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Abstract: 
This article deals with the problem of the reduction of structural vibrations with isodamping property. The proposed methodology is 
based on: 
- a contour defined in the Nichols plane and significant of the damping ratio of the closed-loop response 
- a robust control method that uses fractional order integration. 
The methodology is applied to an aircraft wing model made with a beam and a tank whose different levels of fillings are considered as 
uncertainties. 
 
 

Introduction 
 
The reduction of structural vibration has been challenging 
engineers for many years. Innumerable applications exist 
where vibration control is beneficial, if not essential.  
In the control of vibrations, the damping ratio is an 
important data since it indicates how quickly the vibrations 
decrease. When control of vibrations is at stake, it can be 
useful to control this parameter. Works have already been 
achieved to this end [1]. 
 
This article proposes a method in the frequency-domain to 
control uncertain plants while ensuring the damping ratio of 
the response. This method is based on the complex 
fractional order integration [2] that is used in two goals: 
(i) the definition of a contour called “iso-damping” contour 
[3] whose graduation is the damping ratio in the Nichols 
plane,  
(ii)  the definition of an open-loop transfer function [5] 
whose part of the Nichols locus is an any-direction straight 
line segment that can tangent a Nichols contour or an iso-
damping contour defined above.  
 
The article falls into 4 parts. Section 1 introduces the 
transfer function of a complex non-integer integrator 
defining a generalized template which will be considered as 
part of an open-loop Nichols locus [5]. This transfer 
function is used in section 2 for the construction in the 
Nichols plane of a network of iso-damping contours [3,4]. 
Section 3 describes the CRONE (the French acronym of 
"Commande Robuste d'Ordre Non Entier") control based on 
complex fractional order differentiation [6]. This control 
methodology can be applied to SISO and MIMO plants and 
also plants with lightly damped modes. The interest of the 
fractional order is to define a transfer function with few 
parameters and thus to simplify design and optimization of 
the control system. 
Section 4 presents an example of multivariable flexible 

structure which is an aircraft wing model made of a free-
clamped beam with a water tank and co-localized 
piezoelectric ceramics used as actuators to limit the 
vibrations and as sensors to measure these vibrations. The 
different levels of filling of the tank make it possible to test 
the robustness of the damping ratio obtained with the 
CRONE control design associated to iso-damping contours. 
 

I. Complex fractional integration  
 
The transfer function of a real fractional or non-integer 
integrator of order n is given by [2]: 
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The Nichols locus of a transfer function described by this 
integrator in a frequency interval [ωA, ωB] is a vertical 
segment that will be called “vertical template” (Fig.1). The 
phase placement of this segment at the crossover frequency 
ωcg depends on the order n and is worth -n90°.  
 
From the extension of the description of the vertical 
template, the “generalized template” - that is to say an any-
direction straight line segment in the Nichols plane - can be 
obtained using the complex non-integer integration of order 
n. n = a + ib where the imaginary unit i of the integration 
order n is independent of the imaginary unit j of the variable 
s (s=σ+jω). The transfer function of a complex non-integer 
integrator of order n is given by [1]: 
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The real part a defines the phase placement of the 
generalized template at ωcg, -Re(n)90°, and the imaginary 
part b defines its angle to the vertical (Fig.1). 
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Fig.1. Representation of the vertical template and of the 

generalized template in the Nichols plane 
 

II. Isodamping contours 
 
In the time domain, the dynamic performances can be 
characterized by the first overshoot and the damping ratio of 
a step response. In order to guaranty these performances by 
using a frequency domain control methodology, it is 
necessary to have an equivalent of these dynamic 
performances in the frequency domain. The well-known 
magnitude contour in the Nichols plane can be considered as 
an iso-overshoot contour [4]. For the damping ratio, A. 
Oustaloup has constructed and defined a set of contours 
called “iso-damping” contours whose graduations are the 
damping ratios in the Nichols plane [3]. These contours have 
been constructed using an envelope technique. The contour 
is then defined as the envelope tangented by a set of 
segments (Fig.2). In the Nichols plane, each segment of the 
set can be considered as the rectilinear part of an open-loop 
Nichols locus that ensures the closed-loop damping ratio 
corresponding to the contour. This rectilinear part around 
gain crossover frequency, ωcg, is the “generalized template” 
defined above. 
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|β(jω)|dB

0

0 dB

-180°

 
Fig.2. Envelope defining an isodamping contour 

in the Nichols plane 
 
Isodamping contours can be defined analytically using a 
polynomial equation determined by interpolation of 
graphical data of each contour [3]. A contour Γζ    is thus 
defined by: 
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X and Y  being the coordinates expressed in degrees and in 
decibels and ajk the coefficients given in table 1. 
The equation of the tangent to Γζ at point (Xi, Yi) is deduced 
from relation (3) and can be written: 
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   j/ k 0 1 2 3 
0 -180.36 117.7 -74.316 40.376 
1 -1.1538 3.8888 -5.2999 2.5417 
2 -0.0057101 0.0080962 -0.0060354 0.0016158 

 

Table 1. Values of coefficients ajk 
 

III. CRONE control 
 
CRONE (the French acronym of "Commande Robuste 
d'Ordre Non Entier") control system design [5,6,7] is a 
frequency-domain based methodology using complex 
fractional integration. It permits the robust control of 
perturbed linear plants using the common unity feedback 
configuration. It consists on determining the nominal and 
optimal open-loop transfer function that guaranties the 
required specifications. This methodology uses fractional 
derivative orders (real or complex) as high level parameters 
that make easy the design and optimization of the control-
system. While taking into account the plant right half-plane 
zeros and poles, the controller is then obtained from the ratio 
of the open-loop frequency response to the nominal plant 
frequency response. Three Crone control generations have 
been developed, successively extending the application 
fields [8]. In this paper, the third generation will be applied 
to a lightly damped MIMO plant.  
 
A. Open-loop transfer function 
 
The open-loop transfer function (Fig.3) of the initial third 
generation Crone method is based on the generalized 
template described previously and takes into account: 
- the accuracy specifications at low frequencies; 
- the generalized template around frequency ωcg; 
- the plant behavior at high frequencies in accordance with 
input sensitivity specifications for these frequencies. 
 
For stable minimum-phase plants, this function is written: 

)()()()( hml ssss ββββ = . (8) 

• βm(s), based on complex non-integer integration, is the 
transfer function describing the band-limited generalized 
template [1]: 
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q’ being the smallest integer such that b’ verifies 
( )21 ,min' bbb <  with: 
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and K  being computed to get a gain of 0 dB at ωcg.  
• βl(s) is the transfer function of order nl proportional-
integrator, whose corner frequency equals the low corner 
frequency of βm(s), so that joining βl(s) and βm(s) does not 
introduce extra parameters. βl(s) is defined by: 
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If npl is the order of asymptotic behavior of the plant in low 
frequency (ω <<ωl), order nl is given by   1l ≥n if  

npl = 0, and   pll nn ≥ if 1 pl ≥n , with  nl=1 canceling the 

position error and nl=2 canceling the velocity error. 
• βh(s) is the transfer function of order nh low-pass filter, 
whose corner frequency equals the high corner frequency of 
βm(s), so that joining βh(s) and βm(s) does not introduce 
extra parameters. βh(s) is defined by: 
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If nph is the order of asymptotic behavior of the plant in high 
frequency (ω >>ωh), order nh is given by phh nn ≥ , with nh = 

nph ensuring invariability of the input sensitivity function 
with the frequency, and nh > nph ensuring decrease. 
 
At frequency ωr for which the tangency will be reached, the 
modulus and the argument of the open-loop frequency 
response are expressed respectively by: 
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The equation of the tangent to the Nichols locus at this 
frequency is given by: 
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Fig.3. Different parts of the open-loop Nichols locus 

 
B. CRONE methodology for SISO plants 
 
The third generation CRONE methodology for SISO plants 
can be described in five points: 
 
1 - You determine the nominal plant transfer function and 
the uncertainty domains. For a given frequency, an 
uncertainty domain (called “template” by the QFT users [9]) 
is the smallest hull including the possible frequency 
responses of the plant. The use of the edge of the domains 
makes it possible to take into account the uncertainty with 
the smallest number of data. To construct this domain 
securely, the simplest way is to define it convexly. 
 
2 - You specify some parameters of the open-loop transfer 
function defined for the nominal state of the plant: the gain 
cross-over frequency and the rational orders nl and nh. 
 
3 - You specify the bounds of the sensibility functions that 

you would like to obtain. Let 
nomrM  be the required 

resonant peak of the nominal complementary sensitivity 
function. 
 
4 - Using the nominal plant locus and the uncertainty 
domains in the Nichols chart, you optimize the parameters a 
and b and the frequencies ωl and ωh in order to obtain the 
optimal open-loop Nichols locus. An open-loop Nichols 
locus is defined as optimal if it tangents the 

nomrM  

magnitude contour and if it minimizes the variations of Mr 
for the other parametric states. By minimizing the cost 

function ( )2
max nomrr MMJ −=  where 

maxrM  is the maximal 



 4 

value of resonant peaks Mr, the optimal open-loop Nichols 
locus positions the uncertainty domains correctly, so that 
they overlap the low stability margin areas as little as 
possible (Figure 4: case (c) is the best configuration). The 
minimization of J is carried out under a set of shaping 
constraints on the four usual sensitivity functions. 
 
5 - The last point is the synthesis of the controller. While 
taking into account the plant right half-plane zeros and 
poles, the controller is deduced by the frequency-domain 
system identification of the ratio of βnom(jω) to the nominal 
plant function transfer Gnom(jω). The resulting controller 
C(s) is a rational transfer function. 

Mr
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Fig.4. Optimal open-loop Nichols locus to position the 

uncertainty domains 
 
C. CRONE methodology for MIMO plants 
 
Principle: 
The CRONE methodology for MIMO plants consists in 
finding a diagonal open-loop transfer matrix: 

][ 00 i
diag ββ = , (19) 

whose n elements are fractional order transfer functions. 
It is parametered to satisfy the four following objectives: 
- perfect decoupling for the nominal plant, 
- accuracy specifications at low frequencies, 
- required nominal stability margins of the closed loops 
(behaviors around the required cut-off frequencies), 
- specifications on the n control efforts at high 
frequencies. 
 
After an optimization of the diagonal open-loop transfer 
matrix , (19), the fractional controller is computed from the 
relation (20) and synthesized by frequency-domain 
identification. 
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Optimized solution 
Let G0 be the nominal plant transfer matrix such that 
G0(s)=[ )(sgij ] i,j∈N and let ββββ0 be: 
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where: 
- )(sgij is a strictly proper transfer function, 

- N={ }n,...,1 , 

- 
i

i

d

n
i

=0β  the element of the i th column and row. 

As mentioned above the aim of CRONE control for MIMO 
plants is to find a decoupling controller for the nominal 
plant. G0 being not diagonal, the problem is to find a 
decoupling and stabilizing controller C [10]. This controller 
exists if and only if the following hypotheses are true: 

- [ ] exist 1
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- [ ] [ ] 0)()(: 002 =∩ ++ sGPsGZH , (23) 

where [ ])(0 sGZ+  and [ ])(0 sGP+  indicate the positive real 

part zero and pole sets. 
 
The controller C(s) is: 
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with adj(G0(s))=[G0
ij(s)]T=[G0

ji(s)], G0
ij(s) being the cofactor 

corresponding to element )(sgij  and |G0| corresponding to 

determinant of G0(s). 

Thus each term of the matrix C is written: 
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G
c

ji

ij 0
0

0 β= Nji ∈∀ , . (25) 

The nominal sensitivity and the complementary sensitivity 
transfer function matrices are: 
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For plants other than the nominal, the closed-loop transfer 
matrices T(s) and S(s) are no longer diagonal. Each diagonal 
element ( )sTii  and ( )sSii could be interpreted as closed loop 

transfer functions coming from a scalar open-loop transfer 
function )(siiβ  called equivalent open-loop transfer 
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function: 
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For each nominal open-loop β0i(s), many generalized 
templates can border the same required magnitude-contour 
or iso-damping contour in the Nichols plane. The optimal 
one minimizes the robustness cost function: 
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where pM is the resonant peak and ξ  the damping ratio, 

while respecting the following set of inequalities for ω∈R 
and i, j∈N: 
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where G is the set of the plants. 
 
As the uncertainties are taken into account by the least 
conservative method, a non-linear optimization method must 
be used to find the optimal values of the independent 
parameters of the fractional open-loop. 
 
D. Extension to resonant plants 
 
Some resonant frequencies must be included in the open-
loop transfer function β0i for the controller to be achievable 
and stable [11]. 
The first transfer matrix to consider is the input-disturbance 
sensitivity, T0C

-1. Using: 
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where transfer functions Hi(s) have in common the lightly 
damped modes of the ith row of G0. 
 
The second transfer matrix to consider is input sensitivity 
CS. Using: 
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The numerator of the i th open-loop transfer function must 
satisfy all the following equations: 
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and therefore: 
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where transfer functions Mj(s) have in common some lightly 
damped modes of the jth column of G0

-1. 
 
Adding some lightly damped modes on the open-loop 
transfer functions causes resonant frequencies to appear on 
sensitivity and complementary sensitivity transfer functions. 
To attenuate their effect, transfer function Qj(s) is included 
in β0i(s) around each resonant frequency such that: 
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where: 
- ωj and ωj

’ are frequencies close to the resonant frequency, 
- ξ and ξ’ are the damping factors. 
 

IV. Robust control of a lightly damped 
plant with isodamping property 

 
A. Description of the plant 
The plant under study is an aircraft wing model (see figure 
5). It is made of a beam and a tank. This structure has the 
same resonant frequencies as a real air wing. The problem is 
to control the vibrations which depend on the level of filling 
of the tank. Moreover, sloshing phenomena may appear, that 
makes the problem more complex. Two sets of piezoelectric 
ceramics are used as actuators in order to fight against 
bending and twisting vibrations. Two others piezoelectric 
ceramics are glued at the clamp of the beam to measure the 
vibrations and are used as sensors. 
The characteristics of the plant are given in table 2. 
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 Beam 
Actuator 

x 2 

Length (mm) 1360 140 
Width (mm) 160 75 

Thickness (mm) 5 0.5 
Density (kg/m3) 2970 7800 
Young Modulus (Gpa) 75 67 
Piezoelectric Const. 
(pm/V) 

- -210 

 Tank 
Ext. Diameter (mm) 110 
Int. Diameter (mm) 105 
Length (mm) 700 
x-location (mm) 1280 
Water Density (kg/m3) 1000 
Plastic Density (kg/m3) 1180 
Young Modulus (Gpa) 4.5 

 
Table 2. Plant characteristics 

 

1360m

beam 

‘tank’ 

Two actuators 
(voltage uh and ub) 

Two sensors 
 (signals yb and yh) 

 

 
Fig.5. Model of the structure (beam with the tank) 

 
In order to design the control system, the plant is described 
by a 2x2 MIMO model. The two inputs are the two actuators 
voltage and the two outputs are the sensors voltage. The first 
three modes are taken into account for the design of the 
control and thus the plant is described by the matrix of 
transfer functions given by: 
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and the numerical data of the following tables . 
 

  Empty 
tank 

Half-full 
tank 

Full tank 

k111 0,015 0,006 0,01 
ω111 (rad/s) 7,22 5,1 4,59 

 
1° mode of 

flexion ε111 0,0061 0,0062 0,0045 
k112 0,01 0,002 0,005 

ω112 (rad/s) 53,78 41,2 34,84 
 

2° mode of 
flexion  ε112 0,012 0,046 0,006 

 k113 0,01 0,005 0,001 

ω113 (rad/s) 134,5 96,6 21,6 1° mode of 
twisting ε113 0,012 0,01 0,015 

static term  R11 0,12 0,14 0,085 

Table 3. Values for G11(s) 
 

  Empty tank Half-full 
tank 

Full tank 

k121 0,032 0,004 0,015 
ω121 (rad/s) 7,22 5,1 4,59 

 
1° mode of 

flexion ε121 0,0087 0,0039 0,0041 
k122 0,008 0,002 0,004 

ω122 (rad/s) 53,78 41,2 34,84 
 

2° mode of 
flexion ε122 0,01 0,0046 0,006 

k123 0,004 0,0012 0,001 
ω123 (rad/s) 134,5 96,6 21,6 

 
1° mode of 

twisting ε123 0,011 0,0032 0,007 
static term R12 0,02 0,018 0,02 

Table 4. Values for G12(s) 
 

  Empty tank Half-full 
tank 

Full tank 

k211 0,014 0,005 0,03 
ω211 (rad/s) 7,22 5,1 4,59 

 
1° mode of 

flexion ε211 0,0061 0,0039 0,0068 
k212 0,0065 0,002 0,004 

ω212 (rad/s) 53,78 41,2 34,84 
 

2° mode of 
flexion ε212 0,012 0,0046 0,0069 

k213 0,004 0,001 0 
ω213 (rad/s) 134,5 96,6 21,6 

 
1° mode of 

twisting ε213 0,012 0,0039 x 
static term R21 0,015 0,012 0,085 

Table 5. Values for G21(s) 
 

  Empty 
tank 

Half-full 
tank 

Full tank 

k221 0,02 0,004 0,007 
ω221 (rad/s) 7,22 5,1 4,59 

 
1° mode of 

flexion ε221 0,0087 0,0052 0,0034 
k222 0,009 0,0022 0,005 

ω222 (rad/s) 53,78 41,2 34,84 
 

2° mode of  
flexion ε222 0,0129 0,0046 0,0056 

k223 0,006 0,0011 0,03 
ω223 (rad/s) 134,5 96,6 21,6 

 
1° mode of 

twisting ε223 0,0126 0,0026 0,067 
static term R22 0,1 0,1 0,085 

Table 6. Values for G22(s) 
 
B. CRONE control 
The plant being a 2x2 MIMO system, the open-loop transfer 
function matrix is written as: 

01

02

( ) 0
( )

0 ( )

s
s

s

β
β

β
 

=  
 

 (47) 

whose two diagonal terms are defined by CRONE open-loop 
transfer functions of third generation (equ. 8). 
 
The nominal plant corresponds to the empty tank. The 
objectives are to increase the damping ratio of the closed-
loop plant such as to obtain a value of 0.1 and to guaranty 
the iso-damping property for the plant whatever the filling of 
the tank. So the iso-damping contour that each open-loop 
transfer function should tangent is of value 0.1. For each of 
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the open-loop transfer function, the following configuration 
has been chosen: 
- gain cross-over frequency equal to 3 rad/s, 
- order nl=-1 in order to limit the gain of the controllers in 

low frequencies and order nh = 4 in order to limit the 
amplification of the noise in high frequencies, 

- minimum of the complementary sensibility function T for 
the frequencies below the gain-cross over frequency:-
5dB, 

- maximum of the function CS: 50dB. 
 
Let’s now take into account the lightly damped modes of the 
plant. There are no lightly damped modes on the rows of the 
plant but there are some lightly damped modes in the 
columns of the inverse matrix of the plant coming from the 
determinant of the matrix since: 

[ ]
)det(

)(
)( 1

G

GCom
sG

t

=−  (48) 

Therefore, it is necessary to introduce in the open-loop 
transfer functions β01(s) and β02(s) the resonances of the 
modes at 7,09 rad/s, 8,12 rad/s and 57,11 rad/s. 
 
Finally, a filter has been added in the open-loop transfer 
functions. It aims at shaping the open-loop Nichols locus by 
decreasing the gain and increasing the phase locally around 
the first resonance so that the uncertainties domains do not 
penetrate in the contours. The expression of the filter is the 
same for the two open-loop transfer functions and is written: 

2

2

2

2

0.2 1
7 7( )

2 1
9 9

s s

s
r s s

β
+ +

=
+ +

 (49) 

The results of the optimisation lead to the following optimal 
parameters: 
• For β01(s): a=0.0037, b’=3.05 ; q’= 5 ; Yt = 0.4dB; 

ωl=1.4 rad/s ; ωh=3.3  rad/s , 

• For β02(s): a=2.99, b’=1.81 ; q’= 5 ; Yt = 0.71dB; 

ωl=1.3 rad/s ; ωh=3.3  rad/s , 
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Fig.6. Nichols loci for β01(s) and β02(s) 

The Nichols loci with the uncertainties domains are given in 
the Figure 6 for the two open-loop transfer functions β01(s) 
and β02(s). 
The matrix of the controller is computed from the relation:  

11 121
0

21 22

( ) ( )
( ) ( ) ( )

( ) ( )

C s C s
C s G s s

C s C s
β−  

= =  
 

. (50) 

The four terms of this matrix are synthesized by 
identification in the frequency domain and the Bode 
diagrams are given in the figure 7. 
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Fig.7. Bode diagrams of the terms of the controller 

 
C. Results 
The figure 8 shows the free response to a perturbation if 
there is no control and in the case of an empty tank. This 
figure gives the signal from the two sensors. It shows that it 
takes more than 200s to go back to balance. 

 t(s)   t(s)  
Fig.8. Response to a perturbation without control 

 
The figure 9 shows the response to the same perturbation as 
previously with the CRONE controller and in three cases 
(empty tank, half-full tank and full tank). This figure gives 
the signal from the two sensors and the voltage of the two 
actuators. 
Several observations can be drawn from these graphs: 
� The voltages of the actuators are on their maximum 

level, even in saturation for the first oscillations since the 
D-Space card will limit the values of uh and ub at 1V 
(which corresponds to 130V on the actuator). 

� It takes now less than 25s to go back to balance. 
� The CRONE controller guaranties the robustness of the 

damping ratio of the response. The table 7 gives the value 
of this ratio for the three cases and the two sensors.  
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 Sensor yh Sensor yb 
Empty tank 0,11 0,11 

Half-full tank 0,1 0,1 
Full tank 0,12 0,12 

Table 7. Values of the damping ratio for the 3 configurations 
of the tank with the CRONE controller 

 
 

 

 

 
t(s)  t(s) 

Empty tank 

Half-full  
tank 

Full tank 

 
Fig.9. Response to a perturbation with the CRONE control 

 
In order to evaluate the efficiency of the CRONE control; 
these results are compared with two others methodologies 
(LQR and GPC) whose results coming from [12] are given 
in the figure 10 and in the table 8. The CRONE controller is 
more robust while ensuring a better damping ratio. 
 

 

  

Empty tank 
Half-full tank 
Full tank 

Empty tank 
Half-full tank 
Full tank 

LQR control  t(s) GPC control   t(s)  
Fig.10. Response to a perturbation with LQR control and 

GPC control 
 

 LQR controller GPC controller 
Empty tank 0.01 0.038 

Half-full tank 0.03 0.04 
Full tank 0.04 0.05 

Table 8. Values of the damping ratio for the 3 configurations 
of the tank with LQR and GPC controllers 

Conclusion 
 

This article presents fractional robust control with iso-
damping property. The plant under study is an aircraft wing 
model with a water tank. It is a multivariable plant with 
lighted damped modes. The proposed methodology is 
CRONE control. Results show that the vibrations are better 
damped with the CRONE control and that the time to go 
back to balance is divided by a factor 10. The tests on the 
plant with various levels of filling of the tank made it 
possible to highlight the properties of robustness of the 
damping ratio. The use of multivariable CRONE 
methodology and of iso-damping contours to carry out the 
control of a flexible structure with iso-damping property is 
thus clearly relevant. 
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