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On Convergence of the Auxiliary-Vector Beamformer
With Rank-Deficient Covariance Matrices

Olivier Besson, Senior Member, IEEE, Julien Montesinos, Student Member, IEEE, and Cécile Larue de Tournemine

Abstract—The auxiliary-vector beamformer is an algorithm
that generates iteratively a sequence of beamformers which,
under the assumption of a positive definite covariance matrix

, converges to the minimum variance distortionless response
beamformer, without resorting to any matrix inversion. In the
case where is rank-deficient, e.g., when is substituted for
the sample covariance matrix and the number of snapshots is
less than the number of array elements, the behavior of the AV
beamformer is not known theoretically. In this letter, we derive a
new convergence result and show that the AV beamformer weights
converge when is rank-deficient, and that the limit belongs to
the class of reduced-rank beamformers.

Index Terms—Adaptive beamforming, rank-deficient covari-
ance matrix, reduced-rank beamformer.

I. INTRODUCTION

T HE minimum variance distortionless response (MVDR)
beamformer amounts to solving the following minimiza-

tion problem [1]

(1)

where is the signature of the signal of interest (SOI),
with the number of array elements, and stands for the in-
terference plus noise covariance matrix. The solution to (1) is
known to be given by

(2)

and the MVDR beamformer enables one to achieve the optimal
signal to interference plus noise ratio (SINR), which is equal to

where denotes the SOI power [1]. In
practice, only snapshots are available
and is usually substituted for the sample covariance matrix
(SCM) in (2) to yield

(3)

where the superscript “smi” stands for sample matrix inversion.
The measure of effectiveness (MOE) of (3), viz., the number of
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snapshots required to maintain an average SINR loss, with re-
spect to , of less than 3 dB, is known to be
snapshots [2]. In applications that employ space-time adaptive
processing [3], non-stationarities and the bandwidth over which
frequency averaging can be done often make it impossible to
obtain this number of snapshots. Moreover, with
is rank-deficient and therefore (3) cannot even be implemented.
Observe that, for is invertible with probability 1
but, in this case, one needs to invert an matrix, which
can be prohibitive in terms of computational cost. The need for
beamformers with an enhanced MOE and algorithms that could
avoid the inversion of a large matrix has raised a large amount
of studies in the recent years [1]. Several strategies have been
proposed to combat these two drawbacks. A first solution is di-
agonal loading [4], [5] which consists in adding a scaled identity
matrix to before inversion. The resulting beamformer has an
MOE that is commensurate with twice the number of interfer-
ence , and is thus very effective [4]. However, it does not alle-
viate the need to invert an covariance matrix. A second
and important class of fast-converging beamformers consists of
the so-called reduced-rank (RR) beamformers which exploit the
fact that the interference generally occupy a low-rank subspace,
and the latter can be estimated from eigenvalue decomposition
(EVD) of the sample covariance matrix. The principal compo-
nent method [6], [7], the cross-spectral metric method [8], [9]
and the dominant mode rejection method [10] belong to this
class and were shown to converge within a very small number of
snapshots. However they require the EVD of . The multistage
Wiener filter (MWF) [11], which operates in a Krylov subspace
[12] and can thus be implemented through a conjugate gradient
(CG) algorithm [13], constitutes one of the seldom approaches
that combines the advantages of having a small MOE and of
avoiding matrix inversion, at least when implemented with a CG
algorithm.

Another alternative is the auxiliary vector (AV) beamformer
which was introduced in [14]. Starting with the conventional
beamformer, the AV beamformer adds non-orthogonal auxiliary
vectors and generates an infinite sequence of beamformers. For
the sake of readability, and because it will be used in the next
section, we reproduce in Algorithm 1 the successive steps of
this algorithm. Therein, denotes the projection matrix on the
subspace orthogonal to . The input covariance matrix of Al-
gorithm 1 should be viewed as a “generic” input matrix even if,
in practice, Algorithm 1 will generally be fed with . However,
for the sake of generality, we keep the notation to denote the
input matrix of Algorithm 1. In [14], it was proved that, with

a positive definite covariance matrix, the AV weight vector
converges to in (2) as goes to infinity. Moreover, in
finite samples, its performance was shown to be commensurate
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with that of the MWF [15], [16]. Therefore, it is a very inter-
esting solution to consider. However, in “sample-starved” sce-
narios where —which, in practice, will replace
as an input to Algorithm 1—becomes rank-deficient and there-
fore it is of utmost importance to study the behavior of the AV
beamformer in such a case. Note also that in some applications,
the true covariance matrix may also be rank-deficient. Interest-
ingly enough, there is no result of convergence for the AV filter
when the input matrix is rank-deficient while this may occur fre-
quently in practice. In this letter, we fill this gap. We provide a
new convergence result and derive, for any rank-deficient input
covariance matrix , the limit of the AV beamformer of Al-
gorithm 1.

Algorithm 1 Auxiliary-vector beamformer

Input:
1:
2: for do
3:
4: if then
5: exit
6: else
7:
8:
9: end if

10: end for

Output: sequence of beamformers

II. MAIN RESULT

The main result of this letter is summarized in the next propo-
sition. In the sequel, stands for the range space of the ma-
trix between braces.

Proposition 1: Let be a rank-deficient covariance matrix
whose EVD is with
a semi-unitary matrix. Then, assuming that , the limit
of the weight vector of Algorithm 1 is

(4)

where is an orthonormal basis for .
Proof: The proof begins along the same lines as in [14]

but additional results are rapidly needed to handle the case of a
rank-deficient . Similarly to [14], we observe that

(5)

where we used the fact that —see line 3 of Algo-
rithm 1—and the definition of . Next, we show that, despite
the fact that is rank-deficient, remains bounded. Towards
this end, one can write

(6)

Therefore if and only if which
implies that . However this is impos-
sible—unless —since, from line 3 of Algorithm 1,

. It follows that

(7)

where and are, respectively, the maximal and minimal
non-zero eigenvalues of . Consequently is bounded. From
the previous observations, one has

(8)

where, to obtain the last line, we used the fact that
. The sequence is a monoton-

ically decreasing sequence of non-negative numbers. Since
is bounded, we conclude as in [14] that converges to as
tends to infinity. In particular it implies that

(9)

In contrast to [14] we now show that also converges to .
From the previous equation, one can write

(10)

Premultiplying by and observing that, by assumption,
and that , we conclude that

converges to zero as tends to infinity. This implies
that also converges to and finally

(11)

Therefore, the component of in converges to , or
equivalently

(12)

Let us now consider the component of in . From line
8 of Algorithm 1, one can write

(13)

Hence, since , it follows from
(13) that is aligned with for every . Oth-
erwise stated

(14)
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Furthermore, since by construction,

(15)

Since converges to , it follows that

(16)

from which we conclude that

(17)

Finally, (12) and (17) imply that

(18)

which terminates our proof.
Some remarks concerning Proposition 1 are provided as fol-

lows.
Remark 1: A less rigorous but intuitively appealing conver-

gence study can be obtained as follows. For notational conve-
nience, let us temporarily note the weight vector se-
quence of Algorithm 1 corresponding to the input matrix .
In order to obtain the limit of , we consider the limit of

and then let tend to zero. For any , the
matrix is positive definite, and the convergence the-
orem of [14] applies, i.e.,

(19)

Therefore, all “trajectories” of converge to
. In order to infer the limit of , let us now

examine the trajectory of when goes to zero.
For any , one has

(20)

Consequently

(21)

Although the previous derivations do not constitute a proof, they
provide an intuitive explanation to the fact that con-
verges to .

Remark 2: When Algorithm 1 is used with and ,
the AV beamformer weights converge to a vector that operates
in a low-rank subspace. Hence, the AV beamformer asymptoti-
cally (in ) belongs to the class of RR beamformers. Therefore,
it should inherit their enjoyable properties in terms of MOE.

Fig. 1. Mean-square error versus iteration index.

Moreover, it enables one to achieve effective interference can-
celation, as illustrated now. In the absence of noise, the array
output is given by where the columns of

are the interference steering vectors and the columns of
correspond to the interference waveforms. In this case, for

and the principal subspace of in-
cludes , along with vectors orthogonal to . In
any case, all vectors in are orthogonal to and hence
the interferences will be nulled. However, the asymptotic vector

will not use all degrees of freedom in the space orthog-
onal to the interferences, but only out of . When
noise is present, is of rank with proba-
bility 1 and will be not be contained entirely in ,
but will also have components in . However, for inter-
ference dominating scenarios, i.e., for high interference to noise
ratio (INR), this leakage will be small, and the columns of
will be quasi-orthogonal to . In other words, for high inter-
ference to noise ratio, Algorithm 1 converges to a weight vector
that mostly lies in the null space of the interferences. A last but
important observation is the following. In the special case when
the sample support is exactly equal to the signal subspace
dimension will contain the eigenvectors of cor-
responding to the smallest eigenvalues. Hence, in that
case, the AV sequence converges to the minimum norm eigen-
canceler (MNE) of [6].

III. NUMERICAL ILLUSTRATIONS

In this section, we illustrate, through a simple scenario, the
main theoretical result of this letter—namely the convergence
of the AV beamformer to —as well as the transient be-
havior of Algorithm 1. We consider a uniform linear array with

elements spaced a half-wavelength apart. The array
is steered at broadside (0 ) and the interferences consist of 2
signals with directions of arrival and interference
to noise ratio [10 dB 5 dB], respectively. In Fig. 1, we plot the
mean-square error (MSE)

(22)
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Fig. 2. Output SINR versus iteration index.� � �.

versus the iteration index , for two different levels of snasphot
support, namely and . The results are given for
a particular realization of . This figure confirms the validity
of the theoretical analysis. It also shows that the convergence is
slower with than with . However, as illustrated
next, the SINR obtained after convergence will be higher in the
former case.

We consider now the transient behavior of the AV beam-
former and compare its performance with diagonal loading
(with a loading level 15 dB above the thermal noise power)
and the minimum norm eigencanceler. The results are shown
in Figs. 2 and 3, which correspond to and ,
respectively. We also display the optimal SINR, for compar-
ison purposes. As can be observed, when , the
asymptotic vector is exactly the MNE vector while
they are different when . It can be observed that the
SINR obtained for small can be larger than that obtained with

, and that the AV beamformer can outperform the MNE
for some values of . Of course, a delicate issue is to select the
value at which the iterations are stopped, although a solution to
this issue has been proposed in [17].

IV. CONCLUSION

In this letter, we presented a new convergence result for the
auxiliary-vector beamformer in case of a rank-deficient input
covariance matrix. This case is of utmost practical importance in
low sample support where the number of snapshots is less than
the number of array elements, and a sample covariance matrix is
used. We proved that the limit of the AV algorithm belongs to a
low-rank subspace, actually the null space of the covariance ma-
trix, and is thus quasi-orthogonal to the interferences subspace.
This result shades a new light on the behavior of the AV beam-
former.
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