
A Comparison of Automatic Protocol

Generation Techniquesy

R� De Silva� L� Dairaine� A� Seneviratne� M� Fry

May ����

UTS� Sydney

School of E� E�
P�O� Box ���� Broadway
NSW ���� Australia

ENSICA

�� place �mile Blouin
����	 Toulouse Cedex

France

Abstract
 Due to the increasing complexity of applications and the availability of high speed
networks� classical protocols have become the main bottleneck in communication systems� Al�

though tailored protocols are able to respond to the needs of a given application� their develop�
ment is expensive in terms of time and e�ort� An automatic protocol generation environment

is most desirable� Two approaches currently used are the stub compilation and the runtime
adaptive techniques� We have studied these two approaches and the behaviour of the resulting

tailored transport protocols� Relative performance� comparisons and discussions about these
two approaches are presented in this paper�

Keywords
 Tailored Protocol� Automated Implementation�

�� Introduction

The development of �exible and e�cient communication protocols is an important step to

wards the realization of high performance distributed applications running on new high speed
networks� Developments in high speed networking are in�uenced by two major factors
 the
increasing capability of end
systems and communication networks� and the diversity and dy

namism of new applications� Recent networks such as FDDI and ATM allow for high speed
transmission of digital data and have low latency characteristics� thus enabling the design of
new types of applications such as multimedia� High level protocols� like TCP and TP�� have
not evolved to take developments in applications and networking into consideration� resulting
in them becoming a bottleneck in the communication system �Clark and Tennenhouse� ������

Protocols can be tailored to application needs and network conditions� Di�erent approaches
can be taken to tailoring protocols�

One method is to hand
craft the tailored protocol� This approach often leads to high per

formance protocols for a given application and network� but demands a lot of e�ort and time
to design� implement and maintain� The alternative to hand
crafting protocols is to automat

ically generate application speci�c protocols� A number of research projects are currently in

yPublished in Australian Computer Journal� Volume ��� Number �� May ����

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12040322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Comparison of Automatic Protocol Generation Techniques �

progress� studying the possibility of automatically implementing a protocol based on a speci

�cation of application requirements and network resources� This paper reports a comparison
of two approaches used for the automatic generation of tailored protocols�

The paper is organized as follows� In section � we study the evolution of protocol de

velopment� discussing the main techniques used in protocol design� Two automatic protocol
tailoring approaches�namely compilation
based and runtime adaptive�will be studied in sec

tion �� Section � presents our testing environment and results� both in terms of quantitative
performance measurements and methodological aspects� Concluding remarks are given in
section ��

�� Tailoring Protocols in High Speed Environments

Protocols should be designed to handle the varying requirements of multimedia applications
and to take into consideration the underlying network support� The main techniques that can
be used to tailor a protocol are
 the optmization of a current implementation� the development
of new mechanisms� and the development of new protocols�

Implementation optimizations can be applied to existing protocols to improve performance�
Such techniques do not change the functionality of the protocol but simply reduce the pro

cessing cost of the protocol�

An alternative technique is to develop new mechanisms� This is often achieved by re

engineering an existing protocol to reduce a bottleneck that arises out of a particular charac

teristic of the operating environment� These implementations often present a large number of
options� Only a limited set of these options are used by a particular application�

The third technique is the development of new protocols built to exactly match a given
application�s requirements� This technique would normally also utilise the previous two tech

niques discussed above� The main drawback of this method is the development cost for a
specialized protocol� Automatic protocol generation permits a high level of tailoring without
the high costs of time and manpower�

�� Automated Communication Protocol Generation

Automated tailored protocol generation can be achieved by de�ning� for a given application�
the functionality the protocol should provide and the associated mechanisms� The overall
process involves three basic tasks 
 speci�cation� selection and synthesis�

During the speci�cation phase� the application developer lists all information that character

izes the application and the environment� This list should contain all the relevant information
needed by the Automated Communication Protocol Generator �ACPG� to create the appro

priate tailored protocol� Such a speci�cation should contain� for example� the structure and
characteristics of the data being transfered� ordering constraints� reliability� timing criteria�
possibilities of having self contained data packets and possible integrable processes�

The selection of mechanisms is the second phase of the automated process� Using informa

tion that characterizes the application� the ACPG decides the overall functionality required to
build the tailored protocol� If the protocol is intended to be dynamic� then decisions on when
to switch protocol functionality can be decided at this stage�

Finally� the synthesis phase involves the implementation of the protocol� It has been shown
that� for e�cient implementations� the principles of Application Level Framing �ALF� and
Integrated Layer Processing �ILP� should be adopted �Clark and Tennenhouse� ������ The
implementation can be static or dynamic� Dynamism can be introduced by using dynamic
linking of protocol functions as required� or statically implemented in a state machine which



A Comparison of Automatic Protocol Generation Techniques �

changes states when changes in protocol functionality are required� The latter can result in
�code bloat� if a large number of dynamic states are de�ned�

Currently there are a number of projects being conducted on automated approaches� These
include DaCapo �Vogt� Plattner� Plagemann and Walter� ������ F
CSS �Zitterbart� Stiller and
Tantawy� ������ ADAPTIVE �Schmidt� Box and Suda� ������ the Runtime Adaptive Approach
�Universal Transport Service� �Richards� ������ and the Stub Compiler �STRL� �Castelluccia
and Dabbous� ������ The �rst four models provide runtime con�guration while the �fth
model provides con�guration at compilation time� The �rst three approaches tailor the whole
communication environment while the remaining two create application tailored protocols�
The rest of this paper is devoted to these two last techniques� which have been selected to
contrast the runtime and compilation approaches�

���� Runtime Adaptive Approach

The runtime adaptive approach has been developed at UTS �University of Technology� Sydney�
in Australia� As shown in Figure �� the conceptual architecture of the runtime adaptive model
follows the general model for ACPG�

Application Needs

Tailored
Protocol

Protocol Functions
Library

Network Status
System Load

Application

Selector
Functionality

Synthesis
Engine

Implementation 
Techniques (e.g., ILP)

Profile

User Specification

R
u

n
ti

m
e 

A
d

at
iv

e 
P

ro
ce

ss
es

Figure �
 The runtime adaptive model�

The realisation follows the � phases as de�ned above� At runtime� the application indicates
its requirements to the Functionality Selector� for example via a QoS management entity� The
Functionality Selector then determines the protocol functions that will be required to satisfy
the application�s requirements� A pro�le is then generated that indicates to the Synthesis
Engine the optimal choice� The Synthesis Engine then takes into account the environment
status �e�g� network status and system load� and chooses the appropriate mechanisms to
provide the requested functionality� It then uses implementation techniques to optimize the
transport system�s performance� In addition� the Synthesis Engine continuously monitors the
status of the network and host system and� where possible� dynamically chooses the protocol
mechanisms that will best suit the given conditions�

The runtime adaptive model di�ers most from the stub compiler model in its inherent
dynamicity� The con�guration engine creates�modi�es the protocol as necessary following
changes in any of its inputs �network status� pro�le� etc��� Dynamicity is achieved by dynami

cally linking in and out the appropriate protocol functionality as determined by the Synthesis
Engine�

The adaptive approach takes into account the ALF and ILP principles� although our im

plementation currently does not apply ILP�



A Comparison of Automatic Protocol Generation Techniques �

���� Stub Compilation Approach

The stub compilation approach has been developed at INRIA �Institut National de la Recherche
en Informatique et Automatique� in France� This approach is a preliminary step in the devel

opment of a new generation of remote procedure call models �Diot� Chrisment and Richards�
������ In this model� a distributed application can specify its own communication require

ments� which are to be associated to a dedicated communication system� This is realized
by means of an application speci�cation� which is used by a protocol compiler to integrate
communication facilities with the application by generating client and server stubs�

Application

Parser

Integrated
Specification in Esterel

Specification in Esterel
Data Structure

Description in C
Application

Software in C

Esterel Compiler

C Compiler

Integrated
Source in C

Protocols & Functions
Specification in Esterel

Functions in C
Protocol

Tailored Protocol

User specification

C
o

m
p

ila
ti

o
n

 P
ro

ce
ss

es

Figure �
 The stub compiler model�

The speci�cation step is achieved using both Esterel and C code� Esterel �Berry� �����
speci�es the control and synchronization aspects of the communication� while data structures
and application software are directly coded in C� More speci�cally� the Esterel speci�cation
describes the application�s behavior� and the level of reliability required for the transmission of
the Application Data Unit �ADU� � the smallest unit of data that the application can process
to completion� The services required are described by a set of prede�ned Esterel signals
expressed in the speci�cation� such as selective�retransmission� �ow�control� checksum� etc�

The selection step is realized through the parsing of the speci�cation as shown in Figure ��
From the Esterel description of the application�s behavior� the parser extracts possible syn

chronization points and any parallelism that exists between the di�erent modules that compose
the description� These synchronization points will be used in the synthesis stage to construct
an e�cient implementation� The prede�ned Esterel signals present in the application speci

�cation are extended by the parser to integrate the requested communication facilities� The
result of this step is the integrated speci�cation� still expressed in Esterel�

The new Esterel speci�cation is then compiled through an Esterel compiler which produces
C
code for a �nite state machine de�ning the di�erent protocol states� This C
code is then
combined with the appropriate application code and the appropriate protocol functions to
create the executable application� The C and Esterel compilers form the implementation
stage of the ACPG model�

The main strength of the stub compiler model is that it provides a high degree of �tai

lorability�� The main reason for this is the use of Esterel 
 a formal language� which allows
for an accurate description of the application�s requirements� The stub compiler model can
realise Application Level Framing� One weakness of this model is that the stub compiler is



A Comparison of Automatic Protocol Generation Techniques �

based on a state machine which changes state to provide di�erent services�
Currently� this model does not properly consider dynamic adaption as it fails to take into

consideration external factors such as network and system loads�

�� Experimentation

To compare the runtime adaptive and stub compiler approaches� a common application was
selected and two tailored protocols were generated� Quantitative and qualitative measure

ments of the resulting protocols� performance� and their development methodologies� were
then evaluated in di�erent environments�

���� The JPEG Image Server

The JPEG Image Server �JIS� is a client�server
based application allowing the visualization
of images stored at the server� JIS constitutes a system that is su�ciently simple to be ported
quickly to several distinct platforms� and easily modi�able to run over di�erent implementation
environments� but is still su�ciently complex that it can bene�t from application speci�c
tailoring�

The main property of JIS that can be exploited by tailoring is its partial ordering of the
JPEG image elements� The client does not require the ordered reception of image data mes

sages� The only real ordering requirement is to receive the JPEG speci�cation tables before the
image data �these tables specify parameters of the compression such as quantization�� Then�
during the data transfer phase� the the communication protocol can present the image data
blocks to the application regardless of the order in which they are received �this assumes that
the application has structured its transmission according to ALF principles�� Thus� JIS can
be realized using two di�erent protocols� namely one for the speci�cation phase and another
for the data transfer phase�

The runtime adaptive and stub compilation ACPGs were used to develop protocols tailored
to JIS� The following sections discuss the results obtained from the comparative study of
the two automated approaches� The protocols developed by the runtime adaptive and stub
compiler ACPGs will be referenced as UTS and STRL respectively� The performance of the
protocols is presented in terms of qualitative issues and quantitative measurements� Only
prototype versions of both ACPGs are currently available� These were used to obtain the
experimental results�

���� Qualitative ACPG Issues

The two major aims of an ACPG are to o�er easy and rapid development of protocols and to
produce high performance implementations� These two issues are discussed in this section�

Protocol Development Issues

�From the user point of view� the runtime adaptive and stub compilation techniques take
completely di�erent approaches to the development of tailored protocols and provide di�erent
interfaces� The former is based on a protocol con�guration using its own interface� which is
currently based on a mix between a BSD socket interface and function
call interface� The
latter provides a formal protocol description using both the Esterel and C languages�

The two ACPGs also di�er in the manner of expressing application needs and in the man

agement of protocol adaptations� With the compiler
based ACPG� the JIS application de�nes
a protocol using an Esterel speci�cation indicating the two di�erent stages in the data trans

fer and their corresponding functionality� The parser and compiler stages of the ACPG then



A Comparison of Automatic Protocol Generation Techniques 	

creates a �nite state machine which will change states depending on input signals from the
application� Changes of state occur at set points in the data transfer and are agreed at compi

lation time� We therefore do not require a meta
protocol to signal changes at runtime between
the client and server�

Considering the JIS client side� the Esterel code is based on two main parts specifying
the two phases� The �rst part basically waits for two speci�cation tables� using a parallel
construct� When both tables have reached the client� a signal causes the state machine to
terminate the speci�cation phase and begin the data transfer phase� This enables out
of
order
reception of the di�erent image data messages� From the user point of view� the image data
ADUs are displayed as soon as they reach the client� resulting in a possible mosaic
style e�ect
as the image is being constructed�

The runtime adaptive model protocol requires the application to request functionality
through an interface� With the current prototype of the model� the application speci�es
the required functionality through the use of function calls� Since functionality changes occur
at runtime� and because the protocol has no prior knowledge of any changes� we require a
meta
protocol to coordinate the changes between the client and server� UTS currently realises
the meta protocol within the packet header� As a result� there will normally be a round
trip
delay before functionality is switched�

To improve performance� instead of de�ning two stages of unordered transfer separated by a
synchronization point� the UTS protocol was de�ned as an ordered protocol for the �rst stage
of the transfer �i�e� the speci�cation stage� followed by an unordered stage for the image data�
The change from ordered delivery to unordered delivery is a reduction in service� Hence it is
unnecessary to stop the transmission of data until the functionality has changed� In contrast�
if we were to change from unordered to ordered delivery� we would have to guarantee that
every packet the user speci�ed as ordered arrived in the correct sequence� When changing
in the reverse direction we provide a higher level of service while the change in functionality
occurs�

The user also speci�es through a function call that they wish to use ALF� This ensures that
the data written by the application through the socket interface will be handled as an integral
unit by the communication system� This is required to enable unordered delivery of ADUs�

In both approaches the e�ort required by the user is minimized to de�ning the requirements
of their application�

Resulting Code

Experiments were carried out on DEC �������� Workstations using a dedicated Ethernet
network� Experiments were executed over two di�erent operating systems� namely Ultrix v���
and the Mach ��� micro
kernel�

With the Mach micro
kernel� TCP can be implemented using two possible methods� The
�rst is the Mach ��� UX server� which provides a kernel level implementation of TCP�IP
within the Unix Server� The second is a user level library implementation of TCP �Maeda and
Bershad� ������

UTS is currently based only on the Mach ��� user level library implementation� Therefore
the results for UTS were only measured for this implementation� The results for TCP �which
was used as a benchmark� and STRL were obtained using all three platforms
 Ultrix ���� Mach
��� using the UX server and Mach ��� using the user level socket library�

The code sizes of the resulting protocols varied� Table � shows the sizes of TCP� STRL and
UTS in the di�erent environments�

TCP code is optimal in all situations� The STRL code is signi�cantly larger� This is
because it includes its own protocol that runs over UDP�IP� This is in contrast to UTS� which



A Comparison of Automatic Protocol Generation Techniques �

replaces TCP� Hence for user level protocol implementations� UTS is the same size as TCP�
while STRL runs above the user level implementation of UDP�IP adding another level of
protocol functionality� The current version of UTS simply uses internal switches to change
functionality� The �nal version will dynamically link the required functionality and hence the
overall code size is expected to be smaller�

Table �
 Architecture
oriented sizes in kilobytes for the client and server executables�

Client Sizes TCP STRL UTS

Mach ��� SC ����� ����	 �����

Mach ��� UX ����� �	��� n�a

Ultrix ��� �
��	 �	
�� n�a

Server Sizes TCP STRL UTS

Mach ��� SC ����� ����� �����

Mach ��� UX ����� 		��� n�a

Ultrix ��� �	��	 		��� n�a

���� Quantitative Performance

Three experiments were carried out to capture how well the implementations of the JIS tailored
protocols performed� The �rst compared the behavior of the three protocols with various ADU
sizes� The second compared STRL and TCP performance across the di�erent platforms� The
third showed the behavior of the protocols when transmission errors are introduced�

Comparison of the Three Protocols

The Experiments were carried out on the Mach ��� Kernel using the user level implementation
of TCP�UDP�IP for all the protocols� We experimented using two MCU ADU sizes �MCU �
Minimum Coded Unit� an atomic unit of compression�decompression�� One was the maximum
size for a MCU ADU such that any ADU can be contained without IP fragmentation �i�e�� 	��
bytes�� The other was the maximum size for a MCU ADU without it begin fragmented at the
MAC layer �i�e�� ��	� bytes�� Table �� shows the results of the �rst experiment�

Table �
 Protocols Throughput under Mach ��� micro
kernel System with Maeda�s Socket
Code in Kb�s�

MCU ADU Size TCP STRL UTS

� ��� bytes ���� �	�� ����

� ���� bytes ���
 ���
 ����

The overall results between the three protocols are very similar for both MCU ADU sizes�
The hand
coded version of TCP and the two ACPG protocols show the same range of through




A Comparison of Automatic Protocol Generation Techniques �

puts in the same Mach ��� socket code library environment� This suggests that automatic
protocol implementations give good implementation results and yield high performance�

The throughput results attained using the smaller MCU ADU size are low� This is because
of ine�cient usage of the underlying network� STRL is based on UDP� and hence a large
number of UDP packets are sent across the network� Similarly� with TCP and UTS �which
is based on TCP� the small sized MCU ADU are bu�ered to try and �ll a packet� hence
introducing delays� When we increase the MCU ADU size to the maximum for the network�
we notice that there is a large increase in the throughput�

Cross Platform Comparisons

The second experiment compared the performance of the STRL protocol against TCP across
the di�erent platforms� The maximum size of MCU ADU was used for all experiments to
achieve the best results� Table � illustrates the comparative behavior of TCP and STRL
across the di�erent environments� With the exception of the Mach ��� UX platform� where
there is a drop in performance for the STRL protocol� the two protocols have very similar
performance�

Table �
 Cross Platform Throughput with Maximum MCU ADU Sizes in Kb�s ���	� bytes�

TCP STRL

Mach ��� SC ���
 ���


Mach ��� UX ���� ����

Ultrix ��� ��
� �
�	

With Mach for both socket code �SC� and UX server �UX�� the results are at least �Mb
under those of Ultrix� This can be explained by the user level location of the transport
protocols and the better implementation of the Ethernet device driver in UX �Witana� ������

Performance under Erroneous Conditions

The selective retransmission and ALF architecture of the STRL protocol leads to a very good
behavior in presence of transmission errors introduced by the network �both packet loss and
bit error�� Missing packet are requested when the receiver �nds an out of sequence pattern�
but this does not block the sending application� Thus the overall throughput can be estimated
assuming that the transmission delay is just the time to send ADUs and retransmitted ADUs�

The same experiment with TCP gives poor results� TCP interprets packet loss to be caused
by congestion� and therefore reduces transmission rate to allow the network to recover� TCP�s
slow start mechanism is responsible for this behavior�

�� Concluding Remarks

In this paper we have discussed the bene�ts of tailoring protocols to application needs� Cur

rently� tailoring techniques are costly in terms of time and e�ort� and require highly skilled
personnel� Automated protocol generation aims to keep the bene�ts of tailoring without the
associated costs of development�

A number of di�erent automated approaches for Automated Communication Protocol Gen

eration have been proposed� of which we focused on two� namely runtime adaptive and stub



A Comparison of Automatic Protocol Generation Techniques �

compilation� These two ACPGs were used to build protocols tailored to a JPEG Server Ap

plication� Both approaches were able to create protocols with tailored functionality� as would
be done by a hand
crafted implementation�

Our results show that the two tailored protocols have similar performance although the
implementations di�er� Both protocols provide similar functionality with the exception of error
recovery mechanisms� The main di�erence that currently exists between the two approaches
is the method by which functionality is requested and supported�

Comparisons between the automatically generated protocols and a hand
coded TCP im

plementation resulted in the same range of throughput over a number of platforms� This
indicates that the automated approach does not interfere with the quality of implementation
of the resulted protocols� In addition� some engineering concepts such as ILP could be taken
systematically into account� yielding better implementations� In conclusion� it has been shown
that automated protocols are a viable solution for the future�

�� Acknowledgments

The authors would like to thank Isabelle Chrisment from INRIA �France� for her assistance
in the JIS application� Laurent Dairaine thanks INRIA for its �nancial support�

References

Berry� G� ������� The Esterel synchronous programming language� Design� semantic� imple�
mentation� Journal of Science of Computer Programming� ���

Castelluccia� C� and Dabbous� W� �������Modular communication subsystem implemen�
tation using a synchronous approach� Internal report� INRIA� Oct�

Clark� D� and Tennenhouse� D� ������� Architectural considerations for a new generation
of protocols� in Proceedings of ACM SIGCOMMConference �Communication Architecture
and Protocols�� USA� pp� ��������

Diot� C� Chrisment� I� and Richards� A� �������Application level framing and automated
implementation� in IFIP HPN international conference� Sept�

Maeda� C� and Bershad� B� ������� Networking performance for microkernel� internal
report� Carnegie Mellon University� School of Computer Science� Carnegie Mellon Uni

versity� Pittsburgh� PA ������ USA� Mar�

Richards� A� ������� The Universal Transport Service� an Adaptive End�to�end Protocol
Analysis and Design� Ph�D� thesis� University of Technology� Sydney� Dec�

Schmidt� D� Box� D� and Suda� T� ������� ADAPTIVE� A �exible and adaptive trans�
port system architecture to support lightweight protocols for multimedia applications on

high speed networks� in Proceedings of the Symposium on High Performance Distributed
Computing Conference� Amsterdam� Sept�

Vogt� M� Plattner� B� Plagemann� T�� and Walter� T� �������A runtime environment

for Da CaPo� in INET�

Witana� V�� TCP�IP protocol performance ������� Technical Report� University of Technol

ogy� Sydney�



A Comparison of Automatic Protocol Generation Techniques ��

Zitterbart� M� Stiller� B� and Tantawy� A� ������� A model for �exible high perfor�

mance communication subsystems� IEEE Journal on Selected Areas in Communications�
��� pp� ��������


