

UML and RT-LOTOS

An Integration for Real-Time System Validation

P. de Saqui-Sannes*,** — L. Apvrille*,**,*** — C. Lohr** — P. Sénac*,**
J.-P. Courtiat**

*ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 05, France
{desaqui, apvrille, senac}@ensica.fr
**LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 04, France
{lohr, courtiat}@laas.fr
***Alcatel Space Industries, 26 avenue J.-F. Champollion, B.P. 1187,
31037 Toulouse Cedex 01, France

ABSTRACT. The paper presents a UML profile that overcomes the limitations of real-time
solutions currently available on the market. Associations between classes are given a formal
semantics. New temporal operators are introduced; they include a non deterministic delay
and a time-limited offering. UML models can be validated against logical and timing
constraints. The profile’s semantics is given through a translation into the formal language
RT-LOTOS. The latter is supported by a validation tool which generates reachability graphs
from extended UML models. A coffee machine serves as example in the paper. The profile is
under evaluation on a satellite-based software reconfiguration system.

RÉSUMÉ. Face aux limitations des solutions UML temps réel actuellement sur le marché,
l’article présente un profil UML qui donne une sémantique formelle aux associations entre
classes, définit des opérateurs temporels de type délai non déterministe et d’offre limitée dans
le temps et ajoute des facilités de validation de contraintes logiques et temporelles. La
sémantique formelle de ce profil est donnée par la traduction dans le langage formel RT-
LOTOS dont l’outil de validation permet de construire des graphes d’accessibilité à partir de
diagrammes UML étendus. Outre l’exemple de la machine à café traité dans l’article, le
profil proposé est en cours d’évaluation sur un système de reconfiguration dynamique de
logiciel embarqué à bord de satellite.

KEYWORDS: Real-Time Systems, Formal Methods, UML, RT-LOTOS, Validation.

MOTS-CLÉS : Systèmes temps réel, Méthodes formelles, UML, RT-LOTOS, Validation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12040502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

With the notion of profile 1, the OMG-based Unified Modeling Language [OMG
01] has been defined as a general purpose modeling language that can be specialized
for specific domains. Before a real-time profile specification was released at OMG
[OMG 02], several companies have competed to propose proprietary “Real-time
UML” solutions [SEL 98, ART 99, DOU 99, EST 02]. Meanwhile, the need for an
enhanced UML with real-time features has stimulated research work on integrating
UML and Formal Description Techniques that had already been applied to time-
critical systems [DEL 98, CLA 00, AND 01, DUP 01].

The TURTLE2 profile [SAQ 01] presented in the paper extends UML with
concepts borrowed from the Formal Description Technique RT-LOTOS3 [COU 00].
Class diagrams are modified so that parallelism and synchronization between classes
can be expressed explicitly. Extended activity diagrams with a non deterministic
delay and a time-limited offering are used instead of Statecharts to describe classes’
internal behaviours. Class and activity diagrams are translated into RT-LOTOS, and
the resulting specification is provided as input to the RTL4 tool. This makes it
possible to perform a priori validation on TURTLE diagrams by checking models
against logical and timing errors.

The paper is organized as follows. Section 2 surveys related work. Section 3
introduces RT-LOTOS. Section 4 defines the TURTLE profile. Section 5 discusses
its application to a coffee machine. Section 6 concludes the paper.

2. Related work

Several tool manufacturers have competed to offer real-time UML solutions with
an enhanced notation and a methodology:

- Rose RT implements UML-RT, an enhanced UML with concepts from the
ROOM language [SEL 98];
- Rhapsody by I-Logix uses as much as possible native UML 1.4 constructs
[DOU 99];
- TAU by Telelogic uses UML as a front-end for SDL [BJO 00];
- Real-Time Studio [ART 99] by Artisan Software has its own temporal
operator;
- Esterel Studio [EST 02] by Esterel-technologies combines UML and
synchronous language Esterel.

1 A UML profile specializes the UML meta-model into a specific meta-model dedicated to a
given application domain [TER 00]. A profile may contain selected elements of the reference
meta-model, extension mechanisms, a description of the profile semantics, additional
notations, and rules for model translation, validation and presentation.
2 Timed UML and RT-LOTOS Environment.
3 Real-Time LOTOS (Language Of Temporal Ordering of events).
4 RT-LOTOS Laboratory.

The first four tools in the list above implement an asynchronous paradigm. They
also share in common temporal operators limited to timers with a fixed duration.
They miss native operators to express time interval and time-limited actions within
behavioural diagrams. When solutions nevertheless exist, they remain oriented
towards code generation for a specific target and operating system. A priori and
implementation-independent validation of UML models cannot be carried out.

On the academic side, a lot of work has been done on providing UML with a
precise semantics [BRU 98, BRU 99, EVA 99] and connecting UML with a Formal
Description Technique, such as Labeled Transition Systems [JAR 98, GUE 00],
Petri Nets [DEL 98], Z [DUP 01], synchronous languages [AND 01], PVS [TRA
00] and E-LOTOS [CLA 00]. Unlike [DEL 98], the profile in Section 4 remains
UML 1.4 compliant in the way it integrates concepts borrowed from the RT-LOTOS
FDT. The latter is an asynchronous language, which differs from [AND 01]. Like
[DUP 01], [TRA 00] and [CLA 00], the translation procedure from extended UML
to RT-LOTOS gives a formal semantics to the profile. Major differences between
RT-LOTOS and E-LOTOS include a non deterministic delay operator (see the
latency operator in Section 3) and validation techniques implemented by a tool.

3. RT-LOTOS

LOTOS [BOL 87] is an ISO-based Formal Description Technique for distributed
processing system specification and design. A LOTOS specification, itself a process,
is structured into processes. A LOTOS process is a black box which communicates
with its environment through gates using multiple rendezvous. Values can be
exchanged at synchronization time. Exchanges can be mono- or bi-directional.

Parallelism and synchronization between processes are expressed by
composition operators. The latter include process sequencing, synchronization on all
communication gates and synchronization on some gates, a non deterministic choice
and interleaving (parallel composition with no synchronization). Composition
operators are identified by their symbols (Table 1).

Operator Description Example

[] Choice. P[a,b,c,d] = P1[a,b] [] P2[c,d]

||| Parallel composition with no
synchronization.

P[a,b,c,d] = P1[a,b] ||| P2[c,d]

|[b,c,d]| Parallel composition with
synchronization on several gates
(b,c,d).

P[a,b,c,d,e] =
 P1[a,b,c,d] |[b,c,d]| P2[b,c,d,e]

hide b in
|[b]|

Parallel composition with
synchronization on gate b,
which is hidden.

P[a,c] =
 hide b in P1[a,b] |[b]| P2[b,c]

>> Sequential composition. P[a,b,c,d] = P1[a,b] >> P2[c,d]

[> Disrupt (P2 preempts P1). P[a,b,c,d] = P1[a,b] [> P2[c,d]

; Process prefixing by action a. a; P

stop Process which cannot communicate with any other process.
exit Process which can terminate and then transform itself into stop.

Table 1. LOTOS operators

RT-LOTOS extends LOTOS with three temporal operators (Table 2). The
combination of a deterministic and a non deterministic delay makes it possible to
handle time intervals. RT-LOTOS reuses and extends the control part of LOTOS,
but replaces algebraic data types by implementations in C++ or Java [COU 00].

Temporal
operator

Description

a{t} Time limited offering.
delay(t) Deterministic delay.
latency(t) Non deterministic delay.

Table 2. RT-LOTOS temporal operators

4. TURTLE profile

The TURTLE profile enhances class and activity diagrams using the extension
mechanisms allowed by UML 1.4, in particular stereotypes5. Thus, a TURTLE class
diagram contains “normal” classes and classes stereotyped as Tclass. Two classes
can be linked by one of the four following relationships: use, aggregation,
composition, and generalization.

TURTLE class diagrams introduce two important features: first, two Tclasses
can synchronize on so-called Gates; second, associations between two Tclasses can
be attributed by a composition operator. TURTLE activity diagrams offer new
symbols, in particular temporal operators inherited from RT -LOTOS ones (Table 2).

4.1. Gate Abstract Type

Two Tclasses can communicate using input and output Gates. A Gate abstract
type (Fig. 1a) serves as super-type for InGate and OutGate, respectively (Fig. 1b).

Gate

 (a)

Gate

InGate OutGate

 (b)

Figure 1. Gate abstract type and differentiation between InGate and OutGate

5 A stereotype is an indirect addition to the meta-model. The TURTLE stereotype and abstract
types are graphically identified by a “turtle symbol” in the upper right corner of the class.

In the paper, we say that “a Tclass performs an action on Gate g” to express that
the Tclass wants to communicate on Gate g.

4.2. Tclass Stereotype

A Tclass stereotype is a UML class with two basic constraints: Gates are
separated from other attributes, and the behaviour description must be an activity
diagram (Fig.2). Other properties to be satisfied by a Tclass are listed in [SAQ 01].

Tclass Id

Attributes

Gates

Operations

Behavior
Description

Attributes except Gate attributes.

Tclass identifier.

Attributes of type Gate. They can be declared as private,
protected, or public.

Operations, including a constructor.

Activity diagram which can use previously defined
attributes, Gates and operations. Inherited attributes
(including Gates) and operations can also be used.

Figure 2. Tclass components

4.3. Composer Abstract Type

A UML class diagram graphically defines a set of classes interconnected by
relationships, in particular associations. TURTLE further makes it possible to give
an association a precise semantics. The Composer abstract type is introduced to
support that idea. Note that Composer is not used directly; associations are attributed
with so-called “associative” classes (Parallel, Synchro , Invocation, Sequence,
Preemption) that inherit from Composer. Two inherited classes of Composer are
presented in Fig. 3.

Parallel

P1 P2

Composition
operator

Association

P2 P1

Sequence

Figure 3. Use of two inherited classes of the Composer abstract type

For each association between two Tclasses, there exists one and only one
meaning, and therefore one Composer. Let us now review the classes which inherit
from Composer.
Parallel Two Tclasses related by an association assigned by the Parallel

operator are executed in parallel, and without any synchronization.
The two Tclasses should be active6 classes.

Synchro Two Tclasses related by an association attributed by the Synchro
operator can synchronize with each other. This synchronization is
executed by the two Tclasses in two separate execution threads. A
synchronization possibly includes a data exchange; inputs and
outputs are detailed in the respective behaviour descriptions of the
two classes involved in the synchronization. If the association
between the two Tclasses includes a navigation indication, the data
exchange can only take place in the direction indicated by the
navigation. Two Tclasses may synchronize on different Gates that
must be listed in an OCL (Object Constraint Language) formula. For
example, suppose that Gates g1 and g2 of Tclass T1 synchronize
respectively with Gates g3 and g4 of Tclass T2; in that case, the OCL
formula associated with the association should be {T1.g1 = T2.g3
and T1.g2 = T2.g4}. Each time T1 performs an action on g1, it must
wait for T2 to perform an action on g3, and vice versa .

Invocation Whereas the Synchro operator denotes a synchronization between
two separate execution flows, Invocation denotes a synchronization
which, like an operation call in the object paradigm, is performed
within the caller’s execution flow.
Let us consider two Tclasses T1 and T2 linked by an association
directed from T1 to T2 and attributed by the Invocation associative
class. T2 can be activated by T1. Both T1 and T2 must have a Gate
involved in the invocation. For example, let us consider that g1 (resp.
g2) is a T1 (resp. T2) Gate and that the {T1.g1 = T2.g2} OCL
formula is added to the association. Then, when T1 performs an
action on g1, it must wait for T2 to perform an action on g2. When
T2 performs an action on g2, data can only be exchanged as indicated
by the navigation. T1 is then blocked on g1 until T2 performs again
an action on g2. The second data exchange can only be performed
from the callee to the caller.

Sequence Two Tclasses related by an association to which this operator is
associated are triggered one after the other in the association’s
navigation direction. Note that in (T1 Sequence T2), T1 must
terminate7 before T2 starts. The two Tclasses should be active
classes.

6 A class is active if it represents an execution flow of the system [DOU 99].
7 A Tclass terminates when all its activities have reached their termination points.

Preemption A Tclass pointed by the navigation of an association attributed by the
Preemption operator may interrupt the other Tclass at any time. In
practice, “T2 Preemption T1” means that T2 may preempt T1, i.e. it
kills T1 and activates T2.

4.4. Tclass Behavior Description

UML activity diagrams symbols are supported, but operation calls are not
translated to RT-LOTOS, assuming that two Tclasses use gate synchronization to
communicate. Table 3 lists all the symbols, and associates the relevant translations
in RT-LOTOS; τ(AD) denotes the translation process for the sub-diagram AD which
follows the symbol.

TURTLE
activity diagram

Description LOTOS translation
[LOH 02]

AD

Beginning of the activity
diagram. Therefore, beginning
of the translation.

τ(AD)

AD

g !x ?y

Synchronization on Gate g,
possibly with emission of value
and/or reception. AD is
subsequently interpreted.

g !x ?y:nat ; τ(AD)

AD

y := x*2

Value assignment of an
attribute. AD is subsequently
interpreted.

 let y : YType = x*2 in
 τ(AD)

AD
or

AD

Loop structure. AD is
interpreted each time the loop
is entered.

process
LabelX[g1,…gn]
: noexit :=
τ(AD)
>>LabelX[g1,...gn]
end proc

AD2 … ADn

[g1, …, gm]

AD1

Synchronization on Gates
g1,…gm between n sub-
activities described by AD1,
AD2, …, ADn. The gate list is
possibly empty.

τ(AD1) |[g1,…gm]|
τ(AD2) |[g1,…gm]|

… |[g1,…gm]| τ(ADn)

AD1 AD2 … ADn

[c1] [c2] [cn]

Conditions are optional

AD1, AD2, …, ADn sub-
activities for which conditions
are true can be selected. One
ready-to-execute activity
whose condition is true is
executed.

[c1] -> τ(AD1)

 [] [c2] -> τ(AD2)
 [] …
 [] [cn] -> τ(ADn)

AD’1 AD’2… AD’m

AD1 AD2.. ADn

[g1,…gk]

The n sub-activities described
by AD1, AD2, ..., ADn are
followed by the execution of
the m sub-activities described
by AD’1, AD’2,..., AD’m. The
AD’i are executed with
synchronization on k Gates g1,
g2, ..., gk.

(τ(AD1) ||| τ(AD2) ||| …

τ(ADn)) >>
(τ(AD’1) |[g1, …gk]|
τ(AD’2) |[g1, …gk]| …
τ(AD’m))

Termination of an activity. exit

Table 3. Non temporal TURTLE operators

Table 4 lists pictograms associated with the temporal operators which extend
UML activity diagrams . The third operator applies to a time interval. It is equivalent
to two operators put in sequence: first, a fixed duration delay equal to the interval’s
lower bound, and second, a latency equal to the difference between the interval’s
upper and lower bounds.

TURTLE operator Description RT-LOTOS translation

 d

AD

Deterministic delay. AD is
interpreted after d time units.

delay(d) τ(AD)

t
AD

Non deterministic delay. AD is
interpreted at most after t time
units.

latency(t) τ(AD)

d m i n

d m a x - d m i n

A D

Non deterministic delay between
dmin and dmax. AD is interpreted
at least after dmin and at most
after dmax time units.

delay(dmin,dmax) τ(AD)

t a

AD2 AD1

l

Time -limited offering. Action a is
offered during a period which is
less or equal to t. Note that
latency and time -limited offering
start at the same time. If the offer
happens, AD1 is interpreted.
Otherwise, AD2 is interpreted.

latency(l) a{t, τ(AD2)};
τ(AD1)

Table 4. TURTLE temporal operators

4.5. Validation Process

The TURTLE profile has been developed to validate real-time system models
against design errors, and timing inconsistencies in particular. Figure 4 depicts the
validation process. TURTLE classes and their relationships are extracted from the
class diagram, saved under an XMI file, and converted into RT-LOTOS code which
is validated using the RTL tool. Systems of reasonable size can be checked using
reachability analysis techniques [COU 00]. Otherwise, simulation is limited to a
partial exploration of the system’s behaviour.

TURTLE modeling
with a UML 1.4 tool

xmi file

RT-LOTOS
file

 RTL

reachability
graph

 xmi2rtlotos

 Transparent to UML users

Figure 4. From a TURTLE model to validation

5. Application: a coffee machine

The purpose of this section is to illustrate the TURTLE syntax, and to
demonstrate the interest of using the RTL tool to discover logical errors and time
constraints violations.

The TURTLE diagram in Fig.5 models a coffee machine which distributes tea or
coffee after two coins have been inserted by a user. The user has a wallet, not
described for space reasons. One can notice the inheritance relation between Coffee
Machine and CoinBox as well as the synchronizations between CoffeeMachine and
Wallet or Button, respectively.

Let us now comment on temporal operators used in Fig.5. The role of time
limited offering coinDelay in CoffeMachine is to guarantee that a user who waits too
much before inserting a second coin will get the first one back. Similarly,
buttonDelay manages the situation where a user waits too much before selecting a
drink. The deterministic delay delay in Button represents a button’s response time.
Joint use of deterministic and non deterministic delays makes it possible to represent
coffee and tea preparation times as temporal intervals: [100, 100+75] and [120,
120+80], respectively.

Let us now pay attention to synchronizations active1 and active2 in
CoffeeMachine and time limited offering in Button. Both contribute to solve a
problem identified in a simpler model [SAQ 01] of the coffee machine. Let us
assume the user inserts two coins and waits too long. The synchronization offer on
tea or coffee expires, which means that both coins are ejected. The user pushes the
button tea (Button class, push Gate) just afterwards. The synchronization offer can
no longer take place. The user takes his coins back, thinking the machine is out of

order. A user wishing to have a coffee arrives and inserts two coins. As the
synchronization offer on tea has not expired (unlimited offer), he or she is instantly
served a tea. The problem is solved as follows: synchronization on active1 and
active2 enables the machine to activate the two buttons for a limited period of time
(push offer limited to 40). Once the two buttons are activated, it still takes 50 ms
(delay = 50) before the machine can synchronize on coffee or tea.

Synchro

Button

- delay : nat

+ push, active : Gate

Wallet

CoffeeMachine

+ tea, coffee : InGate

- buttonDelay : nat

coinDelay
coin_in ?1

push

delay

2
{ (CoffeeMachine.coffee =
Button.push
and CoffeeMachine.active1 =
Button.active)
or
(CoffeeMachine.tea = Button.push
and CoffeeMachine.active2 =
Button.active)
}

Synchro

active

40

active1

active2

50

{Wallet.putCoin =
CoffeeMachine.coin_in
and
Wallet.coinBack =
coffeeMachine.ejectCoin }

ejectcoin !1

coffee tea

100

75

120

80 ejectCoin !2

buttonDelay

CoinBox

coinDelay, maxCoin : int
coin_in : InGate ;
eject_coin : OutGate

coinNb()

coin_in ?1

Figure 5. TURTLE class diagram for a coffee machine

Logical and timing errors have been found using the RTL tool. For space

reasons, Fig.6 depicts the reachability graph obtained for a machine limited to
distributing tea. For each logical state (rectangle), several classes of temporal states
(circles) may coexist. Conditions for leaving a state are as follows: either time has
elapsed (transition t) or a synchronization has occurred. Let us take examples from
the reachability graph in Fig.6a. Moving from the initial state (state 0) demands
synchronization on Gate putCoin. In state 21, no synchronization can occur in the
first two sub-states; a state change corresponds to a time progression exclusively
(transition t). When the offer on Gate tea expires (delay buttonDelay), then, a
synchronization on coinBack makes it possible to move from State 21 to State 7; a
value equal to two is exchanged at that occasion.

The graph in Fig. 6.a highlights that it is impossible for a user to get either tea or
coffee. In fact, the button activation delay (push) expires before the machine is ready
to deliver coffee or tea. If this delay is increased from 40 to 60 (Fig. 6.b), it becomes
possible to get tea: the transition from state 21 is now tea.

 (b)

Tea is now
offered

Rejected coins

 (a)

0- ()

i (putCoin<1>

1- (0)

2- ()

i(putCoin<1>

21-(0 0)

21- (40.5 40.5)

21- (150 150)

t

t

i(active)

7- (150)

12- (150 0)

13- (150)

17- (0 0)

17- (40.5 40.5)

17-(150 150)

t

t

i(coinBack<2>) i(putCoin<1>

i(putCoin<1>

i (coinBack<2>)

0-()

i(putCoin<1>

1- (0)

i(putCoin<1>

2-()

21-(0 0)

21- (50 50)

t
i(active)

22- (0 0)

22- (50 50)

22-(100 100)

t

t

i(tea)

24- (50)

24-(100)

t
i(active)

23- (50 0) 23- (100 0)

i (putCoin<1>

i(putCoin<1>

i(putCoin<1>

i(putCoin<1>

Figure 6. Reachability Graph for the coffee machine .
 (a): case where the offer on the button is limited to 40.
 (b): case where the offer is limited to 60

6. Conclusions and Future Work

The paper defines TURTLE, a UML profile for real-time system design and
validation. Class diagrams are extended with a stereotype (Tclass) and two abstract
types (Gate and Composer). A precise semantics is given to associations between
classes (see the Parallel , Synchro , Invocation, Sequence and Preemption classes).
The behaviour of a Tclass is described by an enhanced activity diagram with three
temporal operators: a deterministic delay, a non deterministic delay and a time-
limited offering. Last but not least, TURTLE models can be translated into RT-
LOTOS, a formal description technique supported by a validation tool. RT-LOTOS
specifications derived from TURTLE diagrams can be validated using reachability
analysis techniques. The objective is to keep RT-LOTOS hidden to the system
designer.

The TURTLE profile is under evaluation on real-time embedded software. In
particular, it is used for the formal validation of dynamic reconfiguration of
embedded software [APV 01].

The TURTLE profile will be extended in the near future. State machines will be
used in lieu of activity diagrams. New associative classes will be introduced to
extend association semantics (resume/suspend, interrupt) [HER 98]. Our intent is to
perform schedulability analysis on TURTLE models [AND 97]. Finally,
relationships between the TURTLE profile and the OMG one [OMG 02] are under
study.

7. References

[AND 01] ANDRE C., "Paradigmes objets et synchrones dans les systèmes temps-réel",
journée Objets Temps Réel du Club SEE Systèmes Informatiques de Confiance, Paris, 18
janvier 2001. http://www.cert.fr/francais/deri/seguin/SEE/01.01.18/annonce.html.

[AND 97] ANDRIANTSIFERANA L., COURTIAT J.-P., DE OLIVEIRA R.C., PICCI L., "An
experiment in using RT-LOTOS for the formal specification and verification of a
distributed scheduling algorithm in a nuclear power plant monitoring system",
Proceedings IFIP Formal Description Techniques X, Osaka, Japan, November 97,
Chapman & Hall (1997)

[APV 01] APVRILLE L., de SAQUI-SANNES P., SÉNAC P., DIAZ M., "Formal Modeling of Space-
Based Software in the Context of Dynamic Reconfiguration", Proceedings of DAta
Systems In Aerospace (DASIA), 28 May - 1st June, Nice, France, 2001.

[ART 99] Artisan Software Tools, http://www.artisan-software.com, 1999.
[BJO 00] BJORKANDER M., "Real-Time Systems in UML and SDL", Embedded System

Engineering, October/November 2000 (http://www.telelogic.com).
[BOL 87] BOLOGNESI T., BRINKSMA E., "Introduction to the ISO specification Language

LOTOS", Computer Networks and ISDN Systems, Vol 14, No1, 1987.
[BRU 98] BRUEL, J.-M. FRANCE R.B., "Transforming UML Models to Formal

Specifications", Proceedings of the Conference on Object Oriented Programming
Systems Language and Applications OOPSLA'98, Vancouver, Canada, 1998.

[BRU 99] BRUEL J.-M., "Integrating Formal and Informal Specification Techniques. Why?
How? ", Proceedings of the IEEE Workshop on Industrial-Strength Formal Specification
Techniques WIFT'98, Boca Raton, Florida, USA, IEEE Computer Press, 1999.

[CLA 00] CLARCK , R.G., MOREIRA , A.M.D., "Use of E-LOTOS in Adding Formality to
UML", Journal of Universal Computer Science, Vol.6, No 11, p. 1071-1087, 2000.

[COU 00] COURTIAT J.-P., SANTOS C.A.S., LOHR C., OUTTAJ B., “Experience with RT-
LOTOS, a Temporal Extension of the LOTOS Formal Description Technique”, Computer
Communications, Vol. 23, No. 12, p. 1104-1123, 2000.

[DEL 98] DELATOUR J., PALUDETTO M., "UML/PNO, a way to merge UML and Petri net
objects for the analysis of real-time systems", Proceedings of the workshop on Object-
Oriented Technology and Real Time Systems ECOOP'98, Brussels, Belgium, 1998.

[DOU 99] DOUGLASS B.P., Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns, Addison-Wesley Longman, 1999
(http://www.ilogix.com).

[DUP 00] DUPUY S., LEDRU Y., CHABRE-PECCOUD M., "Vers une intégration utile de
notations semi-formelles et formelles : une expérience en UML et Z", Techniques et
Sciences Informatiques, Vol.6, No.1, p. 9-32, Hermès, Paris, 2000.

[DUP 01] Dupuy S., du Bouquet L., "A Multi-formalism Approach for the Validation of
UML M odels", Formal Aspects of Computing, No.12, p.228-230, 2001.

[EST 02] Esterel Studio, http://www.esterel-technologies.com/v2/index.html.
[EVA 99] EVANS A.S., COOK S., M ELLOR S., WARMER J., WILLS A., "Advanced Methods and

Tools for a Precise UML", Proceedings of the 2nd International Conference on the
Unified Modeling Language UML’99, Colorado, USA, LNCS 1723, 1999.

[GUE 00] LE GUENNEC A., "Méthodes formelles avec UML : Modélisation, validation et
génération de tests", Actes du 8è Colloque Francophone sur l’Ingénierie des Protocoles
CFIP’2000, Toulouse, Editions Hermès, Paris, p. 151-166, 17-20 octobre 2000.

[HER 98] HERNALSTEEN C., "Specification, Validation and Verification of Real-Time
Systems in ET-LOTOS, " Ph.D. thesis, Université Libre de Bruxelles, Belgium (1998).

[LOH 02] C. Lohr, L. Apvrille, "Translation of TURTLE diagrams into RT-LOTOS," Internal
report, in preparation.

[JAR 98] JARD C., JEZEQUEL J.-M., PENNANEAC’H F., "Vers l’utilisation d’outils de validation
de protocoles dans UML", Technique et Science Informatiques , Vol. 17, No.9, p. 1083-
1098, Hermès, Paris, 1998.

[OMG 01] "OMG Unified Modeling Language Specification", Version 1.4,
http://www.omg.org/cgi-bin/doc?formal/01-09-67, 2001.

[OMG 02] OBJECT M ANAGEMENT GROUP , “UML Profile for Scheduling, Performance, and
Time, Draft Specification, ftp://ftp.omg.org/pub/docs/ptc/02-03-02.pdf .

[PAL 99] HERNALSTEEN C., "Specification, Validation and Verification of Real-Time
Systems in ET-LOTOS", Ph.D. thesis, Université Libre de Bruxelles, Belgium, 1998.

[SAQ 01] de SAQUI-SANNES P., APVRILLE L., LOHR C., SENAC P., COURTIAT J.-P.,
"UML et RT-LOTOS : vers une intégration informel/formel au service de la validation de
systèmes temps réel", Actes du Colloque Francophone sur la Modélisation des Systèmes
Réactifs MSR’01, Toulouse, France, Octobre 2001.

[SEL 98] SELIC B., RUMBAUGH J., “Using UML for Modeling Complex Real-Time Systems”,
http://www.rational.com, 1998.

[TER 00] TERRIER, F., GÉRARD, S., "Real Time System Modeling with UML: Current Status
and Some Prospects", Proceedings of the 2nd Workshop of the SDL Forum society on
SDL and MSC, SAM 2000, Grenoble, France, 2000.

[TRA 00] TRAORÉ I., "An Outline of PVS Semantics for UML Statecharts", Journal of
Universal Computer Science, Vol. 6, No. 11, p. 1088-1108, 2000.

