.

Example 1 We consider a regulation which rules the behaviour of a driver in
front of a traffic light.

The language needed is defined as follows:

– green, orange, red, car, truck, bike, A and T are 0-arity functions, i.e.
constants.

– x, y, z, i and t are variables.
– D(.) is a predicate symbol that indicates that a term is a driver.
– TL(.) is a predicate symbol that indicates that a term is a traffic light.
– C (., .) is predicate symbol that takes for parameters a traffic light and a color

and indicates the traffic light color.

4 Range-restricted formulae are a decidable subset of domain-independent formulae
which have been proved to be the only first order formulae having a meaning in
modelling [9]. Notice in particular that by definition of FOSDL language, all variables
appearing in ln are free in ln.

6



– V (., .) is a predicate symbol that takes for parameters a driver and the type
of vehicle he drives.

– IFO(., .) is a predicate symbol that takes for parameters a driver and a traffic
light and indicates that the vehicle driven by the driver is in front of the traffic
light.

– Stop(., .) is a predicate symbol that takes a driver agent and a traffic light
for parameters and that indicates that this agent stops in front of the traffic
light.

Let’s now take the three rules (r0): ”When a car-driver is in front of a traffic
light that is red, he has to stop” (r1): ”When a car-driver is in front of a traffic
light that is orange, it is permitted for him to stop” (r2): ”When a car-driver
is in front of a traffic light that is green, he must not stop”. These rules can be
modelled by :

(r0)∀x∀t D(x) ∧ TL(t) ∧V (x, car) ∧ C (t, red) ∧ IFO(x, t) → OStop(x, t)
(r1)∀x∀t D(x) ∧ TL(t) ∧V (x, car) ∧ C (t, orange) ∧ IFO(x, t) → PStop(x, t)
(r2)∀x∀t D(x) ∧ TL(t) ∧V (x, car) ∧ C (t, green) ∧ IFO(x, t) → FStop(x, t)

2.5 Consistency of regulations

We now define a first notion for regulations, consistency. Intuitively, we will say
that a regulation is consistent iff we cannot derive from the regulation using the
system defined in 2.3 inconsistencies like OStop(x, t) ∧ FStop(x, t). Consistency
of a regulation is evaluated under integrity constraints, i.e. a set of closed ob-
jective formulae which can represent for instance physical constraints or domain
constraints. In the following, we will note such an integrity constraints set IC.

First, we will define consistency of a regulation in a particular state of the
world. Intuitively, states of the world are syntactic representations of classical
first-order interpretations. They can also be assimilated to classical Herbrand
models.

Definition 12 (state of the world). A state of the world s is a complete and
consistent set of objective ground literals.

A state of the world is a syntactical representation of a Herbrand interpreta-
tion. Thus, for any n-ary predicate symbol P , any ground terms t1, . . . , tn and
any state of the world s, either P (t1, . . . , tn) ∈ s or ¬P (t1, . . . , tn) ∈ s. In the
following, when describing a state of the world, we will omit the negative literals
for readability.

Definition 13. Let IC be a set of integrity constraints and s a state of the
world. s is consistent with IC iff s, IC 6` ⊥.

Definition 14. Let ρ be a regulation, IC a set of integrity constraints and s a
state of the world consistent with IC. ρ is consistent according to IC in s iff
ρ, IC, s 6` ⊥.

7



Example 2 Let us resume example 1. Let us consider that IC contains two
constraints: (1) a traffic light has a unique color and this color can be green,
orange or red, and (2) a driver drives one and only one type of vehicle. Thus
IC = {∀t TL(t) → C (t, green)⊗C (t, orange)⊗C (t, red),∀x∀y∀z D(x)∧V (x, y)∧
V (x, z) → y = z}5.

Let s be the state of the world {D(A), TL(T ), IFO(A, T ),V (A, car), C (T, red)}.
First, s is such that s, IC 6` ⊥. Let us consider a regulation ρ that contains

the three rules (r0), (r1) and (r2). In this case, ρ, IC, s 6` ⊥ (because the only
deontic literal that can be deduced from ρ, IC and s is OStop(A, T )). Thus, ρ is
consistent according to IC in s.

Definition 15 (consistency of a regulation). Let ρ be a regulation and IC
a set of integrity constraints. ρ is consistent according to IC iff for all states of
the world s such that s, IC 6` ⊥ then ρ, IC, s 6` ⊥.

2.6 Completeness of regulations

Informally, a regulation is totally complete as soon as it prescribes the behaviour
any agent should have in any situation. We can wonder if this definition really
makes sense: can or must a regulation take into account all possible situations?
Thus, we suggest to define a partial completeness restricted to two ground for-
mulae ϕ and ψ: ϕ represents a particular situation in which we want to evaluate
the regulation and ψ a predicate ruled by the regulation. Thus, we want a regu-
lation be complete for ϕ and ψ iff in any situation where ϕ is true, it is obligatory
(resp. permitted, forbidden) that ψ.

This leads to the following definition:

Definition 16. Let IC be a set of integrity constraints, ρ be a regulation con-
sistent according to IC and s a state of the world consistent with IC. Let ϕ(−→x )
and ψ(−→x ) two objective formulae, −→x representing free variables in ϕ and ψ(−→x )
meaning that the free variables in ψ are a subset of −→x . ρ is (ϕ(−→x ), ψ(−→x ))-
complete according to IC in s for ` iff for all ground substitutions χ such that
s ` ϕ(χ(−→x )):

ρ, s ` Oψ(χ(−→x )) or
ρ, s ` Fψ(χ(−→x )) or
ρ, s ` Pψ(χ(−→x ))

Example 3 Let us consider the state of the world s0 = {D(A),TL(T ), IFO(A, T ),V (A,Car),
C (T, red)}. Consider ρ and IC defined in example 2. s0 is consistent with IC
and ρ, s ` O(Stop(A, T )). Let’s take ϕ0(x, t) ≡ TL(t) ∧ D(x) ∧ IFO(x, t) and
ψ0(x, t) ≡ Stop(x, t). s0, IC ` IFO(A, T ) and ρ, IC, s0 ` O(Stop(A, T )). Thus,
ρ is (ϕ0(x, t), ψ0(x, t))-complete according to IC in s0 for `.

Let us now consider the state of the world s1 = {D(A),TL(T ), IFO(A, T ),V (A,
Truck),C (T, red)}. s1 is consistent with IC. s1, IC ` IFO(A, T ) but ρ, IC, s1 6`
5 The introduction of equality is done in the same way as in [12].

8



Oψ0(A, T ), ρ, IC, s1 6` Pψ0(A, T ) and ρ, IC, s1 6` Fψ0(A, T ). Thus, ρ is (ϕ0(x, t), ψ0(x, t))-
incomplete according to IC in s1 for `. In fact, no rule of the regulation can be
applied as the vehicle is not a car but a truck.

The previous definition can be generalized as follows:

Definition 17 (completeness of a regulation). Let IC a set of integrity
constraints and ρ be a regulation. Let ϕ(−→x ) and ψ(−→x ) be two objective for-
mula with the same meaning as in definition 16. ρ is (ϕ(−→x ), ψ(−→x ))-complete
according to IC for ` iff for every state of the world s consistent with IC, ρ is
(ϕ(−→x ), ψ(−→x ))-complete according to IC in s for `.

Completeness is an important issue for a regulation. For a given situation,
without any behaviour stipulated, any behaviour could be observed and thus con-
sequences could be quite important. With an incomplete regulation, we could
(1) detect the ”holes” of the regulation and send them back to the regulation
designers so that they can correct them or (2) detect the ”holes” of the regula-
tion and apply on those holes some completion rules to correct them. The first
solution could be quite irksome to be applied (the number of holes could be quite
important and thus correct them one by one quite long). Therefore, we put in
place the second solution.

3 Reasoning with incomplete regulations

3.1 Defaults for completing regulation

Reasoning with incomplete information is a classical problem in logic and artifi-
cial intelligence: can we infer something about an information that is not present
in a belief base? Several approaches have been defined, but we are here interested
in one: default reasoning. The principle of default reasoning is quite simple: if
an information is not contradictory with the informations that can be classically
deduced from the belief base, then we can deduced another information from the
belief base. A classical example is the following: let us suppose that we believe
that ”every bird flies”, that ”penguins do not fly” and ”penguins are birds”. Of
course, the representation of this set of formulae in FOL is inconsistent (a bird
which is also a penguin flies and do not fly at the same time). In fact, the first
rule ”every bird flies” is a default: ”if a is bird and it is not inconsistent with
the belief base that a flies, then a flies”6. If a is a penguin, then ”a flies” cannot
be deduced, and it cannot be deduced that a is a penguin, then we can deduce
that a flies.

Default logic is a non-monotonous extension of first-order logic introduced
by Reiter [17] in order to formalize default reasoning. We will here follow the
presentation of Besnard given in [1].

6 Notice that in this case, the information that is not contradictory with the belief
base and the information newly deduced are the same.

9



A default d is a configuration
P : J1, . . . , Jn

C
where P, J1, . . . , Jn, C are first-

order closed sentences. P is called the prerequisite of d, J1, . . . , Jn the justification
of d and C the consequence of d. A default theory ∆ = (D,F ) is composed of a
set of objective closed formulae F (facts) and a set of defaults.

A default theory (D,F ) can be given in a surface form (D′, F ) on condition
that

D = {P (−→a ) : J1(−→a ), . . . , Jn(−→a )
C(−→a )

:
P (−→x ) : J1(−→x ), . . . , Jn(−→x )

C(−→x )
∈ D′ and

−→a is a ground term}

and every element of D′ is of the form
P (−→x ) : J1(−→x ), . . . , Jn(−→x )

C(−→x )
where

P (−→x ), J1(−→x ), . . . , Jn(−→x ), C(−→x ) are first-order sentences with free variables oc-
curring in −→x .

Using defaults we obtain extensions, i.e. sets of formulae that are deduced
monotonically and non-monotonically from F . Let ∆ = (D,F ) be a default
theory where defaults contains only closed formulae, then a extension of ∆ is a
set of formulae E verifying the following conditions:

1. F ⊆ E
2. Th(E) = E where Th(E) = {ϕ : E ` ϕ}
3. if

P : J1, . . . , Jn
C

is a default of D, then if P ∈ E and J1 is consistent with
E, . . . , Jn is consistent with E, then C ∈ E

Default theories can have many extensions or no extensions at all. Reiter
showed in [17] that if F is consistent and if (D,F ) has an extension, then this
extension is consistent. He showed also that any normal and closed default theory
has at least one extension.

Here, we are not interested in the fact that a given objective formula ψ is
believed but in the fact that a given regulation deduces that it is obligatory,
forbidden or tolerated (those cases are the only ones due to the D axiom of O).
Thus, if the regulation is incomplete for an objective formula ψ (i.e. it does not
deduce neither Oψ nor Fψ nor Pψ), then it can only be completed by assuming
that Oψ can be deduced, or Pψ, or Fψ. This leads to the three sets of defaults
which are described in the following.

In the following, let IC be a set of integrity constraints, ρ be a consistent
regulation according to IC and s be a state of the world consistent with IC. Let
ϕ(−→x ) and ψ(−→x ) be two objective formulae verifying definition 16.

Definition 18. Let EF (−→x ), EP (−→x ) and EO(−→x ) be three objective formulae
such that their respective set of free variables is in −→x . We define a set of con-
figuration as follows:

(DFϕ,ψ)
ϕ(−→x ) ∧ EF (−→x ) : Fψ(−→x )

Fψ(−→x )

(DPϕ,ψ)
ϕ(−→x ) ∧ EP (−→x ) : Pψ(−→x )

Pψ(−→x )

(DOϕ,ψ)
ϕ(−→x ) ∧ EO(−→x ) : Oψ(−→x )

Oψ(−→x )

10



A (ϕ(−→x ), ψ(−→x ))-completeness default theory for ρ and s is a default theory
∆ρ,s(ϕ(−→x ), ψ(−→x )) whose surface form is given by ({DFϕ,ψ, DPϕ,ψ, DOϕ,ψ}, ρ∪
s)

We can complete an incomplete regulation so that ψ(−→x ) is forbidden (DFϕ,ψ),
permitted (DPϕ,ψ) or obligatory (DOϕ,ψ) depending on EF (−→x ), EP (−→x ) and
EO(−→x ). Following Reiter, we define a new inference relation `∗ defined as fol-
lows:

Definition 19. Let γ be a formula of FOSDL. ρ, s `∗ γ iff there is an extension
Eγ of ∆ρ,s(ϕ(−→x ), ψ(−→x )) such that γ ∈ Eγ .

Moreover, we will note Th∗(E) = {ϕ : E `∗ ϕ and ϕ is closed}.
Notice that we define here what Reiter calls an existential inference. There

are of course other sorts of inference, for instance universal, but as we will show
in section 3.2 we will obtain only one extension in the cases we are interested in,
so the different kinds of inference are identical.

The next step is to define the conditions under which the regulation is com-
plete and consistent with this new inference. This will be addressed in the next
section.

3.2 Consistency and completeness of the completed regulation

First, we extend the definitions 15, 16 and 17 by using `∗ instead of ` in those
definitions. To distinguish the new notions of consistency and completeness from
the old ones, we will use ∗ as a prefix (for instance we will write ”∗-consistency”)
or write explicitly ”for `∗” (for instance, we will write ”consistent for `∗”).

The main result about completeness and consistency of the regulation ob-
tained by using the default theory defined previously is expressed by the following
proposition.

Proposition 2. Let us consider a set of integrity constraints IC, a regulation ρ
consistent according to IC and a state of the world s consistent with IC and such
that ρ∪ s is consistent. Let ϕ(−→x ) and ψ(−→x ) be two objective formulae verifying
definition 16 and ∆ρ,s(ϕ(−→x ), ψ(−→x )) the corresponding default theory.

The following propositions are equivalent:

1. for every vector −→a of ground terms, if s ` ϕ(−→a ), ρ, s 6` Oψ(−→a ), ρ, s 6`
Pψ(−→a ) and ρ, s 6` Fψ(−→a ) (i.e. ρ is not (ϕ(−→a ), ψ(−→a ))-complete in s), then
s ` EF (−→a )⊗ EP (−→a )⊗ EF (−→a ).

2. ρ is consistent and (ϕ(−→x ), ψ(−→x ))-complete for `∗ in s.

This proposition characterizes necessary and sufficient conditions for the de-
faults to consistently complete an incomplete regulation. More precisely, this
proposition says that if every time the regulation does not prescribe a behaviour
one and only one Ei is true, then the defaults consistently complete the regula-
tion (because one and only one default is applied for a particular ψ(−→a )).

11



Example 4 Consider the state of the world s1 = {D(A),TL(T ), IFO(A, T ),
V (A, truck), C (T, red)} from the last example. ρ is incomplete in s1 for ϕ0(x, t) ≡
D(A) ∧ TL(T ) ∧ IFO(A, T ) and ψ0(x, t) ≡ Stop(A,T ) in s1.

Let’s take EF (x, t) = V (x, truck) ∧ C (t, green), EP (x, t) = V (x, truck) ∧
C (t, orange) and EO(x, t) = V (x, truck)∧C (t, red), then s1 ` EO(A, T ). Thus,
ρ is consistent and (ϕ0(x, t), ψ0(x, t))-complete for `∗ in s1.

Even if this necessary and sufficient condition is interesting in theory, it is
not really useful for practical purposes. In fact, to verify that this condition is
satisfied, we would have to detect every ”hole” in the regulation. This detection
is an operation we want to avoid. Thus, we try to find more general conditions
that are still sufficient but not necessary for the completion rules to consistently
complete the regulation. We present two immediate corollaries of the previous
definition.

Corollary 1. If s ` ∀−→x ϕ(−→x ) → EO(−→x )⊗EF (−→x )⊗EP (−→x ) then ρ is consistent
and (ϕ(−→x ), ψ(−→x ))-complete according to IC for `∗ in s.

Example 5 Consider the state of the world s2 = {D(A),TL(T ), IFO(A, T ),
V (A, bike), C (T, red)}. s2 is consistent with IC. Consider the regulation defined
in example 1.

This time, let us consider EF (x, t) = C (t, green), EP (x, t) = C (t, orange)
and EO(x, t) = C (t, red). s2 ` EO(A, T ). Thus, ρ is ∗-consistent and ∗-complete
for ϕ0(x, t) and ψ0(x, t) in s2. But we also have s1 ` EO(A, T ), so ρ is ∗-
consistent and (ϕ0(x, t), ψ(x, t))-complete for `∗ in s1. Those more general Ei
allow us to have a regulation complete for any type of vehicle.

Corollary 2. If IC ` ∀−→x EO(−→x )⊗ EF (−→x )⊗ EP (−→x ) then ρ is consistent and
(ϕ(−→x ), ψ(−→x ))-complete according to IC for `∗.

Example 6 IC ` ∀t C (t, red)⊗C (t, green)⊗C (t, orange). Thus ρ is ∗-consistent
and (ϕ0(x, t), ψ0(x, t))-complete for `∗.

IC specifies that a traffic light has one and only one color among three colors
Red, Orange and Green. If there is one Ei for each color, we are sure that
whatever the situation is, we can apply one and only one default if there is a
”hole” in the regulation.

Another alternative would be to take fixed Ei. For example, we could take
one Ei equal to > and the two others to ⊥. We have three cases:

– suppose that EF ≡ >, EP ≡ ⊥ and EO ≡ ⊥. In this case, according to
completion rules, everything that is not specified as obligatory or permitted
by the regulation is forbidden. This strict behaviour could be observed for
regulations that rule a highly secured system where each action has to be
explicitly authorized before being performed.

12



– suppose that EF ≡ ⊥, EP ≡ > and EO ≡ ⊥. We are here in the opposite
situation, meaning that everything that is not obligatory or forbidden is
permitted. This ”tolerant” behaviour could be observed for regulations for
dimmed secured systems where everything that is not forbidden or obligatory
is implicitly permitted.

– suppose that EF ≡ ⊥, EP ≡ ⊥ and EO ≡ >. In this case, every action that
is not forbidden or permitted has to be performed.

4 Examples of regulations: information exchange policies

An information exchange policy is a regulation which prescribes the behaviour of
agents in a multiagent system regarding information communication. To describe
such policies, we need five predicate symbols: Agent , Info, Receive, Topic and
Tell . Agent(x) means that x is an agent, Info(i) means that i is an information,
Receive(x, i) means that agent x receives information i. Topic(i, t) means that
information i deals with topic t. Tell(x, i, y) means that agent x tells agent y
an information i. We also define constants a, b, i1 , EqtCheck , ExpRisk , Meeting
and EqtOutOfOrder .

The consistency of such policies is defined by definition 14. The completeness
of such policies is defined by instantiated definition 16 with the following specific
formula:

ϕ(x, i, y) ≡Agent(x) ∧ Info(i) ∧ Receive(x, i)∧
Agent(y) ∧ ¬(x = y)

ψ(x, i, y) ≡Tell(x, i, y)

This leads to the following definition:

Definition 20. Let IC a set of integrity constraints, s a state of the world
consistent with IC and ρ a regulation consistent in s according to IC. ρ is
complete according to IC in s for ` iff for all ground substitution χ such that
s ` Agent(χ(x))∧Info(χ(y))∧Receive(χ(x), χ(i))∧Agent(χ(y))∧¬(χ(x) = χ(y)):

ρ, s ` OTell(χ(x), χ(i), χ(y)) or
ρ, s ` FTell(χ(x), χ(i), χ(y)) or
ρ, s ` PTell(χ(x), χ(i), χ(y))

Thus, default are the following:

(DFϕ,ψ)
ϕ(x, i, y) ∧ EF (x, i, y) : FTell(x, i, y)

FTell(x, i, y)

(DPϕ,ψ)
ϕ(x, i, y) ∧ EP (x, i, y) : PTell(x, i, y)

PTell(x, i, y)

(DOϕ,ψ)
ϕ(x, i, y) ∧ EO(, i, y) : OTell(x, i, y)

OTell(x, i, y)
Results proved in section 3 remain valid. In particular, we still have the three

cases:

13



– EF ≡ >, EP ≡ ⊥ and EO ≡ ⊥.
This applies to highly secured multiagent systems in which any commu-
nication action should be explicitly obligatory or permitted before being
performed.

– EF ≡ ⊥, EP ≡ > and EO ≡ ⊥.
This case applies to lowly secured systems in which any communication
action which is not explicitly forbidden is permitted.

– EF ≡ ⊥, EP ≡ ⊥ and EO ≡ >.
In this case, unless explicit mentioned, sending information is obligatory.

In order to illustrate this, consider the example of a firm in which there is a
manager and two employees. Consider a policy π0 with only one rule which states
that ”Managers are required not to inform their employees about any equipment
checking information”. The rule is modelled by7

∀x∀i∀y Manager(x)∧Employee(y)∧Receive(x, i)∧Topic(i,EqtChk) → O¬Tell(x, i, y)
Let us consider IC = ∅ (there is no integrity constraints) and the state of the

world s0 = {Agent(a),Agent(b),Manager(a),Employee(b), Info(i1),Topic(i1,ExpRisk),Receive(a, i1)}.
In this situation, a is a manager and b an employee. a has received information
i1 whose topic is ”Explosion Risk”.

As π0 contains only one rule and s0 is consistent with IC, π0 is consistent in
s0.

However we have s0 ` Agent(a) ∧ Info(i1) ∧ Receive(a, i1) ∧ Agent(b) ∧
¬(a = b) but π0, s0 6` O(Tell(a, i1, b)) and π0, s0 6` P (Tell(a, i1, b)) and π0, s0 6`
F (Tell(a, i1, b)). Thus, π0 is incomplete for `.

Incompleteness comes from the fact that the policy prescribes the behaviour
of the manager if he/she receives an information about ”Equipment Verification”
but it does not prescribe anything as for information about ”Explosion Risk”.
The policy does not state what the manager should do when he/she receives
information about ”Risk Explosion”.

In order to complete the previous policy, we could take:
EF (x, y, i) = Topic(i,EqtChk), EP (x, y, i) = ⊥ andEO(x, y, i) = Topic(i,ExpRisk).

Such a choice forces the manager to tell its employees about ”Risk Explosion”
information. We can verify that π0 is complete and consistent for `∗ in s0 for
ϕ(x, i, y) and ψ(x, i, y).

Let consider now that IC contains the constraint ”An information has one
and only one topic and this topic can be EqtChk, ExpRisk, Meeting or EqtOut-
OfOrder”. Take:

EF (x, y, i) ≡Topic(i,EqtChk)∨
Topic(i,Meeting)

EP (x, y, i) ≡Topic(i,EqtOutOfOrder)
EO(x, y, i) ≡Topic(i,ExpRisk)

We can apply the corollary 2 to conclude that π0 is ∗-complete and ∗-
consistent for ϕ(x, i, y) and ψ(x, i, y).
7 The predicate names are obvious thus we do not formally define the language.

14



5 Conclusion

In this paper, we addressed the problem of analysing consistency and complete-
ness of regulations which may exist in a society of agents in order to rule their
behaviour.

More specifically, we have defined a modal logical framework and showed
how to express a regulation within this framework. We then have reminded of
a definition of consistency and we have defined what meant completeness for a
regulation. The definition of completeness we gave is rather general. We also dealt
with incomplete regulations and proposed a way for completing them by using
defaults. We have established several results which show when these defaults
consistently complete a regulation.

Although these notions (except defaults) were present in [6, 7], we have ex-
tended these previous papers in two points:

– first, we use a first-order modal logic to represent regulations. This allows us
to clearly distinguish between the properties with which the deontic notions
deal from the deontic notions and we keep the expressiveness of FOL for
objects properties.

– second, the approach taken in the previous papers to complete a regulation
was to extend the CWA (Closed World Assumption) defined by Reiter in
order to complete first-order databases [16]. We choose here to use default
reasoning, which is a more elegant solution to complete regulations.

The notion of completeness developed here is in fact a kind of local com-
pleteness, in the sense that we require to have O(ψ(−→x )), P (ψ(−→x )) or F (ψ(−→x ))
only for a specific context represented by formula ϕ(−→x ). That looks close to
the notion of completeness introduced in the databases domain by [18, 10], who
noticed that some of the integrity constraints that are expressed on a database
are rules about what the database should know (i.e. these are rules about what
should be deduced in the database). For instance, the integrity constraint ex-
pressing that ”any employee has got a phone number, a fax number or a mail
address” expresses in fact that, for any employee known by the database, the
database knows its phone number, its fax number or its mail address8. As first
mentioned by Reiter [18], this integrity constraint expresses a kind of local com-
pleteness of the database. Reiter’s defaults can be used in order to complete
such a database in case of incompleteness. For instance, one of the rules can be
that if the database does contain any required information (no phone number,
no fax number, no mail address) for a given employee but if the department that
employee works in is known, then it can be assumed that its phone number is
the phone number of its department.

Studying the formal link between the notion of completeness introduced in
this paper and that notion of local completeness constitutes one interesting ex-
tension of this work.
8 Notice that this does not prevent the fact that in the real world, an employee of the

company has no telephone number, no fax number and no mail address

15



Furthermore, in order to deal with more general regulations, this present
work must be extended. In particular, we have to extend it by considering more
notions, among them time and action. Indeed, as it is shown in [11], the issue
of time is very important when speaking about obligations and we will have to
consider different types of time among which, at least, the time of validity of
the norms and the deadlines beared on the obligations. Notice also for instance
that in most of the examples of this paper, the predicates concerned by deontic
operators represent actions (tell, stop etc.). The adding of a dynamic modal
operator and/or temporal operator may be interesting. We will thus obtain a
multimodal logic with strong expressiveness.

Finally, we developed a really simple model of the deontic notions by using
SDL and lots of classical problem in deontic logic are not handled here: norms
with exceptions, contrary-to-duties, collective obligations etc. Another extension
of this work will be to define a logic that can deal with these problems.

References

1. P. Besnard. An introduction to default logic. Springer-Verlag, 1989.
2. P. Bieber and F. Cuppens. Expression of confidentiality policies with deontic logic.

In Deontic logic in computer science: normative system specification, pages 103–
121. John Wiley and Sons, 1993.

3. B. F. Chellas. Modal logic, an introduction. Cambridge University Press, 1980.
4. L. Cholvy. Checking regulation consistency by using SOL-resolution. In Interna-

tional Conference on Artificial Intelligence and Law, pages 73–79, 1999.
5. L. Cholvy and F. Cuppens. Analyzing consistency of security policies. In 1997

IEEE Symposium on Security and Privacy, pages 103–112. IEEE, 1997.
6. L. Cholvy and S. Roussel. Reasoning with incomplete information exchange poli-

cies. In K. Mellouli, editor, Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, 9th European Conference, ECSQARU’07, number 4724 in Lec-
ture Notes in Articial Intelligence, pages 683–694. Springer-Verlag, 2007.

7. L. Cholvy and S. Roussel. Consistency and completeness of regulations. In Proceed-
ings of he third International Workshop on Normative Multiagent Systems (NOR-
MAS’08), pages 51–65, 2008.

8. F. Cuppens and R. Demolombe. A modal logical framework for security policies.
In Lectures Notes in Artificial Intelligence, volume 1325, page 1997. Springer, 1997.

9. R. Demolombe. Syntactical characterization of a subset of domain independent
formulas. Journal of the Association for Computer Machinery, 39(1):71–94, 1982.

10. R. Demolombe. Database validity and completeness: another approach and its
formalisation in modal logic. In Enrico Franconi and Michael Kifer, editors, Proc.
of the 6th International Workshop on Knowledge Representation meets Databases
(KRDB’99), pages 11–13. CEUR-WS.org, 1999.

11. R. Demolombe, P. Bretier, and V. Louis. Norms with deadlines in dynamic deon-
tic logic. In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso,
editors, Proceedings of ECAI 2006, 17th European Conference on Artificial Intel-
ligence, pages 751–752. IOS Press, 2006.

12. M. Fitting and R. L. Mendelsohn. First-order modal logic. Kluwer Academic, 1999.
13. C. Groulier. Normes permissives et droit public. PhD thesis, Université de Limo-

ges, 2006. Available on http://www.unilim.fr/scd/theses/accesdoc.html. In
French.

16



14. R. Hilpinen, editor. Deontic logic. Reidel Publishing Company, 1971.
15. P. Mc Namara. Deontic logic. Stanford Encyclopedia of Philosophy, http://

plato.stanford.edu/entries/logic-deontic/.
16. R. Reiter. On closed world databases. In J. Minker J.-M. Nicolas H. Gallaire,

editor, Logic and Databases. Plenum Publications, 1978.
17. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1,2), 1980.
18. R. Reiter. What should a database know? Journal of Logic Programming,

14(1,2):127–153, 1992.
19. G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.
20. E. Vranes. The definition of ”norm conflict” in international law and legal theory.

The European Journal of International Law, 17(2):395–418, 2006.

17




