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Matched Subspace Detection With
Hypothesis Dependent Noise Power

Franois Vincent, Olivier Besson, and Cédric Richard

Abstract—We consider the problem of detecting a subspace signal in
white Gaussian noise when the noise power may be different under the
null hypothesis—where it is assumed to be known—and the alternative
hypothesis. This situation occurs when the presence of the signal of interest
(SOI) triggers an increase in the noise power. Accordingly, it may be
relevant in the case of a mismatch between the actual SOI subspace and its
presumed value, resulting in a modelling error. We derive the generalized
likelihood ratio test (GLRT) for the problem at hand and contrast it with
the GLRT which assumes known and equal noise power under the two
hypotheses. A performance analysis is carried out and the distributions
of the two test statistics are derived. From this analysis, we discuss the
differences between the two detectors and provide explanations for the
improved performance of the new detector. Numerical simulations attest
to the validity of the analysis.

Index Terms—Generalized likelihood ratio test (GLRT), robustness,
signal detection.

I. INTRODUCTION

Detecting a partly known signal in additive noise is a widespread
task in many signal processing applications. It is the main goal of radar
or sonar systems and can be encountered in most communication or
seismic schemes as well as in pattern recognition, to cite a few [1], [2].
Optimum detectors, that maximize the probability of detection (Pd) for
a given probability of false alarm (Pfa) have been developed for a wide
class of signal and noise modeling. This kind of detector is designed for
a specific signal waveform and a given noise probability density func-
tion (pdf). Unfortunately, it turns out that in many cases optimum de-
tectors can suffer a drastic degradation in performance for small devia-
tions from the nominal assumptions. Such deviations can occur because
of signal distortion, scattering, imprecise calibration, jitter or errors in
sensor localization for instance. Since the real signal waveform and the
noise pdf are rarely exactly known in practice, one usually needs to de-
velop robust detectors. Many studies have been carried out on robust
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detectors, with a view to maintain acceptable performances for a large
class of deviations [3]–[8]. In this paper, we consider the problem of
detecting a deterministic signal belonging to a known subspace in white
Gaussian additive noise [see (1) below]. This modeling is widely used
each time one has to detect a partly known narrowband signal such as
in radar, sonar or communication systems [9]. In the literature two dif-
ferent cases have been studied depending if the noise power is supposed
to be known or not. In many applications, one can precisely evaluate the
noise power under the null hypothesis when secondary data are avail-
able (this is classically the case in radar systems) because this power is
directly the data power. However, it is difficult to verify that this noise
power remains the same under H1 because its estimation is linked to
the assumed signal model. In addition, in many cases, one can suppose
that this power is modified if the signal is present. This variation could
be due, e.g., to the receiver electronics. For instance, when automatic
gain control (AGC) is used, the noise factor depends on the signal am-
plitude. This effect is a well-known problem for digital cameras where
signal-dependent noise is always present [10]. One may have the same
problem in magnetic recordings [11]. More generally, any nonlinearity
in the electronics can modify the noise power by creating products be-
tween the noise part and the signal part. Moreover, quantification can be
another source of noise power modification. Quantification noise could
be considered as additive uniform white noise whose power depends on
the gauge and the number of quantification bit used. Then, if the gauge
changes when the signal is present, the noise power will change too. In
this case, one can observe a noise power reduction. Accordingly, a non-
complete knowledge of the signal to be detected can lead to noise power
variations. One can encounter this problem in acoustic recognition or
in automotive engine knock detection for instance [12]. Knocking is an
undesired auto-ignition occurring in the cylinder chamber that limits
the efficiency of modern engines and has to be controlled. The gener-
ated shockwave stimulates characteristic oscillations analyzed through
a vibration sensor. However, this shockwave can also create other non
modeled noises due to other mechanic vibrations and subsequently in-
crease the noise power under H1 [13]. More generally, every signal
modeling error will be added to the non modeled data part and will
thus increase the noise power under H1 [14], [15]. In this paper, we
propose to study the robustness to noise power variation between the
two hypotheses by introducing and analyzing a new robust detector. In
contrast to most robust detectors introduced for signal modeling error,
we do not need any hypothesis about the noise power variation.

II. GENERALIZED LIKELIHOOD RATIO TEST

The decision problem to be studied in this paper can be described
as follows. We are given N samples from a complex scalar time series
which are gathered in the N -dimensional measurement vector xxx =
[ x(0) x(1) . . . x(N � 1) ]T . The problem is to decide between
the null hypothesis (H0) and the alternative one (H1):

H0; xxx = nnn0

H1; xxx = sss+ nnn1
(1)

where sss = AAAaaa is the deterministic signal of interest which belongs to a
known subspace hAAAi of size R, and the complex amplitude vector aaa is
unknown. nnn0 (respectively, nnn1) stands for the noise vector, and is sup-
posed to be zero-mean Gaussian distributed with known (respectively,
unknown) covariance matrix �20III (respectively, �21III). It is usually as-
sumed that �20 = �21 , and the latter may be known or not. In the case
where �20 = �21 is known, the GLRT is the so-called matched subspace
detector (MSD) [1] and consists in comparing the test statistic

Tkn =
xxxHPPPAxxx

N�2
0

(2)
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to a threshold, where PPPA = AAA(AAAHAAA)�1AAAH is the orthogonal projec-
tion on the signal subspace. In the sequel we will use the short hand
notation xxxA = PPPAxxx. When �20 is unknown, the GLRT becomes the
CFAR MSD, whose test statistic is [1]

Tun =
xxxHPPPAxxx

xxxHPPP?xxx
(3)

where PPP? = III � PPPA. In both cases, Tkn and Tun can be viewed as
signal-to-noise ratio (SNR) estimates.

As discussed in the introduction, in many applications, the noise
power under H0 can be very accurately estimated, and hence it is nat-
ural to assume that �20 is known. In contrast, �21 may be different from
�20 and is unknown. Under the stated assumptions the pdf of xxx under
H1 is given by [1], [16]

p(xxx;aaa; �21 jH1) = ��N��2N
1 exp �

kxxx �AAAaaak2

�21
: (4)

It is well known that, for a given aaa,

max
�

p(xxx; aaa; �21 jH1) = (e�)�N N�1 kxxx�AAAaaak2
�N

g(aaa) (5)

and is achieved when �21 = N�1 kxxx�AAAaaak2. Next, the maximum of
g(aaa) with respect to aaa is obtained for âaa = AAAHAAA

�1
AAAHxxx, resulting

in

max
aaa

g(aaa) = (e�)�N N�1 kxxx�AAAâaak2
�N

= e�N�1 kxxx?k
2 �N

(6)

where xxx? = PPP?xxx. Let �̂21 = N�1 kxxx�AAAâaak2 = N�1 kxxx?k
2 denote

the maximum-likelihood estimate (MLE) of�21 . Then, the GLR is given
by

p(xxx; âaa; �̂21 jH1)

p(xxxjH0)
=

e�N�1 kxxx?k
2 �N

��N��2N
0 exp � kxxxk

�

= e
kxxx?k

2

N�20
exp �

kxxxk2

N�20

�N

: (7)

Taking the logarithm of the N th root of the GLR, it ensues that the
GLRT amounts to comparing

Tr =
kxxxk2

N�20
� ln

kxxx?k
2

N�20
� 1 (8)

to an appropriate threshold. Noticing that Tkn can be rewritten as

Tkn =
kxxxk2

N�20
�

kxxx?k
2

N�20
(9)

we observe that Tr and Tkn differ in the way they remove the power
in the subspace orthogonal to hAAAi from the total power. In the sequel,
we will analyze this modification and explain why it leads to improved
performance when the ratio b �21=�

2
0 is not equal to one. As a final

remark, we also introduce the clairvoyant detector which knows �21 , in
addition to �20 . This detector is obviously not realizable but will serve
as an upper limit in our comparison. Under the stated assumptions, it is
straightforward to show that the test statistic of the clairvoyant detector
is given by

Tc =
kxxxk2

N�20
�

kxxx?k
2

N�21
� ln

�21
�20

: (10)

We can obviously notice that Tc = Tkn if b = 1.

III. PERFORMANCE ANALYSIS AND DISCUSSION

In this section, we derive the (possibly asymptotic) distributions of
the three test statistics Tkn, Tr , and Tc under both hypotheses with a
view 1) to predict their performance in terms of probability of detec-
tion and 2) to comprehend the differences between them in order to
explain why and how the new detector may improve the conventional
one. In the sequel, N �; �2 denotes the Gaussian distribution with
mean � and variance �2 and �2

n (�) denotes the chi-square distribution
with n degrees of freedom and noncentrality parameter �. The cen-
tral chi-square distribution will be denoted as �2

n (0). When a random
variable � can be written as the product of a scalar � and a chi-square
distributed random variable, we will use the notation � � ��2

n (�).
Accordingly, the notation � � �1�

2
n (�1) + �2�

2
n (�2) means that

� is distributed as the sum of (possibly scaled) independent chi-square
distributed random variables with n1, n2 degrees of freedom and non-
centrality parameters �1, �2, respectively.

A. Distribution of Tkn

We begin by analyzing Tkn. Since xxx is drawn from a complex mul-
tivariate Gaussian distribution, with zero mean and covariance matrix
�20III or �21III , it follows immediately that [1]

Tkn =
kxxxAk

2

N�20
�

1
2N

�2
2R (0) under H0

b

2N
�2
2R 2sss sss

�
under H1.

(11)

B. Distribution of Tc

Let us recall that

Tc =
kxxxk2

N�20
�

kxxx?k
2

N�21
� ln

�21
�20

=
kxxxAk

2

N�20
+

b� 1

b

kxxx?k
2

N�20
� ln b: (12)

Since xxxA and xxx? are independent and Gaussian distributed, Tc is dis-
tributed as

Tc �

1
2N

�2
2R (0) + b�1

2bN
�2
2(N�R) (0)� ln b under H0

b

2N
�2
2R

2sss sss
�

+ b�1
2N

�2
2(N�R) (0)� ln b under H1.

(13)

C. Asymptotic Distribution of Tr

In order to obtain the distribution of Tr , we first relate it to Tkn.
Towards this end, note that

Tr � Tkn =
kxxx?k

2

N�20
� ln

kxxx?k
2

N�20
� 1 = f (
) (14)

where 
 = kxxx?k
2= N�20 and f (
) = 
 � ln 
 � 1. We can notice

that f is a positive function with f(1) = 0, and that 
 is an estimate of
the noise power normalized by the presumed one. From the Gaussian
distribution of xxx, we infer that


 =
kxxx?k

2

N�20
�

1
2N

�2
2(N�R) (0) under H0

b

2N
�2
2(N�R) (0) under H1.

(15)

However, since f(
) is nonlinear and its inverse cannot be obtained in
closed form, deriving the exact distribution of Tr � Tkn is intractable.
In order to come up with manageable expressions, we thus investigate
an asymptotic approach, assuming that the number of samples N is
large. We first approximate the distribution of 
, show that its PDF
is concentrated around 1, and then use a Taylor series expansion of
f(�) around 1. As n grows large, it is well known that the chi-square
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distribution �2
n (0) converges to a Gaussian distribution with mean n

and variance 2n. It follows that



a
�

N 1� r; 1�r
N

under H0

N b(1� r); b (1�r)
N

under H1
(16)

where r = R=N and
a
� means asymptotically distributed. Next we

assume that b(1� r) is close to 1. Note that this is a mild assumption
as, in the applications we consider, the number of samples can be quite
large (e.g., a few hundreds) while the dimension of the signal subspace
is typically small (inferior to 10). In addition, the noise power increase
b ' 1+ � is close to 1, and hence b(1� r) is also close to 1. It follows
that the asymptotic PDF of 
 will be highly concentrated around 1.
Now, in the vicinity of 
 = 1, f(
) ' (1=2)(
� 1)2. Using the latter
approximation along with (16), one obtains that

f(
)
a
�

1�r
2N

�2
1

Nr

1�r
under H0

b (1�r)
2N

�2
1

N[b(1�r)�1]

b (1�r)
under H1.

(17)

We now observe that Tkn depends on kxxxAk
2 while f(
) depends on

kxxx?k
2 only. Since kxxxAk

2 and kxxx?k
2 are independent, Tkn and f(
)

are also independent. Therefore, the asymptotic distribution of Tr is
given by

Tr
a
�

1�r
2N

�2
1

Nr

1�r
+ 1

2N
�2
2R (0) under H0

b (1�r)
2N

�2
1

N [b(1�r)�1]

b (1�r)
+ b

2N
�2
2R 2sss sss

�
under H1.

(18)
The exact pdf and the cumulative distribution function (cdf) of a linear
combination of central or non-central chi-square distributed random
variables can be found, e.g., in [17], where they are expressed in terms
of an infinite series of Laguerre polynomials. Although the expressions
in [17] are exact, they are not easily manageable when it comes to de-
rive the receiver operating characteristics. In order to come up with
exploitable expressions, we examine a further approximation to (18).
Indeed, under H0,

Tr
a
�

1

2N
(1� r)�2

1
Nr2

1� r
+ �2

2R (0)

'
1

2N
�2
1 (0) + �2

2R (0) =
1

2N
�2
2R+1 (0) : (19)

Accordingly, under H1,

Tr
a
�

b

2N
b(1� r)�2

1
N [b(1� r)� 1]2

b2(1� r)
+ �2

2R 2
sssHsss

�2
1

'
b

2N
�2
2R+1

N [b(1� r)� 1]2

b2(1� r)
+ 2

sssHsss

�2
1

: (20)

Let �1 = N [b(1� r)� 1]2=(b2(1� r)) and �s = 2 sssHsss=�2
1 =

2N � SNR = 2SNRp where SNR (respectively, SNRp) denotes the
input (respectively, output) signal-to-noise ratio. Then

Tr
a
�

1
2N

�2
2R+1 (0) under H0

b

2N
�2
2R+1 (�1 + �s) under H1.

(21)

The above expression holds for large N and b(1� r) ' 1. We verified
that the pdf and cdf of (21) are very close to those of (18). Furthermore,
through extensive Monte Carlo simulations, we checked that the pdf of
(21) matches very accurately the exact pdf of Tr , obtained from a large
number of independent test statistics Tr drawn from (8).

D. Receivers Operating Characteristics

The distributions derived above enable one to obtain the receivers
operating characteristics (ROC), that is the probability of detection Pd
as a function of the probability of false alarm Pfa. Let

Q� (y;n; �) =
1

y

p� (n;�)(x)dx

represent the complementary cumulative distribution function (ccdf)
of a noncentral �2 random variable with n degrees of freedom and
noncentrality parameter �. Also, let Q�1

�
(p;n; �) denote its inverse

function. Then, using the fact that Tr is asymptotically chi-square dis-
tributed [see (21)], one can write

Pfa(Tr) =Q� (2N�r; 2R+ 1; 0) (22)

Pd(Tr) =Q�

2N

b
�r; 2R+ 1; �1 + �s : (23)

It follows that

2N�r =Q�1
�

(Pfa(Tr); 2R+ 1; 0)

= bQ�1
�

(Pd(Tr); 2R+ 1; �1 + �s) (24)

and hence the ROC of the new detector is characterized by one of the
following equations:

Pd(Tr) =Q� b�1Q�1
�

(Pfa(Tr); 2R+ 1; 0) ; 2R+ 1; �1 + �s

(25a)

Pfa(Tr) =Q� bQ�1
�

(Pd(Tr); 2R+ 1; �1 + �s) ; 2R+ 1; 0 :

(25b)

Using similar arguments for the conventional detector, one obtains

Pd(Tkn) =Q� b�1Q�1
�

(Pfa(Tkn); 2R; 0) ; 2R+ 1; �s (26a)

Pfa(Tkn) =Q� bQ�1
�

(Pd(Tkn); 2R;�s) ; 2R+ 1; 0 : (26b)

E. Discussion

The previous sections provide a theoretical performance analysis of
the new detectors. In order to comprehend how and why the new de-
tector may outperform the conventional one, we now provide an intu-
itive and qualitative analysis of the differences between Tr and Tkn in
presence of noise power variation using Fig. 1. The classical test, Tkn
projects the data onto the signal subspace to estimate the signal power
since, under H1

E
kxAxAxAk

2

N
= Ps + �2

1r ' Ps if r � 1: (27)

It compares this estimated power to a threshold depending on the pre-
sumed noise level �2

0 . In case of noise power variation, Tkn is margin-
ally modified if the size of the signal subspace is small compared to
N (r � 1). In contrast, the new robust test, Tr , can be written as

Tr =Tkn + f(
) ' Tkn +
1

2
(
 � 1)2

=Tkn +
1

2

kx k
N

� �2
0

�2
0

2

'Tkn +
1

2

�̂2
1 � �2

0

�2
0

2

(28)
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Fig. 1. Geometric interpretation of the detectors.

and E �̂21 jHk = �2k(1 � r) ' �2k . Then it is the sum of two in-
dependent positive random variables. The first one is the classical test,
depending only on the projection of the data on the signal subspace; the
second depends on the projection on the noise subspace. This correc-
tive term estimates the noise power and calculates the difference with
the presumed one �20 . Then Tr modifies Tkn by adding a corrective
factor proportional to the square of this noise power variation. This cor-
rection increases the probability of detection.

In Fig. 1, the continuous lines correspond to the case where no power
variation is present and the dashed ones correspond to the opposite case.
In the first case, E �̂21 ' �20 and Tr ' Tkn. In the second case,
if r � 1, the projection on the signal subspace remains almost the
same, and the projection on the noise subspace increases by the noise
power variation��2. In this case,Tkn remains approximately the same
and Tr shifts depending of the estimated noise power variation (noted
��2 in Fig. 1). Under H0, we know that �2 = �20 , so Tr ' Tkn.
Under H1, if b 6= 1, Tr increases compared to Tkn in order to improve
the probability of detection. One can notice that the only information
used by Tr to modify Tkn is the power in the noise subspace. One
can then expect a good behavior of Tr each time the estimated noise
power is different from the expected one. This will be the case if signal
mismatches are present. The projection onto the signal subspace will
decrease and the projection onto the noise subspace will increase. Tr
could recover a part of the energy having moved from one subspace
to the other and try to maintain the test performance. This behavior
will be illustrated by examples in Section IV. The previous geometric
interpretation enables one to understand the differences betweenTr and
Tkn. We now investigate how it results in terms of the ROCs. In order
to assess the gain provided by Tr , one could evaluate the difference
between Pd(Tr) and Pd(Tkn) for a given Pfa. Conversely, one could
compute the Pfa ratio for a given Pd, i.e.,

GP = 10 log10

Q� bQ�1
�

(Pd; 2R; �s) ; 2R; 0

Q� bQ�1
�

(Pd; 2R+ 1; �1 + �s) ; 2R+ 1; 0
:

(29)

Although the expression in (29) is closed form, it does not lead to a
simple and clear understanding of the respective influences of b,N , and
SNR. In order to gain insights we make some approximations, with a
view to obtain simple expressions that could state the conditions under
which the new detector is more performant than the conventional one.
First note that the Pfa ratio between two detectors is usually maximum
around Pd ' 0:5. Hence, we will calculate GPfa between the two de-
tectors for this particular value of Pd, which gives a good information
about the performance gain. A first difficulty for computing (29) stems
from the evaluation of the inverse CCDF. Note that, for any distribu-
tion, Pd = 0:5 is obtained when the threshold is set to the median

of the distribution. Furthermore, under H1 the noncentrality param-
eter for the distributions of Tr and Tkn are �1 + �s and �s, respec-
tively, with �s = 2NSNR = SNRp equal to twice the output SNR.
Therefore, assuming high (output) signal to noise ratio, the noncen-
trality parameters will be large, and thus the chi-square distributions
can be fairly well approximated by Gaussian distributions with respec-
tive means 2R + 1 + �1 + �s and 2R + �s. Since the median of a
Gaussian distribution coincides with its mean, we have approximately

Q�1� (0:5; 2R;�s) =
2N

b
�kn ' 2R+ �s

Q�1� (0:5; 2R+ 1; �1 + �s) =
2N

b
�r ' 2R+ 1+ �1 + �s:

Therefore, GP for Pd = 0:5 is approximately

GP ' 10 log10
Q� (b (2R+ �s) ; 2R; 0)

Q� (b (2R+ 1 + �1 + �s) ; 2R+ 1; 0)
: (30)

Obtaining simple expressions for the CCDF Q� (y;n; 0) is not easy,
except in some particular cases, namely small n. In the sequel, we thus
consider the case R = 1, i.e., the SOI belongs to a one-dimensional
subspace. Then we have [2]

Q� (y; 3; 0) =2QG (
p
y) +

2

�
y1=2e�y=2

' 2

�
y�1=2 [1 + y] e�y=2

where QG(y) stands for the ccdf of a zero-mean, unit variance
Gaussian distributed random variable, and the approximation holds
for large y. Therefore, for R = 1 and high SNR,

GP ' 5b

ln 10
1 +

N(b� 1)2

b2
+ 5 log10

�

2

�5 log10 b 3 +
N(b� 1)2

b2
+ 2SNRp : (31)

Considering this simpler expression of the Pfa ratio, we can first eval-
uate the performance loss when there is no power variation (b = 1):

Gpfajb=1 '
5

ln 10
+ 5 log10

�

2
� 5 log10 [3 + 2SNRp] : (32)

One can notice that, for large N , this loss only depends on the post
processing signal to noise ratio. Moreover from expression (31), one
can derive two approximated expressions of the noise power variation,
b0+ and b0�, needed to have the same performance for Tr and Tkn.
That is to say, if b > b0+ or b < b0�, one should use Tr instead of the
classical test Tkn with

b0+ ' 1 + N�1 ln
2

�
(3 + 2SNRp) � 1

1=2

(33a)

b0� ' 1� N�1 ln
2

�
(3 + 2SNRp) � 1

1=2

: (33b)

We can remark that in contrast to (32), these threshold values for b
depend on N .

IV. NUMERICAL ILLUSTRATIONS

In this section, we compare the performances of Tr with those
of Tkn, Tun, and Tc for different noise power variations. Then,
we show that our new detector can also be used to mitigate
signal modelling errors through a convincing example. We also
compare it to the robust matched detector introduced in [14]. In
all simulations, we consider the case of a single complex tone
x(k) = e2i�fk + n(k) for k = 1; . . . ; N with f = 0:15. First we

take N = 1024 points, and fix the noise power under H0 �20 so
that SNR0 = 10 log Ps=�

2
0 = �23 dB. Figs. 2–4 show the receiver
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Fig. 2. Detectors comparison for b = 1.

Fig. 3. Detectors comparison for b = 1:1.

operating characteristics resulting from 10
6 Monte Carlo trials for the

four detectors and for three different values of b (b = 1, b = 1:1,
b = 1:2). At the same time, we have plotted the approximated analyt-
ical performance given by (25) and (26) for Tr and Tkn (dashed line
for Tr and continuous for Tkn). We can first notice that the closed-form
expressions (25) and (26) give a very precise approximation of the
real tests performances. This validates the different assumptions made
in Section II. Then, we can see that Tr is slightly poorer than the
other detectors in the case where there is no noise power variation
(b = 1, Fig. 2) as we had seen in (32). This is somehow the price to be
paid when using a more robust detector. The maximum loss is about
�Pd = 0:06 or GPfa = 2.5 dB in this case and will be studied more
precisely in Fig. 5. This loss is compensated as soon as b increases
or decreases (a variation of 4% is actually sufficient) and the gain
provided by Tr could reach some false alarm decades in case of 10%
increase (Figs. 3 and 4).

The Pfa loss when one uses Tr instead of Tkn is studied in Fig. 5
when there is no noise power variation -b = 1- and when there is
power variation, b = 0:95 and b = 1:1. The lines represent this loss
calculated with (31). These approximated values are also compared

Fig. 4. Detectors comparison for b = 1:2.

Fig. 5. Performance gain/loss for different values of b. Solid lines refer to (31),
markers to the real G .

with the loss evaluated by Monte Carlo simulations (represented with
markers). First, observe that equation (31) gives a good approximation
of the loss for all values of SNRp and b. Moreover, for b = 1, this loss
is only a few decibels even for very good SNR corresponding to only
some hundredth on the Pd loss. In contrast, for b = 0:95 or b = 1:1,
one can observe gains in terms of Pfa on the order of 5 to 15 dB, which
is considerable for a 10% only noise power variation.

The threshold values of b needed to have a gain using Tr is plotted
on Fig. 6. One can see that for classical SNRp, only a few percent of
noise power increase is necessary for Tr to be better than Tkn. We have
also plotted the real Pfa gain estimated by Monte Carlo simulations to
verify that this is close to unity. Indeed, the difference in Pfa between
the two detectors is within 1 dB for all N and SNRp, which proves
that the simple expressions for b0+ and b0� are quite accurate, and thus
assesses the validity of the closed-form expression for this threshold.

As we have seen in Fig. 1, Tr differs from the conventional detector
Tkn in adding a corrective term based on the energy of the projection on
the noise subspace. Then, one can expect a good behavior of Tr each
time this projection moves away from its expected value. Hence, Tr
could also be robust to a very large class of signal model mismatches.
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Fig. 6. Threshold on the noise power variation to have a benefit.

Fig. 7. Robustness against frequency mismatch.

To illustrate this behavior, we still consider the case of the detection of a
complex tone when the frequency is not perfectly known. We consider
N = 16, SNRp = 13 dB and an actual frequency of f = 0:15 as the
assumed one is f + �f = 0:15+ (1=2N). We can notice that this fre-
quency mismatch corresponds to the maximum intrinsic error made by
a classical discrete Fourier algorithm. We compare the performances
of Tr with Tkn and with the robust matched detector (RMD), TRMD
introduced in [14]. This last detector has to know the a priori signal
mismatch power coefficient noted � in [14]. Then, we have plotted dif-
ferent results of the RMD depending on the assumed frequency mis-
match, �fas (from the real �f to (�f=4)) on Fig. 7. We can first notice
that Tr gives better results than the classical Tkn even if it has not been
designed for such a model. Then, as stated in [14], the RMD maintains
a good performance as �fas is roughly well estimated and outperforms
Tr in this case. One can notice, however, that the model at hand is closer
to the one used to design the RMD than our Tr . In the case where the
frequency mismatch is strongly underestimated, one should prefer Tr
than TRMD.

V. CONCLUSION

In this paper, we have extended the formulation of the matched sub-
space detectors (with noise power known or not) to the case where the
noise power is only known under the null hypothesis. We derived the
GLRT for the problem at hand and carried out a performance analysis of
this new detector, in order to compare it to the classical MSD. From this
analysis, we first draw an explanation of the performance improvement
for largeN . Then, we analyzed more precisely the case of a one-dimen-
sional subspace SOI to determine the conditions under which this new
detector should be used. Numerical simulations attest to the validity of
the theoretical analysis and show that this new detector could outper-
form the classical one. Moreover, we compare it to the RMD and show
it performs well even in cases quite far from the model used to design
it. Compared to other robust schemes, the new detector does not need
any assumption about the a priori mismatch amplitude.
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