
 

This is a publisher-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID: 1996 

To cite this document: MICHON, Guilhem. BERLIOZ, Alain. LAMARQUE, 
Claude-Henri. Experimental and theoretical investigation on nonlinear behavior 
of cable-stayed bridges. In: ASME 2009 International Design Engineering 
Technical Conferences & Computers and Information in Engineering 
Conference, 30 August - 02 Sept 2009, San Diego, USA. 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@inp-toulouse.fr 

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr


 1 Copyright © 2009 by ASME 

Proceedings of IDETC/CIE 2009 
ASME 2009 International Design Engineering Technical Conferences & 

Computers and Information in Engineering Conference 
August 30 - September 2, 2009, San Diego, CA, USA 

 
 

DETC2009-87242

EXPERIMENTAL AND THEORETICAL INVESTIGATION ON NONLINEAR BEHAVIOR 
OF CABLE-STAYED BRIDGES. 

 
 
 

Guilhem MICHON 
Université de Toulouse, ISAE, 

DMSM, 
10 avenue Edouard Belin, 
31 055 Toulouse, France 

+33 (0)5 61 33 81 58 
guilhem.michon@isae.fr 

 

Alain BERLIOZ 
Université de Toulouse, INSA-UPS, 

LGMT, EA814, 
118 route de Narbonne,  
31 077Toulouse, France  

+33 (0)5 61 55 63 75 
berlioz@cict.fr 

 

Claude-Henri LAMARQUE 
Université de Lyon, ENTPE, 
Laboratoire Géo-Matériaux 

URA CNRS 1652, 
3 rue Maurice Audin,  

69 518 Vaulx-en-Velin, France 
+33 (0)4 72 04 70 75  
lamarque@entpe.fr 

 
 
 

ABSTRACT 
This paper deals with experimental study and with 

understanding via a finite number of degrees of freedom model 
of the vibrations of an inclined cable linked to a continuous 
beam. This is a simplified version of deck and cable of a 
bridge. External excitation is exerted on the beam. The cable 
attached to the end of the beam is submitted to a vertical 
sinusoidal solicitation due to the response of the finite stiffness 
beam. The excitation of the cable though it is more complex 
looks similar to the excitation used in previous works. A 
guided device located at the end of the beam ensures the 
excitation with a variation of the horizontal component of the 
cable tension that introduces a new parametric excitation. 
Analysis of preliminary experimental results for main and 
secondary resonances permits us to consider simple modeling 
with one degree of freedom systems obtained by projection of 
the continuous three-dimensional model of the cable on 
adapted Irvine mode. Analytical treatment of these models 
involving data from the experimental devices shows a correct 
qualitative agreement between preliminary experiments and 
theoretical. Continuation technique are used to highlight the 
influence of physical parameters. 

 
INTRODUCTION 
 Cables oscillations studies have been extensively 
considered in the past decades. Some of them are devoted to 
the static behavior [1], as other ones deal with the dynamic 
aspect [2], [3], [4], with a linear approach. Other work were 
conducted with the necessary description of the nonlinear 

terms to understand the behavior of cables vibration in real 
environment. 

Meirovitch [5] shows that the in-plane motion of a not 
damped taut cable can be described by a Duffing type 
equation. Takahashi and Konishi [6] are interested in the free 
or forced three-dimensional nonlinear vibrations. Benedettini 
et al. [7], [8], [9] consider oscillations of an elastic cable 
suspended between two horizontal supports under various 
cases of resonances. These studies are also important regarding 
applications (dampers [10], aerial cable-cars [11], tendons 
control [12], stayed bridges, etc…). 

Inclusion of nonlinear terms is compulsory to highlight 
other phenomenon (nonlinear modal interaction [13], super-
harmonic effects, internal resonances [14], bifurcations [15], 
and parametric nonlinearities [16]). Nayfeh et al. [17] gives 
some interesting references. 

Introducing models with a few degrees of freedom (for 
example three [18]) is fruitful and permits to explain 
experimental results. 

Gattulli et al. investigates an analytical, numerical and 
experimental analysis of a cable stayed bridge in [19] and [20]. 
Their modeling approach is based on the separate description 
of both medias (i.e. cable and beam), linked by boundary and 
relevant mechanical conditions. 

 
The results suggested in these multiple references use all 

the possible approaches to describe, explain but by condensing 
the phenomenology of the observations. Usually, after the 
setting in equations in the form of a three-dimensional system 
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of nonlinear partial derivative equations of evolution 
governing displacements of the cable, the authors use a 
discretization by introducing a truncated base of modes of the 
linear part (Irvine’s modes) selected according to the 
solicitation range. Projecting on a truncated basis, a regular 
nonlinear spring – masse system is obtained and studied via 
analytical methods or by purely numerical approaches 
according to the type of awaited oscillations. 

Usually, the authors considered only horizontal cables. 
This methodology nevertheless was used by Khadraoui [21] in 
his PhD thesis on an inclined cable. 

 
The presented piece of research is in the continuity of 

previous studies [22], [23], [24] in which this method was also 
used. In this works, the vibrations of an inclined cable were 
studied from the point of view of two particular resonances: 
principal resonance where the sinusoidal external excitation 
frequency is supposed near to the first in-plane Irvine natural 
frequency, and then when the external excitation frequency is 
close to the double of the natural frequency. The results 
obtained showed a good agreement between the experiment 
and the analytical description obtained for a one degree of 
freedom system projected on the suitable Irvine’s mode. The 
adopted analytical method was the familiar multiple scales 
method. 

Nevertheless in this work, the excitation was produced by 
imposing a displacement directly at the lower end of the cable, 
with a device that maintained the horizontal component of the 
cable tension as constant as possible. We considered that this 
model supposed to represent a small-scale model of a cable-
stayed bridge did not truly take into account the deck of the 
bridge by the introduction of a finite stiffness. 

This is the reason why we study here a specific experiment 
of an inclined cable connected to a horizontal beam. The 
excitation of the beam is transmitted to the cable via a 
guidance system constituting an added mass. The measurement 
of the excitation force permits to decompose the dynamic 
components of the horizontal reaction and the components of 
the external excitation transmitted to the cable. The 
measurement of the excitation exerted on the basis of the cable 
and the measurement of the response of the cable permits to 
highlight concerned resonances and to consider a simplified 
model.  

The aim of the paper is to understand by measurement the 
role of this stiffness, and to use a similar model as simple as 
possible (ideally a nonlinear one degree of freedoms system), 
the added beam acting simply like “filters” external excitation. 
The guidance system acts as a filter for the horizontal reaction 
to introduce in the simplified model. 

 
The paper is organized as follows: after this introduction, 

the experimental set-up is detailed in the first Section. The 
second Section presents experimental results concerning 
reaction and excitation forces, and specific cable response. The 
simplified model and its reduction are presented in the third 
Section. Numerical investigations are carried out in the last 
Section to highlight the influence of physical parameter on the 
response amplitude. 

 
EXPERIMENTAL INVESTIGATION 
 
Description of the Experimental set-up 
 
The global experimental set-up, see Figure 1, is composed of a 
composite flexible blade which represents the deck, and an 
inclined cable (a steel wire surrounded by copper wire, in 
order to increase the weight per unit length, but not the flexural 
rigidity modulus). Both elements are linked to a mass, forced 
to move vertically, and which represents the anchor point and 
the equivalent mass of a section of the deck. Therefore, the 
cable has a given initial static tension due to the mass. A 100N 
electrodynamics shaker applies a force close to blade 
clumping. The measurement device is composed as follows. 
The excitation force from the shaker to the structure is 
measured thanks to a piezo-electric sensor. The transmitted 
force from the end of the beam to the mass is also measured 
thanks to a piezo-electric sensor. The vertical displacement of 
the mass is measured by a laser displacement sensor. The 
instantaneous cable tension is measured via an S-shape force 
sensor, which also captures the static tension. Finally a high 
resolution laser sensor captures without contact the in-plane 
motion of the cable.  

 

 

Push-rods 

Shaker 
100 N 

θ 

Laser 
 displacement sensor 

Laser 
Micrometer 

Piezo-electric force 
sensors 

Flexible beam 

Strain gage Force 
sensor 

  
Figure 1: Experimental set-up sketch.
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Figure 2: Experimental set-up: global view and detail of 

the excitation system. 
 
 
Set-up mechanical characteristics and observations 

 
In this experimental device, the cable length is 1.90m, the 

inclination angle is 21.7°, and the sag is about 10mm. The 
static tension is adjustable and set in this application to 62N in 
the cable.  

The presence of the beam at the lower end of the cable has 
an important influence on the natural frequencies of the 
system. Therefore, if the cable is clamped-clamped, the out of 
plane natural frequency is equal to 4.87 Hz and the in-plane 
natural frequency is equal to 6.06 Hz. But, in this case, where 
the lower end of the cable is linked to a mass and a beam, the 
out of plane natural frequency is 6.1 Hz, and the in plane 
natural frequency is 5.8Hz. 

 
 

Experimental results 
The experimental results present the response amplitude 

of the cable as a function of the excitation frequency for the 
first two instability zones. 
 

Primary resonance ( 1ωΩ ≈ ) 

The primary resonance presents a nonlinear behavior even 
for low excitation amplitude, see Figure 3. 
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Figure 3: Experimental response amplitude vs. excitation 

frequency for the in-plane motion of the cable for two 
levels of excitation force, for the primary resonance 
( 1ωΩ ≈ ), for both sweep directions (* : up; + : down) 

Parameters are dimensionless. 
 
 
Sub harmonic resonance ( 12ωΩ ≈ ) 

In the primary parametric instability zone, the response of 
the cable exhibit large amplitudes, see Figure 4. This 
instability naturally appears for large excitation amplitudes. A 
softening behavior is highlighted. 
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Figure 4: Experimental response amplitude vs. excitation 

frequency for the in-plane motion of the cable for two 
levels of excitation force, for the sub-harmonic resonance 

( 12ωΩ ≈ ). Parameters are dimensionless. 
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MECHANICAL MODEL 
 
Let consider a cable, of length L, clamped at both ends 

and inclined of an angle θ with respect to the horizontal axis, 
see Figure 5. The motion at the lower end Z(t) is imposed and 
given by: 

( ) ( )01cosZ t Z t= Ω  

 
 

x 

y 
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Y 
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Z(t) 
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A 

z 

 
Figure 5: Inclined cable model. 

 
Classical method consists in considering a nonlinear elastic 
model of the cable represented by three partial derivative 
equations system describing the three-dimensional motion of 
the cable. The different steps are given in [22] or [23]. 
 
In our case, and following the experimental observations, the 
specific boundary condition inverses the classical distribution 
of in-plane and out of plane natural frequencies. This 
parameter is essential in the behavior of the response. 
 
Regarding the in-plane vertical observed vibrations, and 
considering principal nonlinear terms, the retained problem is 
related to V(s,t), the vertical cable displacement, where t is 
time and s the curvilinear abscissa identical to the spatial 
coordinate x. The continuous problem is projected using the 
following expression for V: 
 

( ) ( ) ( ) ( ), . . cosV x t f x y t x Z t θ= +  

 
where y is the unknown modal coordinate, θ the angle of the 
inclined cable with respect to the horizontal axis, 

( ) ( )cos zZ t Z t φ= Ω +  the imposed displacement at the lower 

end, and f(x) the Irvine function for the first mode defined by: 
 

( )
0

0 0

0 0 0

1 cos tan sin
2

1 cos tan sin
2 2 2

x x

L L
f x

ωω ω

ω ω ω

     − −     
     =
     − −     
     

 

 
Static and dynamic deformed shapes of the cable are presented 
on Figure 6. 
 
 

 
Figure 6: Static (dashed) and dynamic (line) deformed 

shapes of the cable. 
 
Among the parameters governing the obtained equation of 
motion for the one degree of freedom system, appears the 
horizontal tension H. This tension is composed of a static part 
H0 and a dynamic part rH0, and is written as follow: 
 

( )( ) ( )0 1 cos cosrH H r t φ θ= − Ω +  

 
Due to the external excitation Z(t), and the moving point B, the 
damping can be taken under the general form: 
 

( )( )1 1 c1 c cos tξ = ξ + Ω +φ  

 
Where , ,Z r cφ φ φ represent the phase delay between excitation 

and displacement, tension and damping respectively. 
 
Finally, the one degree of freedom system which condensed y 
oscillation is given by: 
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( )( )
( )( )( ( )( )

( )( ) ( )( ) ( )( )
( )( )
( )( )

( )( ) ( )( )
( )( ) ( )( )

2

2

22

2 r

3

3 r

2

1 r z

2 2

2 r z

1 c

0 1 r z

2 3

2 r z 3 r

d y dy
2

dtdt

y

y 1 rcos t

y 1 rcos t

1 rcos t Zcos t

1 rcos t Zcos t

1 c cos t

1 rcos t Zcos t

1 rcos t Zcos t 1 rcos t

+ ξω

+

+α − Ω + φ

+α − Ω + φ

= γ − Ω + φ Ω + φ

+γ − Ω + φ Ω + φ

+ Ω +φ

 β +β − Ω +φ Ω +φ +
 
 β − Ω +φ Ω +φ +β − Ω +φ   

 
 

Therefore, this model includes a tension fluctuation H, part of 
the parametric excitation, and an imposed vertical 
displacement Z at the lower end of the cable, responsible for 
the forcing term in the equation of motion, and also for 
parametric excitation. 
 
The method of multiple scales in time is used to the first order. 

0 1

i
i

y y y

T t,i 0,1

= +ε

= ε =
 

The contribution of nonlinear terms and damping terms are 
maintained to the same order. So we introduce: 

 

i

i

0i

i0

i i0

,

,i 1,2,3

,i 1,2

,i 2,3

β β

γ γ

ξ ζ

= ε =
= ε =

α = εα =
= ε

 

 
This leads to the two differential equations: 

2
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T
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1 r

∂
+

∂
∂
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∂ ∂

∂
− ζω + Ω +φ

∂

−α − Ω +φ

−α − Ω +φ

+β − Ω +φ Ω +φ

+β − Ω +φ Ω +φ

+β − Ω +φ

+γ − Ω +φ Ω +φ

+γ − ( )( ) ( )( )2 2

0 r 0 zcos T Zcos TΩ +φ Ω +φ

 

 
 

Primary resonance  
 
The solution of the first differential equation is: 

( ) [ ]1 0i T
0 1y A T e c.c.ω= +  

 
Introducing the classical detuning rule: 1Ω ≈ ω +εσ , and 

eliminating the secular terms in the second differential 
equation lead to a single complex equation. By using 

0ib0a
A e

2
=  (with a0 and b0 real), and putting 0 1b TΘ = − σ , 

we obtain the two equilibrium equations governing 
amplitude a0 and phase Θ. They are: 
 

( )

( )0

2
0 1

2 2 2
10 20 10 20 0

2 2
30 20 10

sin Z Z Z a r

a sin 0

a

1 3 3 1
r r

2 4 8 4

3 1 1
2 r Z Zr

8 8 8

− ζω

Θ γ + γ γ −

=

 + − − α 
 

 + Θ β + β − β 
 

 

 
and 
 

( )

( )0

2 2 2
0 20 30 30 1 30 0 10

2 2 2
10 20 10 20 0

2 2
30 20 10

Z

cos Z Z Z a r

a cos 0

1 3 1 3 1
a r a Zr

4 4 2 8 4

1 3 3 3
r r

2 4 8 4

3 1 1
2 r Z Zr

8 8 8

− β β ω

Θ γ + γ γ

− =

 − − β + σ− α + β 
 

 − − − − α 
 

 Θ β + β − β 
 

 

 
 

The predicted response amplitude is plotted on Figure 7 
for a given set of parameters. The two possible responses 
merge close to the natural frequency, and move afterwards. 
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Figure 7: Predicted dimensionless response amplitude vs. 
excitation frequency, for the primary resonance ( 1ωΩ ≈ ). 
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Sub harmonic resonance  
 
In this case, the detuning rule is: 12Ω ≈ ω +εσ  and we use 

0 1

1
b T

2
Θ = − σ. 

The two equilibrium equations are: 
 

( )

( )

2
0 1

2 3 2
0 30 0 30 30 10 20

2
1 1 0

sin 2 a Z Z

cos 0

a

1 3 3 1 3
a r r r r

8 16 4 4 16

1
2 c a

2

− ζω

+ Θ α β − β β − β

ζω =

 − − + 
 

+ Θ

 

 
and 

( )

( )

2

3 2

0

2 2
0 30 10 30 0 30 20 1

2
30 0 30 30 10 20

2
1 1 1 0

3
r

4

3 3 1 3
a 2 r r Z rZ

16 4 4 16

sin

1 3 1 1 1
a Zr a Z

4 8 2 4 2

1
cos a r

4

1
2 c a 0

2

− β

− Θ β β β − β

 + β − α − β − β + ω σ 
 

 − α − − + 
 

+ Θ ζ ω =

 

 
The predicted response amplitude is plotted on Figure 8 
for a given set of parameters. Three possible responses 
exist, where the intermediate solution is unstable. 
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Figure 8: Predicted dimensionless response amplitude vs. 

excitation frequency, for the sub-harmonic resonance 
( 12ωΩ ≈ ). 

NUMERICAL INVESTIGATION 
 
Using continuation technique on the presented model, it is 

possible to explore the influence of several parameters such as 
cable static tension, inclination angle, excitation levels, 
mechanical and geometric properties. In what follow, we 

present the influence of the inclination angle on the predicted 
response amplitude close by the primary resonance, all other 
parameters being constant. The excitation frequency is, in this 
case, normalized to a constant value, in order to make the 
comparison easier.  

Even if the shapes of the responses remain identical, it 
highlights an increase of the response amplitude and frequency 
versus the inclination angle. 

 

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

LP LP

LP

 
(a) 

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

LP

LP

LP

 
(b) 
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Figure 9: Predicted (by continuation technique) 

dimensionless response vs excitation frequency for three 
inclination angle: (a) 30°, (b) 40°, (c) 50°. 
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CONCLUSION 

This paper was devoted to the experimental and theoretical 
investigation on the nonlinear behavior of cable stayed 
bridges. The experimental approach highlighted specific non-
linear phenomenon and couplings between the cable and the 
beam. The softening behavior is due to the presence of the 
beam stiffness. 
The theoretical model is originally based on the classical 
inclined cables in-plane equation of motion. In the developed 
model, the cable is both subjected to an imposed boundary 
displacement and tension fluctuation, which leads to a forced, 
parametric and nonlinear equation of motion. 
Both approaches depict the same conclusion: the cable-beam 
coupling leads to a softening behavior of the system. 
The perspectives are oriented toward the inclusion of the pile 
stiffness in the model, and also toward the passive control of 
the phenomenon. 
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