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Abstract—We propose a two-stage detector consisting of a sub-
space detector followed by the whitened adaptive beamformer or-
thogonal rejection test. The performance analysis shows that it pos-
sesses the constant false alarm rate property with respect to the
unknown covariance matrix of the noise and that it can guarantee
a wider range of directivity values with respect to previously pro-
posed two-stage detectors. The probability of false alarm and the
probability of detection (for both matched and mismatched sig-
nals) have been evaluated by means of numerical integration tech-
niques.

Index Terms—Adaptive radar detection, adaptive sidelobe
blanker, constant false alarm rate (CFAR), mismatched signals.

I. INTRODUCTION

I N the last decades several papers have addressed adap-
tive radar detection of targets embedded in Gaussian or

non-Gaussian disturbance. Most of these papers follow the
lead of the seminal paper by Kelly [1], where the generalized
likelihood ratio test (GLRT) is used to conceive an adaptive
decision scheme capable of detecting coherent pulse trains
in presence of Gaussian disturbance with unknown spectral
properties. In [2], it is shown that an ad hoc detector, based
on the two-step GLRT-based design procedure and referred to
in the following as adaptive matched filter (AMF), can also
achieve better probability of detection than Kelly’s detector for
high signal-to-noise ratios (SNRs). The tools of invariance have
been used in [3] to address adaptive detection in presence of
structured and unstructured disturbance. Detection of point-like
targets in non-Gaussian noise has been dealt with in ([4] and
references therein). The case of point-like targets assumed
to belong to a known subspace of the observables has been
addressed in [5] and [6]. The case of rank-one waveforms that
are only partially known has been dealt with in [7]; therein,
the invariance properties of the decision problem are studied
and the corresponding maximal invariant is derived. Finally,
the authors design the GLRT-based detector for the problem at
hand. In addition, several detection algorithms for point-like or
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extended targets embedded in Gaussian disturbance are encom-
passed as special cases of the amazingly general framework
and derivation described in [8].

All of the above papers assume that returns from the target can
be modeled in terms of (a linear combination of) deterministic
signals known up to multiplicative, possibly complex, constants,
taking into account both target and channel effects. Moreover,
those detectors rely on the assumption that a set of secondary
data, namely returns free of signals components, but sharing the
spectral properties of the noise in the data under test, is available.
Such secondary data are used to come up with fully adaptive
detection schemes.

It is also important to stress that most detectors have not been
designed to distinguish between mainlobe and sidelobe mis-
matched signals. As a matter of fact, the actual signal backscat-
tered from a target (or target’s scattering centers) can be dif-
ferent from the nominal one and the mismatch can have different
reasons as, for example [9], [10], the following:

• coherent scattering from a direction different to that in
which the radar system is steered (sidelobe target);

• imperfect modeling of the mainlobe target by the nominal
steering vector, where the mismatch may be due to mul-
tipath propagation, array calibration uncertainties, beam-
pointing errors, etc.

Thus, it might be important to trade detection performance
of mainlobe targets for rejection capabilities of sidelobe ones.
In order to face with this dilemma, the adaptive beamformer or-
thogonal rejection test (ABORT) detector was introduced in [9].
The idea of ABORT is to modify the null hypothesis, which usu-
ally states that the vector under test contains noise only, so that
it possibly contains a vector which, in some way, is orthogonal
to the assumed target’s signature. Doing so, if a signal with ac-
tual steering vector different from the nominal one is present,
the detector will be less inclined to declare a detection, as the
null hypothesis will be more plausible. For instance, if a side-
lobe target is present, the ABORT detector will exhibit less false
alarms than detectors, which are rather sensitive to mismatched
signals, as the AMF. As customary, it is assumed that a set of
secondary data is available at the receiver. The directivity of
such detector is in between that of Kelly’s detector (which, in
turn, is more directive than the AMF) and the one of the adap-
tive coherence estimator (ACE) [4], [5].

However, in the original ABORT formulation, the fictitious
signal under the null hypothesis was assumed to be orthogonal to
the nominal one, in thequasi-whitened space, i.e., afterwhitening
by the sample covariance matrix of the training samples. In
[11], such an assumption was modified to address adaptive
detection of distributed targets embedded in homogeneous
disturbance, by resorting to the GLRT with the useful and the
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fictitious signals orthogonal in the whitened space, i.e., after
whitening with the true covariance matrix. This seemingly
minor modification led to significant differences compared to
ABORT and, more particularly, to an enhanced rejection of
sidelobe signals. Furthermore, in [11], it is shown that such
detector, referred to in the following as whitened ABORT
(W-ABORT), may become even more selective than the ACE.

On the other hand, increased robustness can be achieved by
resorting to the tools of subspace detection, namely assuming
that the target belongs to a known subspace of the observables,
or also constraining the possible useful signals to belong to a
proper cone with axis the whitened nominal steering vector [12],
[13]. Moreover, extending such a cone idea by modeling the null
hypothesis as the complement of a cone to the entire space of
the observables leads to a family of detectors capable of trading
detection performance of mainlobe targets for rejection capabil-
ities of sidelobe ones. A way to combine the ABORT rationale
with the subspace idea has been dealt with in [10] as a possible
means to retain an acceptable detection loss for slightly mis-
matched mainlobe targets.

Another class of detectors that combines the statistics of
Kelly’s detector and of the AMF has been proposed by Kalson
[14]: the detector statistic depends on a design parameter

that allows to obtain receiver operating characteris-
tics, actually the probability of detection versus the SNR,
in between that of Kelly’s detector and the one of the AMF.

Unfortunately, though, it seems difficult to find a decision
scheme capable of providing at the same time good capabilities
to reject sidelobe targets and high power in case of slightly mis-
matched mainlobe targets. In order to face with this problem,
the so-called two-stage detectors have been proposed; such
schemes are formed by cascading two detectors (usually with
opposite behaviors): the overall one declares the presence of
a target in the data under test only when data under test sur-
vive both detection thresholdings. A rather famous two-stage
detector is the adaptive sidelobe blanker (ASB). The ASB has
been proposed as a means for mitigating the high number of
false alarms of the AMF in the presence of undernulled inter-
ference [15]–[17]. It can be seen as the cascade of the AMF
and the ACE. Remarkably, it can adjust directivity by proper
selection of the two thresholds in order to trade good rejection
capabilities of sidelobe targets for an acceptable detection loss
of matched signals [18], [19]. Richmond has also provided
analytical expressions for the and the probability of false
alarm of the ASB and demonstrated that, in homogeneous
environment and with matched signals, it has higher or com-
mensurate , for a given , than both the AMF and the ACE
and an overall performance that is commensurate with Kelly’s
detector [20]. A further two-stage detector, consisting of the
cascade of the AMF and Kelly’s detector, has been proposed as
a computationally efficient implementation of the latter [19].
Moreover, in [21], a two-stage detector obtained cascading a
RAO test to the AMF has been proposed and assessed. Note
that the above two-stage detectors are invariant to the group of
transformations given in [3].

More recently, another two-stage detector, the so-called sub-
space-based ASB (S-ASB), has been proposed [22]. Specifi-
cally, the S-ASB is obtained cascading a subspace GLRT-based
detector [referred to in the following as subspace detector (SD)]
and the ACE; the performance assessment has shown that such
solution can increase the robustness of the composite detector
while retaining the same selectivity of the ASB. However, it is
not invariant to the group of transformations given in [3]. Based
upon the experience of [22], herein we propose a two-stage de-
tector aimed at increasing also the selectivity of the S-ASB,
i.e., the capability to reject mismatched signals. This is accom-
plished by cascading the SD and the W-ABORT. The perfor-
mance assessment confirms that its directivity varies in a wider
range than its competitors, at least for the considered class of
mismatched signals, when we constrain the maximum loss with
respect to Kelly’s detector for matched signals, given and

.
The remainder of the paper is organized as follows. The

next section is devoted to the problem formulation and to the
description of the proposed detector while Section III contains
its performance assessment; to this end, we derive analytical
expressions for and (for matched and mismatched
signals). In Section IV, we report some illustrative examples in
which we compare the performance of the proposed detector
with those of the S-ASB, ASB, and of the two-stage detector
proposed in [21]. Concluding remarks are given in Section V.
Finally,Appendixes A and B contain some analyticalderivations.

II. PROBLEM FORMULATION

Assume that a linear array formed by antennas senses
the cell under test and that each antenna collects samples.
Denote by the -dimensional column vector, with

, containing returns from the cell under test. We
want to test whether or not contains useful target echoes. As
customary, we assume that a set of secondary data,

, namely data free of signal
components but sharing the same statistical properties of the
noise in the cell under test, is available.

The detection problem can be recast as

where the following holds:
• and the , are independent

and identically distributed complex normal random vec-
tors with zero-mean and unknown, positive-definite co-
variance matrix , i.e.,

;
• is the direction of the (possible) mainlobe target

echo, possibly different from that of the nominal steering
vector ;

• is an unknown (deterministic) factor which accounts
for both target and channel effects.



4154 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 9, SEPTEMBER 2008

In the following we propose and assess a two-stage detector
obtained by cascading the SD [8], whose statistic is given by

(1)

and the W-ABORT, whose statistic is given by [11]

(2)

where the following holds:
• denotes conjugate transpose;
• is times the sample covariance matrix of

the secondary data, i.e., with
;

• is a full-column-rank matrix (and, hence,
is the rank of . Hereafter, we assume that the first

column of is , i.e., , and defer to
Section IV the choice of the remaining columns of .

Notice that

is the well-known decision statistic of Kelly’s detector [1].
Summarizing, the operation of the newly-proposed detector,

referred to in the following as WAS-ASB, can be pictorially
described as follows:

where and form the threshold pair to be set in order to guar-
antee the overall desired .

III. PERFORMANCE ASSESSMENT

In this section, we derive analytical expressions for and
of the WAS-ASB; to this end, we replace with the equiv-

alent decision statistic . Based upon results
contained in [22], it is possible to show that and admit
the following stochastic representations:

where (see Appendix A).
Moreover, under the hypothesis:
• , given and , is ruled by the complex central F-dis-

tribution with 1, degrees of freedom [8] (for
a definition of complex normal related statistics, see also
[20, App. A]);

• is a complex central F-distributed random variable (rv)
with degrees of freedom, i.e.,

(see [22, App. B]);
• (see [22, App. B]);
• and are statistically independent rv’s (see [22, App. B]).

Now, the of the two-stage detector can be expressed as

where is the probability density function
(pdf) of the rv is the pdf of the rv

, and is the cumulative distribution
function (CDF) of the rv , given and (and under , i.e.,
the CDF of a rv ruled by the distribution.

The following remarks are now in order. First, it is apparent
that the WAS-ASB possesses the constant false alarm rate
(CFAR) property with respect to . Second, note that the
of the two-stage detector depends on two thresholds; as a con-
sequence, there exist infinite threshold pairs that guarantee the
same value of . Third, observe that the is independent of

but for the value of (and provided that the first column of
is . For the reader’s ease, Fig. 1 shows the contour plots

for the WAS-ASB corresponding to different values of , as
functions of the threshold pairs , , and

. All curves have been obtained by means of numerical
integration techniques. Note that, for a preassigned , the
threshold of the SD does not approximately change for values
of the threshold of the W-ABORT ranging from 0 to 0.2.

Under the hypothesis, we assume a misalignment between
the actual steering vector and the nominal one , i.e., .
In this case, the rv’s and depend on defined through (5)
of Appendix B; for this reason, in the following, we will denote
these rv’s by and . Due to the useful signal components,
the distributions of , and change, more precisely (see
Appendix B):

• , given and , is ruled by the complex noncentral
F-distribution with degrees of freedom and
noncentrality parameter

where

is the total available signal-to-noise ratio;
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Fig. 1. Contours of constant � for the WAS-ASB with � � ��� � � ��,
and � � �.

• is ruled by the complex noncentral F-distribution with
degrees of freedom and noncentrality

parameter

i.e., , where is defined in
Appendix B;

• given , with

where is defined in Appendix B.
Thus, proceeding along the same line as for the derivation of

the , it is easy to see that the is given by

(3)

where is the CDF of the rv , given and
(and under , i.e., the CDF of a rv ruled by the

distribution, is the pdf of a rv ruled by
the , and is the pdf of a rv
ruled by the .

In the case of perfect match between and , i.e.,
and are equal to zero, thus rv’s and obey to the complex
central F-distributions with and

degrees of freedom, respectively. On the other hand,
is still subject to the complex noncentral F-distribution with

degrees of freedom and noncentrality parameter
given by

and (in this case) the does not depend on the choice of
but for the value of (and provided that the first column of
is .

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

In this section, we present some numerical examples to show
the effectiveness of the WAS-ASB, also in comparison to the
ASB, the S-ASB, and the two-stage detector proposed in [21]
and referred to in the following as AMF-RAO. All curves have
been obtained by means of numerical integration techniques1.
In all examples, the noise is modeled as an exponentially-cor-
related complex normal vector with one-lag correlation coeffi-
cient , namely the th element of the covariance matrix
is given by , with . The proba-
bility of false alarm is set to . Moreover, we set

, and choose with

where is the interelement spacing, is the radar operating
wavelength, and denotes transpose. Moreover, we will denote
by the azimuthal angle of the impinging useful target echo,
i.e., .

Until now, we have left aside the problem of how to choose
and the remaining columns of . First, remember that, under

matching conditions, does not depend on the choice of but
for the value of . However, the design of will impact on the
performance of the detector in presence of mismatched signals.
In fact, values of greater than one are necessary to increase its
robustness. The design of is a challenging problem: simula-
tion results not reported herein indicate that values of or

and a vector significantly mismatched with respect to
may produce curves of versus whose transition from

the “bandpass” to the “stopband” is not sharp; see [22] for a
more detailed discussion about this issue. For this reason, in the
following we set and , with , and
discuss the behavior of the corresponding detector in order to
prove its effectiveness.

In Figs. 2–4, we plot versus SNR for the S-ASB, the
WAS-ASB, and the AMF-RAO, respectively, as they compare
to Kelly’s detector [1], for the case of a matched target,

; in these figures, we show two curves (in addition to
the curve of Kelly’s detector) for each of them: such curves cor-
respond to the limiting behaviors of the two-stage detectors for

1For the WAS-ASB, we also show results obtained through Monte Carlo sim-
ulation. To this end, we resorted to ����� and �� independent trials in order
to evaluate the thresholds necessary to ensure a preassigned value of � and
the � ’s, respectively. Simulated results are presented in Figs. 3 and 7 and are
shown as cross markers.
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Fig. 2. � versus SNR for the S-ASB (solid lines) and Kelly’s detector
(dashed–dotted line) with � � ��� � � ��, and � � �.

Fig. 3. � versus SNR for the WAS-ASB (solid lines) and Kelly’s detector
(dashed–dotted line) with � � ��� � � ��, and � � �. Cross markers denote
results obtained by Monte Carlo simulation.

threshold settings which guarantee . Fig. 2 shows
that the maximum loss of the S-ASB with respect to Kelly’s de-
tector is less than (about) 1.2 dB (at ; such a maximum
loss increases to (about) 2 dB in Figs. 3 and 4 for the WAS-ASB
and the AMF-RAO.

In Figs. 5–8, we plot versus (measured in degrees)
for the ASB, the S-ASB, the WAS-ASB, and the AMF-RAO,
respectively, ; all plotted curves refer to those
threshold pairs which ensure the best rejection capabilities of
sidelobe targets under the constraint that the loss with respect to
Kelly’s detector and for matched signals is less than (about) 1
dB at and . Observe from Figs. 5 and 6 that
the S-ASB can ensure better robustness with respect to the ASB,
due to the first stage (the SD), which is less sensitive than the
AMF to mismatched signals. However, S-ASB and ASB exhibit
the same capability to reject sidelobe targets, according to the

Fig. 4. � versus SNR for the AMF-RAO (solid lines) and Kelly’s detector
(dashed–dotted line) with � � �� and � � ��.

Fig. 5. � versus target azimuthal angle for the ASB with � � ��� � � ���

and ��� � 19 dB.

fact that the second stage (the ACE) is the same. As it can be
seen from Figs. 6 and 7, instead, the WAS-ASB guarantees the
same robustness of the S-ASB, but better rejection capabilities
than the latter (and, consequently, better rejection capabilities
than the ASB), due to the fact that the ACE has been replaced
by the W-ABORT. Other simulation results not reported here,
in order not to burden too much the analysis, have shown that
the WAS-ASB is generally more selective than the ASB and the
S-ASB and more robust than the ASB. Finally, from Figs. 7 and
8, we see that the AMF-RAO is slightly more selective than the
WAS-ASB for the considered parameter values.

In Figs. 9 and 10, we plot contours of constant , as func-
tions of SNR and ; as for the curves of Figs. 5–8, thresh-
olds are such that the loss with respect to Kelly’s detector is
less than (about) 1 dB for the perfectly matched case. More
precisely, in Fig. 9, we analyze the robustness with respect to
mismatched signals and compare the WAS-ASB and the ASB;
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Fig. 6. � versus target azimuthal angle for the S-ASB with � � ��� � �

��� � � �, and ��� � 19 dB.

Fig. 7. � versus target azimuthal angle for the WAS-ASB with � � ���

� � ��� � � �, and ��� � 19 dB. Cross markers denote results obtained by
Monte Carlo simulation.

again the plots show that the WAS-ASB can be made less sen-
sitive to steering mismatches. In Fig. 10, we evaluate the capa-
bility to reject sidelobe targets and, to this end, we compare the
WAS-ASB and the S-ASB (which differ in the second stage); as
it can be seen, the WAS-ASB is generally superior to the S-ASB
in rejecting mismatched signals.

In Figs. 11–13, we compare the WAS-ASB with the
AMF-RAO for different values of and , and under the
constraint that the loss with respect to Kelly’s detector is less
than (about) 1 dB for the perfectly matched case. Inspection
of the figures highlights that the AMF-RAO is more sensitive
than the WAS-ASB to the system parameters and . More
precisely, the AMF-RAO becomes less selective as and/or

increase and the WAS-ASB detector is slightly superior to
the AMF-RAO in terms of selectivity for the system parameters
considered in Figs. 12 and 13.

Fig. 8. � versus target azimuthal angle for the AMF-RAO with � � ���

� � ��, and ��� � 19 dB.

Fig. 9. Contours of constant � for the WAS-ASB and the ASB with� � ���

� � ��� � � �, and threshold pairs corresponding to the most robust case.

As a final comment, observe that the WAS-ASB is more time
consuming than the ASB and the AMF-RAO; note though that
resorting to the usual Landau notation all of them are ,
namely computation of their decision statistics requires a
number of flops proportional to (remember that
which is in fact the number of flops required to evaluate .

V. CONCLUSION

We have proposed a two-stage detector consisting of a
GLRT-based subspace detector followed by the W-ABORT.
The performance analysis has been conducted analytically for
both matched and mismatched signals. Although the proposed
detector is not invariant to a meaningful group of transfor-
mations, it possesses the CFAR property with respect to the
unknown covariance matrix of the noise and it can guarantee
a wider range of directivity values with respect to its natural
competitors. Thus, it appears as a viable means to trade detec-
tion performance of mainlobe targets for rejection capabilities
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Fig. 10. Contours of constant � for the WAS-ASB and the S-ASB with � �

��� � � ��� � � �, and threshold pairs corresponding to the most selective
case.

Fig. 11. Contours of constant � for the WAS-ASB and the AMF-RAO with
� � ��� � � ��� � � �, and threshold pairs corresponding to the most
selective case.

of sidelobe ones. However, the design of flexible detection
algorithms is still an open problem. Following the lead of [23],
where the theory of convex optimization is used to provide
flexibility for array beampattern synthesis, we are currently
investigating the design of tunable receivers taking advantage
of a stage aimed at adaptive weighting of the received signals.

APPENDIX A
STOCHASTIC REPRESENTATION OF THE SD AND THE W-ABORT

In this section, we come up with suitable stochastic represen-
tations for and . As to the subspace detector, we refer
to [22, App. A], where it is shown that

Fig. 12. Contours of constant � for the WAS-ASB and the AMF-RAO with
� � ��� � � ��� � � �, and threshold pairs corresponding to the most
selective case.

Fig. 13. Contours of constant � for the WAS-ASB and the AMF-RAO with
� � ��� � � ��� � � �, and threshold pairs corresponding to the most
selective case.

Now, let us concentrate on and note that

where

Now, let us define the following random variable
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and observe that

It follows that can be recast as

The above stochastic representation is useful to characterize the
W-ABORT [24], but it has to be further modified in order to de-
rive the statistical characterization of the overall two-stage de-
tector. More precisely, we need to write the term in a different
form. To this end, applying the whitening transformation
to the vectors and , yields

where , and
; then, define a unitary matrix

that rotates , which is a slice of unitary matrix obtained by
means of factorization of the matrix , into the first

elementary vectors, i.e.,

and, in particular,

It follows that can be recast as

(4)

where and . Following the lead of
[1] and [8], we decompose all vectors into two components: an

-component consisting of the first element only and a -com-
ponent consisting of the rest of the vector, namely as

and

it follows that

Substituting the above equations into (4) yields

Again, let us partition the -components into two subcompo-
nents, a -component containing the first elements and
a -component containing the rest of the -vector

and

Now, by using equation A1-9 of [8], it is possible to show that
can be rewritten as

where [see the equation shown at the bottom of the page]. Sum-
marizing, we have found that can be written as

APPENDIX B
STATISTICAL CHARACTERIZATION OF AND

IN CASE OF MISMATCH

This section is devoted to the statistical characterization of
the rv’s and , i.e., the rv’s and when the actual steering

and
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vector and the nominal one are not aligned. Under this
hypothesis, the random vector is distributed as [25]

where and are such that2

and

(5)

Now, recast as follows:

where

and

following the rationale of the proof of Proposition 2 in [22], the
following can be readily shown:

• and are each other independent;
• is distributed according to the complex Wishart distribu-

tion with parameters , and
(also conditionally on and ;

• given the -components,

Therefore, by Theorem 1 in [22] we have that

given , is ruled by the complex noncentral F-distribution with
degrees of freedom and noncentrality parameter

given by

where denotes statistical expectation. Theorem 1
in [22] comes in handy also to find the distribution
of the rv ; more precisely, note that, since

and
, random variable is ruled by the complex

2� � � denotes the Euclidean norm of a vector.

noncentral F-distribution with degrees
of freedom and noncentrality parameter given by
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