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Abstract: In this paper, stability results dedicated to sampled periodic systems are applied to a mechanical system whose 
stiffness exhibits quick variations: a hydraulic test bench used to achieve mechanical test on complex structures. To carry 
out this application, time-varying w transformation representation of sampled periodic systems are first introduced. An 
extension of the Nyquist Criterion to sampled periodic systems is then given. Finally, this theorem is applied to evaluate the 
stability degree of the hydraulic test bench controlled using CRONE control methodology. 
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1 - Introduction 

Transfer functions and associated frequency 
responses are powerful tools for the analysis and synthesis 
of stationary systems. Thus, several authors have extended 
them to time-varying systems. For example, Zadeh defined 
the system function notion [Zadeh 61] to which the time-
varying frequency response can be associated, and Jury 
defined the time-varying z-transform notion [Jury 64] to 
which time-varying w-transform notion (TVWT) and time-
varying pseudo frequency response (TVPFR) can be 
associated. 

Many aspects of the definition of TVWTs and 
TVPFRs correspond to the definition of stationary 
equivalents. However there has been little interest in 
TVWTs and TVPFRs since Zadeh and Jury. 

 
However these representations of time-varying 

systems have been recently used by [Garcia 01] to extend, 
in the case of periodic systems and asymptotically 
stationary systems: 

- many well known theorems such as the initial and final 
value theorems, 
- Nyquist criterion, 
- CRONE Control methodology [Oustaloup 99]. 

In this paper, extensions of Nyquist criterion 
developed in [Garcia 01] is applied to the analysis of the 
stability degree of a testing bench constituted of a hydraulic 
actuator used to achieve mechanical deformations on 
complex structures. Given parametric variations of the 
parameters of the structure and given quick variations of the 
structure stiffness during the test, the testing bench whose 
velocity is controlled using a robust CRONE controller, 
behaves as a sampled time-varying system with parametric 
uncertainties. Given that the velocity of the actuator is 
controlled on a finite time interval, this time-varying system 
can be artificially considered as a sampled periodic system. 

The paper is organized as follows. Section 2 deals 
with the representation of continuous time-varying systems 
using TVWTs and TVPFRs. Section 3 is dedicated to the  

 
 

stability analysis of sampled time-varying systems with 
periodic coefficients. Section 4 first gives a presentation of 
the testing bench and of its control using CRONE control 
methodology. Then this section presents the stability degree 
analysis of the testing bench using the extension of Nyquist 
criterion given in section 3. 

 
2 - Continuous-time periodic systems 
2.1 - Definitions and hypothesis 

A linear time-varying continuous-time system with 
periodic coefficients, also called periodic continuous-time 
system, is described by the state variable equation: 
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A(t), B(t), C(t) and D(t) and their first derivatives 
are also supposed to be respectively continuous and piece-
wise continuous on [0, T]. They can thus be developed in 
uniformly convergent Fourier series of the form: 
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2.2 - System function Representation 
In the 1950s, Zadeh [Zadeh 61] demonstrated that 

linear time-varying systems can be described by system 
functions H(s, t). System functions are linked to the impulse 
response of the system, h(t, ξ), which is both a function of 
the time variable t and of the point in time ξ when the 
impulse is applied: 
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For periodic systems such as system (1), Zadeh also 
demonstrated that the system function H(s, t) is of the form: 
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It can be demonstrated [Garcia 01] that Fourier 
series (5) is uniformly convergent under hypothesis of 
section 2.1. 

 
3 - Sampled-time periodic systems  
3.1 - Time-varying z transfer function 

If h(n, k) denotes the response at time nTe (Te 
being the sampling period) of a discrete time-varying 
system whose input is a Kronecker function, δnk (δnk = 1 if 
n = k, δnk = 0, if n ≠ k), then by analogy to the stationary 
case, the time-varying z transfer function of this system can 
be defined by [Jury 64] : 
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or, using k = n - r (assuming no input before time kTe = 0) : 
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3.2 - Time-varying z transfer function 
representation of system H 

System H is represented with two samplers of 
period Te in Figure 1 in which signals u*(t) and y*(t) are 
respectively given by: 
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Note that Zero Order Holder (ZOH) frequency response can 
be included in each term of Hi(p). 

y(t)

H -i(s) e-jiω 0 t

H i(s) ejiω 0 t

H 0(s) y*(t)

TeTe

u(t) u*(t)
+

Figure 1 - Representation of sampled system H  

If u(t) is a Dirac impulse applied at time kTe , id 
u(t) = δ(t – kTe), the response of the system of figure 1 is : 
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where hi(t) represents the impulse response of stationary 
linear system characterized by Laplace transform Hi(p). 

At time nTe, relation (9) becomes: 
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and so the time-varying z-transfer function of the system of 
figure 1 is given by: 
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Let M∈N denotes the ratio between T (parameter 
characterizing the system periodicity) and the sampling 
period Te: 
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By combining equations (5), (12) and (14), 
function H(n, z) becomes: 
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This particular choice of sampling period allows to 
get a sampled representation of system H of finite 
dimension with M transfer functions. 

 
3.3 - Time-varying w-transfer function and non 
stationary pseudo-frequency response 

Bilinear transformation or w-transformation 
defined by: 
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is applied to each transfer function  to get the time-
varying w-transformation of system H. Relation (16) 
therefore becomes: 
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and time-varying pseudo-frequency response is defined as: 
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where pseudo-pulsation v corresponds to the imaginary part 
of w. v is linked to the system real pulsation ω by relation 
[Sevely 89]: 
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3.4 - Connection of periodic sampled systems 
Series connection 

If  denotes the time-varying w-transfer 
function of a system resulting of the series connection of 
two periodic sampled systems characterized by time-
varying w-transfer functions  and defined 
by : 
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where w-transfer functions  are issued from the 
product: 
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parameters wi being defined by: 
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Feedback connection 

Let C(n, w) and G(n,w) be the time-varying w-
transfer functions of two periodic sampled systems and 
L(n, w) the time-varying w-transfer function resulting from 

the series connection (figure 2). C(n, w), G(n, w) and L(n,w) 
are given by relations (22) and (23). The time-varying w-
transfer function T(n,w) between input r(n) and output y(n) 
is given by: 
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where w-transfer functions  result from the product: )(' wTi
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in which vectors T(w) and L(w) and matrix L(w) expressed:  
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I being the identity matrix of dimension M. 
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Figure 2 – Feedback connection of two periodic sampled 

systems in series connection  

 
3.5 - Stability: extension of Nyquist criterion to 
feedback periodic sampled systems 

Let L be a periodic sampled system described by:  
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where w-transfer functions  are issued from: )(' wLi
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Let Γ ' be the path of figure 3 where point A is the 
origin of w-plane, point B corresponds to point 
(0, tan(π/M) ), point C corresponds to point (1,0) and where 
curve BC is defined by the relation : 
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Figure 3 – Path Γ ' in w-plane 

 
Theorem 1 – Generalized Nyquist theorem in pseudo-
frequency domain [Garcia 01] 

System of figure 4 is stable if and only if the Nyquist 
locus of the eigenvalues of matrix L(w) (relation 36) 
encircles P0 times the point (–1/K, 0), in the counter 
clockwise direction when w varies on the Γ ' path, assuming 
that there is no hidden unstable modes in the direct loop. P0 
is the number of characteristic multipliers of system L with 
a modulus greater or equal than 1. 

 
Note that this criterion not only permits to evaluate 

the stability of system of figure 3 (which can also be done 
using others methods such as those based on the inspection 
of the eigenvalues of impulse response matrix over a single 
period). This criterion also permits to evaluate the stability 
degree of the control loop and to define stability margins 
which can be obtained through a measure of the minimal 
distance between the Nyquist locus with point (-1/K, 0). 
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Figure 4 – Feedback  periodic sampled system 

 
4 - Application to an electrohydraulic test 
bench 
4.1 - Description of the test bench 

The system under study is a electrohydraulic test 
bench that is used to achieve mechanical tests on structures. 
The electrohydraulic actuator must be controlled in order to 
deform the structures with a constant velocity. As the 
structures are not well identified, the control system must 
be robust to parametric uncertainties and as the structures 
may be tested till fracture, it must take into account the 
time-varying characteristics of the loads. The objective is 
then to compute a robust control law for a time-varying 
system. In order not to make the control system too 
complex, it is chosen to compute a stationary control law 
and to make sure that the stability of the robustly controlled 
system is ensured even when time-varying phenomena 
occur. The results concerning the stability of sampled 
periodic systems are used to this end. 

 
The structures to be tested are described by a 

mass-damper-spring set (figure5). The mass Ms and the 
viscous coefficient bs are supposed to vary slowly 
(compared with the system dynamics) in the following 
limits: 

N/m.s10080 and Kg800 ss <<<< bM  

bs
 Ks

 Ms  
Figure 5 – Model of the structure to be tested 

The stiffness of the structure is likely to vary quickly and is 
supposed to evolve as described in figure 6. 

0.3T     0.7T T t
end of the test

Ks max = 12000N/m

(Ks max –20%) N/m

(Ks  min+20%)  N/m

Ks min = 2000 N/m

Ks

Figure 6 –  Evolution of the stiffness during a test 

 
The complete model of the electrohydraulic test 

bench is given by table 1 and the following non linear state-
space model: 
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Table 1 – Notations for the electrohydraulic model 
Ps supply pressure 240 bar 
Pr tank pressure 7.5 bar 

P1, P2  cylinder chamber pressures  bar 
PP1 hydrostatic bearings pressure 236 bar 
PP2 hydrostatic bearings pressure 212 bar 



B Bulk modulus 109 bar 
V1 , V2  cylinder chamber volumes  m3 

V0  cylinder half-volume  245.10-7m3 
M0 cylinder rod mass  31.8 kg 
S0 cylinder rod effective area 243.10-6 m² 
B mechanical structure viscous 

coefficient  
86 N/m.s 

y cylinder rod position  m 
v cylinder rod velocity  m/s 
ku amplification stage gain 1.17*10-6 

m3/s/A 
ωa cut-off frequency of the 

amplification stage  
942 rad/s 

k3 mass flow gain 4.5*10-5 
(m3/s)/m 

λ cylinder leakage coefficient 1.10-11 s-1 
λp hydrostatic bearings leakage 

coefficient 
0,5.10-12 s-1 

Ff friction force N 

 
4.2 - Control of the test bench 

The aim is to compute a robust control law in 
order to take into account the structure uncertainty. CRONE 
(the French acronym of "Commande Robuste d'Ordre Non 
Entier") control-system design is therefore used [Oustaloup 
99]. This is a frequency-domain based methodology using 
fractional differentiation. It permits the robust control of 
perturbed plants using the common unity feedback 
configuration. It consists on determining the nominal and 
optimal open-loop transfer function that guaranties the 
required specifications. The controller is then obtained from 
the ratio of the open-loop frequency response to the 
nominal plant frequency response. 

As CRONE control is to be applied on linear 
system, it is first necessary to linearize the model of the 
electrohydraulic bench. To this end, an input-output 
linearization under diffeomorphism and feedback is 
achieved. So that this linearization is available whatever the 
structure and its parameters, the output considered for the 
linearization is the pressure difference. Indeed, if this 
output is chosen, the linearization law does not depend on 
the parameters of the structure [Pommier 01]. Moreover to 
get a relative degree equal to 1 in order to simplify the 
linearization and its numerization, the linear model of the 
amplification stage is not taken into account in the 
linearization. However it is necessary to consider 
afterwards an inverse band-limited model of this stage 
(figure 7). 

 

yue P1-P2Inverse band-limited
model of the

amplification stage

Linearization
system

Electrohydraulic
system

Figure 7 – Scheme of the linearization strategy 
 
Finally the linearized model of the 

electrohydraulic system between input e and output (P1-P2) 
is described by: 
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with kp =7.108 and α=2000 chosen so that the input-output 
linearized system has the same behavior than the first-order 
linearized system around the operating point defined by v= 
0 and y=0 and 1/(s+5000) coming from the band-limited 
model of the amplification stage. 

 
Once the system is linearized, a robust control law 

is computed to control the velocity by using the model: 
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this model being sampled at period Te = 0.2ms.  

 
By considering the uncertain parameters Ks, Ms 

and bs and the required specifications:  
- magnitude peak of the complementary sensitivity function 
for the nominal parametric state: 1dB 
- maximum of complementary sensitivity function: 3dB 
- maximum of sensitivity function: 5dB 
the optimal open-loop transfer function is computed in the 
pseudo-frequency domain, as well as the controller: 
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The sampling period used for the implementation of this 
controller is also Te = 0.2ms. 

 
4.3 - Study of the stability degree 

Control law previously given has be synthesized 
without taking into account the dynamic variation of 
parameter Ks (only parametric variations has been 
considered). The objective is now to evaluate the stability 
degree of the closed loop in spite of the dynamic variations 
of parameter Ks described in figure 6. As the final state is to 
be reached before the end of the test, it is possible to 
consider periodic (of period T) the evolution of the 
stiffness. The function that describes the stiffness evolution 
and its derivative are thus respectively continuous and 
piece-wise continuous on [0, T]. Therefore the results on 
stability for periodic systems can be used to conclude on 
the stability of the electrohydraulic system when the 
stiffness varies quickly.  

On the test bench, the test is supposed to last 220 
ms and the velocity is required to follow the profile 
described in figure 8. Note that the stability analysis is 
independent of the input applied to the system. This input 
has thus not to be considered periodic. Only stiffness 
variations are supposed to be artificially represented by a 
periodic function and as explained above, the stiffness is 
considered as a periodic coefficient where period T equals 
the duration of the test, so T = 220ms. By using these 
figures, M the integer ratio between T and the sampling 
period Te  can be computed: M = 1100. 



t(s)

v(m/s)

vmax = 0,6 m/s

 0
0  0.02                 0.2    0.22

  
Figure 8 – Profile of the velocity 

The controller being a sampled system in series with the 
electrohydraulic system that is a periodic sampled system, it 
is possible to compute the time-varying w-transfer function 
of the resulting system L by using (24). Several time varing 
w-transfer functions must be computed for the different 
values of Ms, bs and Ks and for different times of fracture. 
Here two examples are chosen: 
- example 1: Ms=40 kg, b=90N/m.s, Ksmax= 12000N/m, 
Ksmin=2000N/m and the fracture that occurs at 0.3T 
- example 2: Ms=80 kg, bs=90N/m.s, Ksmax= 10000N/m, 
Ksmin= 6000N/m and the fracture that occurs at 0.5T 
 

In order to study the stability of the time-varying 
feedback-controlled system, the extension of the Nyquist 
criterion described in section 3.4 is used. The Nyquist locus 
of the eigenvalues of matrix L(w) for the two examples 
(+++) and the magnitude contour of value 1dB (⎯) are 
plotted in figure 9 for w varying along the segment AB of 
the Γ ' path.  

 

(example 1)

(example 2)

 
Figure 9 - Nyquist locus of the eigenvalues (+++) of L(w) 

 
There is no multipliers of system L with a module 

equal or greater than 1. The Nyquist locus encircles 0 times 
the point (–1, 0). So the electrohydraulic system is stable 
even when quick variation of the stiffness occurs. The 
simulation of the system for the example 1 is shown in 
Figure 10 and tends to confirm this results. 
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Figure 10 – Simulation of the velocity with a quick 

variation of the stiffness 
 

Stabity degree variations of the closed loop system can 
also be evaluated using theorem 1 by computing variations 
of parameter K (figure 3) for several values of parameters 
Ms, bs and for several evolutions of Ks. 

 
5 - Conclusion 

In this paper, a control method for a mechanical 
test bench designed to study the deformation of complex 
structure with a defined velocity is presented. The control 
law is based on an input-output linearization of the test 
bench and on a CRONE controller which ensures the 
robustness of the velocity control loop in spite of variations 
in the mass, the viscous coefficient and the stiffness of the 
structure. However, this synthesis is carried out without 
taking into account the dynamic variations of the structure 
stiffness during the test. So, considering these variations as 
periodic, time-varying pseudo frequency response of the 
test bench has been computed and used to evaluate the 
stability degree of the control loop in spite of dynamic 
variations of the stiffness. 

This paper thus provides tools to study the 
stability of systems submitted to abrupt variations in their 
parameters. 
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