Direct numerical simulation of the interaction between

a shock wave and various types of isotropic turbulence

S. Jamme, J.-B. Cazalbou, F. Torres and P. Chassaing
ENSICA, 1 Place Emile Blouin, 31056 Toulouse cedex 5, France

June 22, 2002

Abstract. Direct Numerical Simulation (DNS) is used to study the interaction
between normal shock waves of moderate strength (M; = 1.2 and M; = 1.5) and
isotropic turbulence. A complete description of the turbulence behaviour across the
shock is provided and the influence of the nature of the incoming turbulence on the
interaction is investigated. The presence of upstream entropy fluctuations satisfying
the Strong Reynolds Analogy enhances the amplification of the turbulent kinetic
energy and transverse vorticity variances across the shock compared to the solenoidal
(pure vorticity) case. Budgets for the fluctuating-vorticity variances are computed,
showing that the baroclinic torque is respomnsible for this additional production of
transverse vorticity. More reduction of the transverse Taylor microscale and integral
scale is also observed in the vorticity-entropy case while no influence can be seen
on the longitudinal Taylor microscale. When the upstream turbulence is dominated
by acoustic and vortical fluctuations, less amplification of the kinetic energy (for
Mach numbers between 1.25 and 1.8), less reduction of the transverse microscale
and more amplification of the transverse vorticity variance are observed through
the shock compared to the solenoidal case. In all cases, the classic estimation of
Batchelor relating the dissipation rate and the integral scale of the flow proves to
be invalid. These results are obtained with the same numerical tool and similar flow

parameters, and they are in good agreement with Linear Interaction Analysis (LIA).

Keywords: DNS, shock/turbulence interaction, compressible turbulence, linear

analysis.
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1. Introduction

For transonic and supersonic flows of engineering interest, the coexis-
tence of shock waves with some background turbulence is an almost
unavoidable feature. Shock-boundary-layer interactions or supersonic
over-expanded jets are obvious examples that cumulate so much com-
plicating effects (anisotropy of the background turbulence, mean-flow
gradients, oblique or bent shock wave, unsteady separation etc.) that a
detailed understanding remains far from reach. For this reason, several
studies have focused on the interaction between isotropic turbulence
and a normal shock wave as one of the basic phenomena involved in
these flows. For most of these studies, the description of compressible
turbulence is based on Kovasznay’s modal decomposition [23] in terms
of rotational, entropic and acoustic modes and the main issue is to
understand how the proportions of these modes in the incoming tur-
bulence may influence the way it is modified when passing through the
shock.

Initial investigations on the subject were theoretical and based on
linear analysis. The Linear Interaction Analysis (LTA) was developed
by Ribner [35-37], Moore [33] and recently revisited and completed
by Lee, Lele and Moin [25, 27], Mahesh, Lele and Moin [30, 32] and
Fabre et al. [8, 9]. It may be used when the turbulent fluctuations are
small compared to mean values and when rapid changes occur to the
flow. This is the case in shock-turbulence interaction where the time
required for the upstream turbulent flow to pass through the shock is
small compared to the turbulent time scale. The basic principle of LIA
consists in solving the linearized Euler equations behind the shock wave,
the boundary conditions at the shock being expressed in terms of the

upstream disturbances by the use of the Rankine-Hugoniot relations.
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It shows that an elementary wave corresponding to one of Kovasznay’s
modes is refracted through the shock and generates one wave of each
of the other two modes. Amplitudes, length scales and orientations of
the refracted and generated waves can be determined as functions of
those of the incoming wave and some transfer functions that depend
on the upstream Mach number and incident angle of the incoming
wave. Since upstream homogeneous turbulence may be approximated
by a superposition (spectrum) of elementary waves which are indepen-
dent in the inviscid linear limit (i.e. up to first order), modification
of turbulence through the shock wave can be described from the sum
of the downstream elementary waves. Despite the fact that nonlinear
and viscous mechanisms are neglected in the analysis, LIA provides

accurate description of the essential characteristics of the interaction:

— amplification of the different components of the turbulent kinetic
energy, as well as rms values of the fluctuating pressure, tempera-

ture and density;

— generation of anisotropy behind the shock, with a non-monotonic
evolution of the streamwise normal Reynolds stress and an ampli-

fication of the transverse fluctuating vorticity;
— reduction of the Taylor microscales;

— significant production of entropy fluctuations behind the shock

when the upstream Mach number is higher than 1.2.

The influence of the nature — in terms of Kovasznay’s decomposition —

of the incoming turbulence can also be investigated and shows that:

— Compared to a pure solenoidal turbulent flow, velocity and vortic-

ity fluctuations are more (resp. less) amplified through the shock
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when entropy fluctuations corresponding to a negative (resp. pos-
itive) correlation between the longitudinal velocity and tempera-
ture fluctuations are present upstream of the shock. In an interpre-
tation based on linear considerations, Mahesh et al. [32] attributed
this phenomenon to the action of the baroclinic torque in the
equations of the fluctuating-vorticity variances. Another conse-
quence of the presence of entropy fluctuations upstream is more
(resp. less) reduction of the transverse Taylor microscale when the

velocity-temperature correlation is negative (resp. positive).

— When the acoustic mode is present upstream, velocity fluctuations
are less amplified than in the solenoidal case for low Mach numbers,

whereas the opposite is observed for Mach numbers greater than 3.

Rapid Distortion Theory (RDT) has also been applied to the prob-
lem of shock-turbulence interaction (see e.g. Jacquin et al. [19]). How-
ever, this work showed that RDT leads to a large overestimation of the
turbulent kinetic energy at high Mach numbers. A key point is that
the compression of a turbulent field by a shock wave is rapid, but inho-
mogeneous, whereas RDT describes a homogeneous compression and
is not based on the Rankine-Hugoniot jump conditions. Consequently,
the warping of the shock front due to the interaction with the incident
turbulent field is not taken into account by RDT and the nature of the
downstream perturbation field is not correctly predicted by this theory.
This makes RDT unsuited for accurately predicting shock/turbulence
interactions, whereas LIA is much closer to the physics of the problem.

Since the early 90’s, Direct Numerical Simulation (DNS) and Large-
Eddy Simulation (LES) have been applied to the problem of shock-
turbulence interaction (Rotman [38], Lee et al. [27, 28], Hannappel and
Friedrich [13], Mahesh et al. [32], Ducros et al. [6], Garnier et al. [10, 11],
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Dubois et al. [5]). Although limited to low Reynolds numbers, these
studies mostly confirm the LIA results. In addition, the availability
of all the terms in the budget equations for the main statistics (turbu-
lent kinetic energy, normal Reynolds stresses, fluctuating vorticity) also
helps to elucidate the basic mechanisms responsible for their behaviour
during the interaction. Amplification of turbulence and generation of
anisotropy just behind the shock, for instance, have been found to rely
on the action of the pressure-dilatation and pressure-diffusion terms in
the Reynolds-stress transport equations (see Ref. [27]).

Experiments on the interaction are difficult to perform but have
nevertheless been conducted either in wind tunnels or shock tubes
by several authors. In supersonic wind tunnels [1, 4, 18, 20], steady
shocks can be created with appropriate shock-generating devices. A
grid-type turbulence generator is usually used to produce homogeneous,
quasi-isotropic turbulence. The measurements are made at various axial
positions downstream of the shock wave. Statistics of the flow are thus
determined as a function of the distance between the measurement
point and the shock wave. These experiments are easy to compare
with numerical simulations since the shock is steady. This is not the
case with shock-tube experiments [3, 15-17, 22|, where a travelling
shock wave passes through a grid, producing homogeneous turbulence
with constant mean velocity. This turbulent field will interact with
the shock wave after reflection of the latter on the end wall of the
tube. Statistical measurements are performed at a fixed position in the
tube. Since the distance between the probe and the propagating shock
wave changes during the useful period of measurements, the results of
these experiments are not easy to compare with numerical simulations
or wind-tunnel experiments. Another difficulty is the relatively short

time available for the measurements depending on the dimension of the
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shock tube and the shock intensity. From a general point of view, all
these experimental results are subject to specific types of uncertainties
due, for instance, to the finite particle response that affects LDA mea-
surements in compressible flows or small variation of the mean velocity
downstream of the shock; and information concerning the precise na-
ture of the incident turbulence usually lacks. However, the data agree
with the DNS and LIA results for the evolutions of the main statistics
across the shock; but contradictions still exist concerning the behaviour
of turbulent microscales during the interaction: apart from Barre et al.
[1], experimental data show an overall increase of the microscales during
the interaction, in contradiction with theory and simulation.

In the present work, DNS is used to compare the evolution across
the same shock wave of three different turbulent flows generated using
Kovasznay’s decomposition. These comparisons are provided for two
different values of the upstream Mach number and for a turbulent
Mach number significantly higher than in previous studies. Details on
the flow parameters are given in Table I, together with those used in
the previous works cited above. It can be seen that the interaction with
different types of incoming turbulence has been quite well covered, but
significant differences exist in the flow parameters used by the different
authors. Here, simulations with three types of incoming turbulence are
performed with the same numerical tool and flow parameters to ensure
that the observed differences only depend on the nature of the upstream
turbulence. The latest developments of LIA were also reproduced with
the same conditions [21], to allow systematic comparison with the
simulation results.

The paper is organised as follows. Section 2 gives a description of
the problem and provides details concerning the numerical tool and

the incoming turbulence. Results from the simulations and analysis are
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presented in Section 3: the main features of the interaction are first
described with a reference case, then the influence of upstream entropy

and pressure fluctuations is addressed.

2. Numerical approach

2.1. MATHEMATICAL MODEL

We consider a Newtonian fluid with constant physical properties: R is
its perfect-gas constant, and ¢, and ¢, its specific heats withy = ¢,/c,.
The fluid thermal conductivity and dynamic viscosity depend on the
temperature and will be denoted as x* and p* (the asterisk as a su-
perscript indicates a dimensional variable or function). The flow is

governed by the Navier-Stokes equations, written here in their most

general form as

op* 0 L
g ) gy "B i) — g (wi) + e =0,

with:

+ — =20 and ¢ = —k o1
oz;  Orf 30w “ % = oz}’

Tss

. (au; Oui 2 0uf
7,]_:“

In these equations, u; is the velocity component along z7; p*, p* and
T* are, respectively, the fluid density, pressure and temperature; and
E* is the total energy per unit mass (E* = ¢, T* +uju}/2). The system
is closed with the perfect-gas law p* = p*RT™.
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In the interaction problem, the upstream flow is defined by the fluid
density (p}), temperature (77°) and Mach number (M; > 1). Adequate
counterpressure downstream causes the normal shock to form. A fluc-
tuating field is then superposed onto the upstream flow and advected
through the shock. It is characterized by the initial Taylor microscale
(A§) and rms value of the velocity fluctuation in the direction of the flow
(uy). We use pi, TT, uf and 2 x A to scale all variables and functions
[except viscosity, scaled by ui = p*(77)] and recast the problem in the

following nondimensional form:

dp 0 B

pri 8—%(0%) =0, (1)
9 9 973

E(puz) + %j(puzuj +p5w) - a’L‘j =0, (2)
s, 3, 9, 0q;

a(ﬂE) + oz ((PE + p)u;) — oz, (uiTij) + o 0, (3)

with:

o (8ui+8uj 2 Ouy ”>,

T = Re, \ 0z;  Ox; _38_% “
o & or
@ (y — 1) M? Re, Pr Oz;’
p= 2L
yME
p
E=—2 4+ uu
ply—1) 2t

Then, the problem is uniquely defined by the values of the reference

parameters:

2 piug A Ug Hicp
Re, = “PL020 pp = 0 pp— ,
' 1w " (yRTH)'? K
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and the nondimensional value of the upstream velocity U; = My /M,.
The Prandtl number is assumed to be constant, and viscosity is allowed
to vary with temperature through Sutherland’s formula:
_ 3 ltC
T+C
From now on we shall consider that the fluid is air with the following

values of the constants:

v=14, Pr=0.7, and C = 0.414 for T} = 273 K.

2.2. NUMERICAL MODEL

Equations (1)—(3) are numerically solved on a cubic domain — sketched
in Figure 1 — the size of which is 27 in the three directions. The mean
flow is aligned with z1, and periodic conditions are specified in the two
other directions. At each time step, velocity, pressure, temperature, and
density fields are specified at the inflow. These fields are superpositions
of a uniform mean flow [a4 = Uy xy, p = 1/(yM?), T = 1, p = 1,
where the overbar denotes the conventional Reynolds average] and tur-
bulent fluctuations (denoted further by a prime) in velocity, pressure,
temperature, and density. The outflow is subsonic, and the first-order
characteristic boundary conditions of Thompson [40, 41] are used. At
the beginning of the calculation, a plane shock wave at Mach number
M is specified in the middle of the computational domain; the flow
is steady and homogeneous on each side of the shock, satisfying the
Rankine-Hugoniot relations.

The numerical solution of Equations (1)-(3) is based on a finite-
volume version of the explicit predictor-corrector MacCormack scheme

[29], which is second-order accurate in space and time. At each time
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step, forward or backward approximations are used in turn for the
inviscid part of the flux vector, and centered approximations are used
for the viscous terms. Calculations have been performed for M; =
1.2 and M; = 1.5. In all cases, the value of the time step has been
chosen so as to satisfy the Courant-Friedrichs-Lewy criterion for explicit
schemes (CFL = 0.8 < 1). The numerical grid is made of 128 points
with a constant spacing in the two homogeneous directions. In the
streamwise direction, the grid must allow the “viscous shock” to be
resolved. At Mach number 1.2, 128 points with a constant spacing
were found sufficient (11 points in the finite width of the shock), but
210 points and stretching were needed to resolve the shock at Mach
number 1.5 (15 points in the finite width of the shock). Note that
viscosity removes the shock discontinuity, so that the viscous problem
has a smooth (regular) solution, and the numerical scheme keeps its
order of accuracy through the shock.

Validation of the numerical code was carefully conducted. Extensive

details about this validation can be found in the appendix.

2.3. INCOMING TURBULENCE

The turbulent data superposed onto the mean flow at the upstream
boundary of the computational domain correspond to several developed
turbulent fields obtained from preliminary simulations of time-decaying
isotropic turbulence. They are advected through the boundary using
Taylor’s hypothesis. This hypothesis is questionable for compressible
turbulence, but Lee et al. [26] showed that it remains valid for moderate
turbulent Mach numbers and turbulence intensities (M; < 0.5 and
U ms/T1 < 0.15, where M, = q/¢ = (ulul)'/?/¢ and € is the speed of

sound), which is the case here.

kluwer_paper_revised.tex; 22/06/2002; 17:37; p.10



DNS of shock-turbulence interaction 11

The procedure used to generate the incoming fluctuating fields al-
lowed us to study the interaction of three different kinds of homoge-
neous isotropic turbulence with the shock. Three kinds of input data

were therefore generated, dominated respectively by:
— vorticity fluctuations (solenoidal mode);
— vorticity and entropy fluctuations (solenoidal/entropy mode);
— vorticity and pressure fluctuations (solenoidal/acoustic mode).

In all cases, a cubic domain of (27)% discretized with an equidistant
grid of 1283 points is initialized with a random velocity field generated
with the algorithm of Erlebacher, Hussaini, Kreiss and Sarkar [7]. This

field does not satisfy the Navier-Stokes equations, but
— its mean is aligned with z; and equals Uy;

— the spectrum of the fluctuation is defined by

2 1/2 U2 k 4 k 2
Ek)=16(=) 2(— —2( = 4
" <w> ko <k0> o <k0> W
where ug = 1 is the rms value of any of the components of the
fluctuation and ky = 4 the value of most energetic wave number

(linked, for this spectrum, with the value of the Taylor microscale

by ko = 2/)\0),

— the fluctuating field (u) is the sum of a divergence-free (rotational)
field (uy) and a dilatational (irrotational) field (u.), the ratio (x)
of the dilatational to total turbulent kinetic energy being freely
adjustable.

The random velocity field with constant pressure and density is used

as an initial condition for the simulation of time-decreasing turbulence
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in the cubic domain. Periodic boundary conditions are used in the
three directions. Time-decay is stopped after the fluctuating fields are
stabilized to a mean velocity derivative skewness (S = (S1+ S2+S3)/3,
with S, = (0ul, /014)3/[(0ul,[/014)2]*/?)) of —0.45 (at t = 0.757,

where 7, = Ag/up) that makes them reasonably representative of real
turbulence.

Input data for the interaction with the solenoidal and acoustic modes
are generated with y = 0 and y = 0.5 respectively. Generating the in-
put data for the entropy mode is slightly different. We begin with y = 0,
constant pressure and density. As soon as the mean velocity-derivative
skewness has reached the value —0.45 (at ¢ = 0.357y), pressure fluctu-
ations are set to zero while temperature and density fluctuations are

specified according to:
u
= =ML, (5)

which satisfies the Strong Reynolds Analogy (SRA). The calculation
then proceeds until S reaches —0.45 again. Generally, a single turbulent
field is not sufficient to perform the full simulation of the interaction.
Additional instantaneous fields with the same statistical properties are
derived analytically from the initial field using the procedure proposed
by Mahesh et al. [31].

Table II summarizes the statistical properties of the incoming turbu-
lence for the two values of the Mach number and the three modes. What
really matters is the value of each of these parameters immediately
before the shock, theses values are also reported in the table. One can
easily check that, in the case of the solenoidal and acoustic modes,
pressure and density fluctuations are nearly isentropic as reported by
Kovasznay [23] (pl,e/P = 7V Pims/P); and that, in the case of the en-
tropy mode, the Strong Reynolds Analogy holds (ol ./p ~ T!./T ~
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(fy - 1)M12 ’u’llrms/ﬂl and ullTl ~ _ullrms T,

“ms>» Which corresponds to

a negative correlation between the longitudinal velocity and tempera-
ture fluctuations). Note also that in all cases, we have M; < 0.2 and
M? < 0.1(M?—1), so that the pressure fluctuations associated with the
turbulent motion are small compared to the pressure jump across the
shock. The linearization of the Rankine-Hugoniot relations performed
in LIA is therefore fully justified (see Lee et al. [25]), allowing systematic

comparison between the simulation and LIA results in the next section.

3. Results and discussion

From now on, we adopt the following convention to denote the different
cases of interaction that have been computed: I1.5s0l (resp. I1.2s0l)
refers to the interaction between the Mach-1.5 (resp. 1.2) shock and
solenoidal turbulence; I1.5ent (resp. I1.2ent) to the interaction between
the Mach-1.5 (resp. 1.2) shock and turbulence dominated by vorticity
and entropy fluctuations; and I1.5ac (resp. I1.2ac) to the interaction
between the Mach-1.5 (resp. 1.2) shock and turbulence dominated by
vorticity and pressure fluctuations.

The simulation results are recorded when a statistically steady state
is established in the computational domain (typically after one flow-
through time). Turbulence statistics are then computed by averaging
over the two homogeneous directions and time. We use 60 instanta-
neous fields saved during the simulation with a time sampling interval
of 27,/60 so that the size of the statistical sample is 60 x 1282 and
the total size of the time sample is 27;. Apart from the conventional

Reynolds average, we shall use Favre’s mass-weighted average. For a
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given function f, it is defined by f = pf/p, and the corresponding
fluctuation is denoted by f”.
Linear analysis has been performed for all the cases of interaction

with spectra of the form (4), where ug = 1 and kg = 4.

3.1. GENERAL CHARACTERISTICS OF THE INTERACTION

The most important features of the interaction are examined with the
simulation results obtained in the case I1.5sol. Most of these results
have already been reported by previous authors with different flow
parameters. We provide however in this section a summary of the main
aspects of the problem based on our computations. This will be useful
to the understanding of section 3.2. Comparisons between the main
existing numerical and experimental data with linear analysis are also

provided in order to sum up the state of the art in the field.

3.1.1. Amplification of turbulence and generation of anisotropy

The main consequences of the passage of a turbulent flow through a
shock wave are the amplification of the fluctuating motion and gener-
ation of anisotropy. This is apparent in Figure 2 where the evolutions
of Favre’s Reynolds stresses R;; = W/ﬁ across the shock have been
plotted. The vertical dashed lines denote the limits of the mean shock
zone, corresponding to the locations where 0wy /0z; = 0. It can be seen
that the transverse components (Rgo and Rgss) are amplified across
the shock, while the streamwise Reynolds stress (Rj;) experiences a
non-monotonic behaviour: a slight reduction is observed immediately
behind the shock (near-field), followed by a significant increase. Further
away, all three Reynolds stresses undergo a consistent viscous decay;

return to isotropy in this region is found to be negligible compared to
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the decay rate. In the vicinity of the outflow, an unphysical rise of the
streamwise Reynolds stress can be observed, the spurious dilatation
levels generated by the non-reflective boundary conditions specified in
this plane are responsible for this behaviour. However, different tests
were conducted to check that these perturbations are confined in the
vicinity of the exit plane and do not influence the interaction zone.
Amplification factors for the Reynolds stresses can be evaluated as the
ratios between the maximum values downstream — outside the mean
shock zone — and the values taken immediately before. Our results
for these ratios have been plotted in Figures 3a and 3b together with
those obtained by different authors and our LIA results for the far
field, in a range of Mach numbers comprised between 0 and 3. One
can notice a good overall agreement between the different results —
especially for the transverse Reynolds-stress —, even if a quantitative
comparison remains delicate: LIA refers to an inviscid approach while
the low Reynolds number of the simulations (Rey = 6.7 in our case) is
respounsible for non-negligible viscous effects. In particular, the maxi-
mum of the streamwise Reynolds stress behind the shock is obviously
affected by the viscous decay and underestimated in the simulation
(as compared to the inviscid analysis). This underestimation is mainly
linked to the physical (natural) viscosity of the problem and is not
significantly worsen by the intrinsic numerical damping of the numerical
scheme. Indeed, in the present computations, the numerical viscosity
can be considered small compared to the physical one which is itself
quite high given the low Reynolds number of the DNS. At least two
remarks may support this statement. First, it can be shown that a
theoretical estimation of the shock thickness corresponds to the numer-
ical prediction. In the theoretical estimation, this thickness is linked to

the physical viscosity of the problem. In the computations, the shock
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thickness is driven by the effective viscosity, i.e. the sum of the physical
viscosity and the numerical one. Since the theoretical estimation of
the shock thickness corresponds to the numerical prediction, we can
conclude that the effective viscosity is close to the physical one, in
other words, that the numerical viscosity is small. Second, it can be
seen in the validations presented in the appendix that the spatial decay
of isotropic turbulence at low Reynolds number is correctly predicted
by the numerical scheme (see Figures 28 and 29, where a comparison
with theory is presented). Since the turbulence decay is driven by vis-
cosity, the agreement between numerical predictions and theory shows
again that the effective viscosity is close to the physical one, and that
the numerical viscosity has not a significant contribution. One should
finally note that a better agreement with LIA for the amplification
factor of Rj; has been obtained by Lee et al. [27, 28], Mahesh et al.
[32] and Garnier et al. [11] in simulations at higher microscale Reynolds
number (= 20).

The mechanisms responsible for the amplification of turbulence and
non-monotonic evolution of Rj; can be identified by computing the
different terms in the Reynolds-stress transport equations. Considering
Ry1, with the various hypothesis we made concerning the flow (station-
arity, homogeneity in the transverse directions, zero-mean transverse

velocity components), the budget equation can be written as follows:

e 8R11/2 . . oy — 81_)
P 8$1 N PRH 8:131 U 8]71
I —L >
(1) (I1) (111)
/ " (6)
a0 10(pRuuf) Lot 0Tk
Loxy 2 Oz Y Oxy,
—_— — — ~——
(1v) V) (V)
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The different terms in this budget are shown in Figure 4, where only the
portion of the domain located in the vicinity of the shock is presented
(i.e. 8 < ko1 < 20). Outside the shock zone, advection (I) is balanced
by viscous dissipation (VI). These are the only significant terms, except
just behind the shock (i.e. 13.2 < kgx1 < 18) where the pressure-work
term (IV) acts as a positive source in the R;; budget. This term is a sink
in the R9o budget in the near-field and becomes quickly negligible (not
shown here). Pressure work thus appears as responsible for the non-
monotonic behaviour of the streamwise Reynolds stress (and hence of
the turbulent kinetic energy) immediately downstream of the shock.
More information can be obtained by decomposing the pressure-work
term — as it appears in the transport equation of the Favre-averaged

turbulent kinetic energy (k) — in two contributions as:

op' ou! d(p'ul)
o — (dind’) _ i) 7
—— N—— ————
p. work p. dilatation p. diffusion

Figure 5 displays these terms. The positive pressure dilatation is re-
sponsible for an energy transfer from the mean internal energy to the
turbulent kinetic energy immediately behind the shock. This produc-
tion of k is then transferred downstream via pressure diffusion which
occurs only in the non-homogeneous direction. The non-monotonic
evolution of Ry (and l~c) in the near-field is thus driven by the pressure-
diffusion term.

Amplification of turbulence and generation of anisotropy can also be
observed on the evolution of the fluctuating vorticity. Figure 6 shows
the behaviour of the variances of the three components of fluctuating
vorticity in the interaction. The transverse components (722 and 732)

appear to be significantly increased through the shock while the stream-
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wise component (w}?) is barely affected. Note however that Lee et al.

[27] showed an increase of 712 behind the shock for higher values of the
turbulent Reynolds number. Amplification factors can be evaluated in
the same way as for the Reynolds stresses, they have been plotted in
Figure 7 together with other simulation data and the LIA result. Here,
the maxima occur immediately behind the shock and are therefore little
affected by viscous decay. Consequently, the amplification factors are all
in good agreement despite the low Reynolds numbers of the simulations,
an exception is the results of Hannappel and Friedrich [13] which is
significantly underpredicted.

The differences in the behaviour of the streamwise and transverse
vorticity components can also be analysed using the budget equations

of their variances under the form:

Ow,w, 7 7
Uj (ga‘*‘)a = 2wWaw;Sa; T 2 wWaw;s,;
z; N Iy J,
— I III
Y (1 (i)
— 2 WowpBjj  — WalnS);
—_— ——
(Iv) )
49 1 , 0p Op N wpwiyuy,) (8)
€0 o PP T\ Wa%alk)
ajk p? " 0xj Oxy, Oxy,
WD) (V11)
, 0 (107
¥ 2eqip wh—— 22k
T O (p 8$q>
(VII)

where s;; = 1/2(0u;/0x; + Ou;/0x;), and €5 stands for the permuta-
tion tensor (no summation on ). One can see in Figure 8 that inside

the shock region, compression by the mean flow (IV) is the dominant

term for 722, resulting in the observed amplification of the transverse
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vorticity components. In the budget of w’lz, this term is canceled by
the mean vortex stretching (II), which leads to the absence of variation

across the shock for this component of the vorticity fluctuation.

3.1.2. Ewolution of the turbulent length scales

Modifications of the characteristic length scales of turbulence is an
essential feature of the interaction that still remains a conflicting point
in the literature: all the numerical studies indicate a global decrease
of these scales in contradiction with most experiments except those
by Barre et al. [1]. Further comments will be made on the subject in
section 3.2.3. At this point, we simply provide in Figure 9 the reduction
factor of the transverse Taylor microscale as obtained from our simu-
lation and previous investigations. The Taylor microscale is defined

as:

- (]

with a = 2 for the transverse direction. Only DNS and LIA results
are given in the figure since most of the experimental values are above
unity. Moreover, we only consider the transverse microscale, since the
longitudinal one evolves rapidly behind the shock wave (cf. Figure 18)
so that a precise definition of the reduction factor is not easy. Compar-
ison of the one-dimensional energy spectra of the velocity fluctuations
before and after the shock (not shown here) is in agreement with Lee
et al. [27], indicating that the reduction of the microscales during the
interaction corresponds to an enhancement of the fluctuations at large

wavenumbers.
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3.1.3. Amplification of the thermodynamic fluctuations

Fluctuations in the thermodynamic quantities (pl,,q, pl.,s and T}

I'IIIS) are

also enhanced through the shock. This amplification (see Figure 21) is
followed by a rapid decay immediately behind the shock. An interesting
topic to investigate is the thermodynamic state after the interaction.
When thermodynamic fluctuations are isentropic, the following relation

is satisfied:

~

3

pl n TI
= nt

pzn—l?7 (10)

=3

with n = . We can then define two coefficients n,, and n,r as:

VP VT
Voo Vo

with np, = n,r = v for isentropic fluctuations. When the incident

and  n,p =1+

turbulent flow only contains vorticity fluctuations, the isentropic hy-
pothesis is satisfied upstream of the shock. We compare in Figure 10
the values obtained here for n,, and n,r downstream of the shock with
those obtained in previous computations and LIA for solenoidal up-
stream turbulence. DNS and LIA are in close agreement: the isentropic
state persists downstream only for weak shock waves (M; < 1.2), while
the production of entropy fluctuations during the interaction increases
with the value of the Mach number (see also Lee et al. [28]). This is an
important point in turbulence modelling since two different polytropic
exponents (instead of one) will be necessary to fully determine the

thermodynamic state behind a strong shock wave.
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3.2. INFLUENCE OF THE NATURE OF THE INCOMING TURBULENCE

We shall now investigate how the behaviour of the main statistics of the
flow across the shock wave are affected by the nature of the upstream
turbulence. This point is addressed in this section for the three types of
turbulence mentioned earlier. Compared to the existing contributions
to the field, attention is given to perform the comparisons with the
same parameters, the difference between the cases lying exclusively in
the nature of the incident flow in term of Kovasznay’s decomposition.
New conclusions are also drawn from the simulation data completing

the existing knowledge of the situation.

3.2.1. Velocity fluctuations

We present in Figure 11 the spatial evolutions of the normal Reynolds
stresses Ri1 and Rso in the three computations at Mach 1.5 and 1.2.
The corresponding results obtained with the linear analysis are given in
Figure 12. One can notice a clear influence of the nature of the incident
flow on the interaction, and a good agreement between DNS and LIA
results. The presence of upstream entropy fluctuations satisfying SRA
increases the level reached by the Reynolds stresses far behind the
shock wave (mainly for the streamwise component) as compared to
the reference case. The maximum levels reached for R;; behind the
shock in DNS (at kpz; = 16) are 1.29 and 1.76 for cases I1.5s0l and
I1.5ent, respectively (difference of 36.6%). The corresponding values,
predicted by LIA, are 1.59 and 2.54 (difference of 60.1%). Concerning
Ry, the increase due to entropy fluctuations reaches 10.5% in DNS
and 15.7% in LIA. A quantitative comparison between DNS and LIA
seems difficult since the conditions are not exactly the same in both

approaches: when entropy fluctuations are present, SRA holds exactly
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in the analysis while it is approximately satisfied in DNS (see table II).
Moreover, viscosity is still very important in the computations whereas
it is not considered in LIA. When M; = 1.2, the same observations
can be made even if the amplification of Ry; is only 12.6% higher in
case I1.2ent compared to 11.2sol (22.6% in LIA). Concerning Ry, the
differences are small [cf. Figure 11b (down)]: 2.6% in DNS and 5.1% in
LIA.

The presence of significant pressure fluctuations in the incoming
turbulence seems to slightly reduce the far-field level of the diagonal
Reynolds-stress-tensor components. Moreover, small perturbations ap-
pear for the different statistics of the flow near the inflow plane in
cases I1.5ac and Il1.2ac. These perturbations contrast with the regu-
lar behaviour obtained in the other computations. They are due to
the forcing used at the entrance of the domain where the solenoidal
and dilatational parts of the velocity field are advected at the same
speed, which should not be the case in real life. Turbulence therefore
rapidly adjusts near the inflow boundary. The amplification of R;; is
6% lower in the case I1.5ac compared to I1.5s0l (for koz; = 16). The
corresponding reduction in LIA amounts to 39% at the same location.
Ry is unaffected in the computations while a 43.3% difference is pre-
dicted by the linear theory. The I1.5ac simulation corresponds to an
incident flow containing pressure and vorticity fluctuations while the
corresponding case in the analysis deals with a pure acoustic turbulent
flow upstream of the shock. Thus, comparison between DNS and LIA is
not satisfactory in this situation and a ponderation of LIA results needs
to be made to account for the fact that the incoming turbulence is not
purely acoustic in the simulation (cf. Mahesh et al. [30]). If acoustic and
vorticity fluctuations are combined in the analysis, linearity allows the

amplification factor of the kinetic energy being written in the following
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way:

: (12)

where subscripts ‘1’ and ‘2’ refers to upstream and downstream values,
with ‘S’ and ‘C’ representing the solenoidal and dilatational compo-
nents respectively. Equation (12) may then be reformulated, introduc-

ing the ratio of compressible to total upstream kinetic energy x =

(q)& /a3, as:
B (Bs (B
i =G TN -

N
~—

The combined problem may thus be treated from the amplification
factors obtained for ¢? in the pure vortical and the pure acoustic limits.
Applying Equation (13) to Rj;; and Rge with x = 0.5 leads to an
amplification factor of 1.28 for Ry; and 1.08 for Ry. The reductions
of 39% and 43.3% mentioned before, become 19.3% and 21.4%, re-
spectively, in the combined problem. The comparison between DNS
and LIA is thus better, even if some discrepancies still exist. The ob-
served reduction of the amplification factor of the Reynolds stresses by
upstream pressure fluctuations should however happen mainly in the
range 1.25 < My < 1.8, as predicted by LIA in Figure 13. One can see
that the amplification factor of the kinetic energy is less than 1 only
in that range of Mach numbers. This is confirmed by the results of the
computations at M; = 1.2, where no noticeable difference appears in

the evolutions of Ry; and Rss between the cases 11.2s0l and I1.2ac.

3.2.2. Vorticity fluctuations
We now investigate the influence of the different modes of turbulence on

the vorticity variances across the shock. No major difference between

the three cases appears for the streamwise component 712, while the
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amplification of w’22 is seen to increase by 19.3% in the case I1.5ent

compared to I1.5sol [see Figure 14a(down)]. This is once again in good

qualitative agreement with LIA which predicts no amplification of 712
in all cases and an increase of 31.5% in the amplification factor of
722 when upstream entropy fluctuations satisfying SRA are present
(the solenoidal case is still the reference). The corresponding values,
when M; = 1.2, are 7.5% [DNS — see Figure 14b(down)] and 20%
(LIA). As mentioned in the introduction, Mahesh et al. [32] proposed
an explanation based on the relative effects of bulk compression and
baroclinic torque to understand the influence of entropy fluctuations.
This explanation relied on physical considerations and linear analysis.
We show here that their interpretation is confirmed by our DNS re-
sults. As a matter of fact, in both cases (see Figures 15a and 15b for

I1.5s0l and I1.5ent respectively), the budgets of the transverse vorticity

show that bulk compression is responsible for the amplification of 722
Moreover, the relative importance of bulk compression is the same in
both simulations. However, in the vorticity-entropy case, the compres-
sion by the mean flow is not the only positive contribution inside the
shock and the baroclinic torque also plays an important role. Figure 16
compares the importance of this term in the budgets of the transverse
vorticity for the three simulations. It is clear that, in the I1.5ent case,
the baroclinic torque is not negligible, in contradiction with what is
observed in the other configurations. In order to quantify when entropy
fluctuations play a role, the ratio of the rms entropy fluctuation to the
mean upstream entropy (s’./S1) has been computed for the different
cases (see table IT). One can see that in the I1.2ent and I1.5ent cases,
this ratio amounts to 1% and 1.26% respectively just before the shock

wave, whereas it is well below this value in the other computations. A
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threshold value around 1% for this criterion thus seems to be adequate
to indicate if the entropy fluctuation level is high enough upstream of
the shock wave to influence the interaction.

When pressure fluctuations are present upstream of the shock at
M, = 1.5 (I1.5ac), the amplification of 722 is also greater than in the
case [1.5s0l, but the difference is far less important than before. No
difference is observed when M; = 1.2. Hannappel and Friedrich [13]
already mentioned the same kind of behaviour even if the difference
between the solenoidal and the ‘compressible’ cases was more impor-
tant in the simulations they conducted for a Mach 2 shock wave. An
explanation for the preceding observations may be provided using LIA.
We present in Figure 17 the far-field amplification ratio of the turbulent
kinetic energy as a function of the upstream Mach number obtained in
the pure acoustic case. The vortical and dilatational contributions of
the kinetic energy are also displayed. It is clear that, when M; < 1.5,
too few vorticity is generated during the interaction to make a difference
in the amplification of 722 The contribution of the vortical part of the

kinetic energy becomes however more significant when M; = 2.

3.2.3. Turbulent length scales

As we shall see, the qualitative behaviour of the different turbulent
scales across the shock is globally independent of the nature of the
upstream turbulent flow. However, the downstream level is not the
same in the different computations.

The spatial evolutions of the longitudinal and transversal microscales
are displayed in Figure 18 for the computations at Mach 1.5. No no-
ticeable difference appears between the three cases for A\;, while \s is
more reduced in the case I1.5ent: the difference amounts to 3% between

I1.5s0] and I1.5ent. For M; = 1.2, this value falls to 1.2%. These
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trends agree with LIA results since the analysis predicts no difference
in the behaviour of \; across the shock, between the solenoidal and
vorticity /entropy cases. Concerning A\g, LIA predicts a 5% (resp. 3%)
larger reduction when the upstream turbulence contains entropy fluc-
tuations at Mach 1.5 (resp. 1.2). When upstream pressure fluctuations
are present, Aq is still unaffected and Ao is less reduced than in the
solenoidal case. The difference amounts to 11% for M; = 1.5 and 6% for
My = 1.2. These results confirm Hannappel and Friedrich’s conclusion
of a reduction in the transverse microscale 50% less important in the
compressible case (x = 0.5) than in the solenoidal case (xy = 0) for
My =2.

Figure 19 displays the spatial evolution of the transverse integral

scales of the flow defined as:
Nia= [ Qualr) dr (14)

where the auto-correlation of the velocity component w] in the z,-

direction is obtained from the following expression:

Qiia(r) = u;(xzu;(x t 7o)

g (%) ug(x)

We observe a significant reduction of Aqj 5 and Agg 9 across the shock.
This reduction of Ajj o (resp. Agzo) is 28% (resp. 14%) higher in the
vorticity /entropy case.

An increase of the ‘dissipation’ length scale I, = pg®/e ~ k3/%/¢ is
also apparent in Figure 20. This is in agreement with the LIA results
of Lee et al. [28] according to which /. should increase for Mach num-
bers less than 1.65 and decrease above, simulation results by the same
authors confirmed this point. One should note however the reported

amplification of [, at Mach 2 by Hannappel and Friedrich, which is
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in contradiction with Lee’s conclusions. Another interesting point may
be emphasized concerning the behaviour of this turbulent scale: for
solenoidal turbulence, [, is assumed to be representative of the largest
scales of the fluctuating motion (), and the following relation holds:
I ~ I ~ Ay12. This property is widely used in turbulence modelling
through Batchelor’s hypothesis [2]: € ~ k%/2/l. ~ k3/? /A1 5. However,
in the present computation, I, and Aq; 2 behave in a radically different
way. The classic estimation of Batchelor should consequently not be
used if turbulence models are applied to shock-turbulence interaction
situations. Moreover, one can notice that the amplification factor of
the dissipation scale is not significantly affected by the nature of the
upstream turbulence. However, the rapid increase of I, just behind
the shock is more pronounced when upstream entropy fluctuations are
present. This is an indirect manifestation of the behaviour reported
earlier for the turbulent velocity fluctuations.

All the preceding features concerning turbulent scales are in agree-
ment with LIA. However, the discrepancies that still exist between DNS
and experimental studies remain difficult to explain. Many parameters
may influence the behaviour of the turbulence statistics across the
shock, like for instance shock strength (M), turbulent Mach number
(M;) or microscale Reynolds number (Re)). Since these parameters
are very different between most of the experimental and numerical
works (Briassulis and Andreopoulos [3] considered Reynolds numbers
between 162 and 737 and Honkan and Andreopoulos [16] worked with
Rey ~ 1000, whereas Rey < 30 in all the computations), this may
be one of the reason to this problem. This interpretation is coherent
with the fact that, in the experiment by Barre et al. [1] at Rey = 15.5,
the behaviour of the integral scales across the shock is in qualitative

agreement with DNS and LIA.
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3.2.4. Thermodynamic quantities

As shown in Figure 21, the presence of upstream entropy fluctuations
leads to a higher amplification of p! . across the shock compared to
the solenoidal case, whereas the opposite is true for pl . and T7 ..
Moreover, when pressure fluctuations are associated to the rotational
mode in the incident turbulent flow, the amplification of all the ther-
modynamic quantities is lower than in the solenoidal case. Hannappel
and Friedrich [13] reported the same behaviour in their computations
at My = 2.

We already mentioned in Section 3.1 that for solenoidal upstream
turbulence, thermodynamic fluctuations remain isentropic downstream
only if M; < 1.2. For higher Mach numbers, the production of en-
tropy fluctuations during the interaction leads to a deviation from
the isentropic state downstream of the shock. When the acoustic and
vortical modes are associated upstream, the isentropic state persists for
M; = 1.5 everywhere in the computational domain since the relation
Plis/P = VPhms/P = YT'ms/ (7 — )T holds on both sides of the shock
(see Figure 22).

In the vorticity /entropy cases, the upstream thermodynamic fluctu-
ations are obviously not isentropic since SRA holds approximately. It
is then interesting to test the validity of this hypothesis downstream
of the shock wave. The different terms of Equation (5) are shown in
Figures 23a and 23b for cases I1.5ent and I1.2ent respectively. In each
configuration, comparison is made with linear analysis and a very good
qualitative agreement is displayed between both approaches, particu-
larly when M7 = 1.5. In this case, the intensity of pressure fluctuations
is comparable to the other quantities in the near-field and becomes
lower in the far-field. Strong deviation from SRA appears in the near-

field, while in the far-field, the first part of relation (5) relating density
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and temperature fluctuations is satisfied but not the second part of
the equation concerning velocity fluctuations. Besides, the deviation is
more important in the linear analysis than in the DNS where viscous
effects rapidly damp the gap between the different terms. All these
results agree with the observations made by Mahesh et al. [32] for
My =1.29 and M = 1.8.

4. Summary and conclusion

Numerical simulation of the interaction between shock waves at Mach
number 1.2 and 1.5 and three types of isotropic turbulence has been per-
formed. A numerical code based on a standard second-order-accurate
numerical scheme was used and care was taken to warrant a complete
resolution of the shock wave as well as adequate resolution of the
turbulent fields.

The general characteristics of the interaction have been investigated
in the case of a solenoidal upstream turbulent field and are in fair
agreement with most existing simulations, theoretical and experimental
results. Comparisons between the existing contributions have been pro-
vided. Evaluation of the different terms in the Reynolds-stress budget
equations helps to draw a detailed picture of the mechanisms that
lead to the amplification of the turbulent kinetic energy across the
shock, and a difference in the behaviour of the transverse and stream-
wise Reynolds stresses. As in previous numerical studies, and still in
contradiction with most experiments, our results exhibit a decrease in
the turbulent length scale when turbulence passes through the shock.
The reason for this discrepancy remains unclear and should be further

investigated.
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The interactions with three different types of incoming turbulence
for each value of the upstream Mach number have then been computed.
The first type is purely solenoidal, the second contains vorticity and
entropy fluctuations (satisfying the Strong Reynolds Analogy) and the
last type is mainly composed of vorticity and pressure fluctuations.
Our results confirm earlier findings obtained by different authors with
different flow conditions. The downstream levels of the main statistics
have been shown to depend on the kind of turbulence which is intro-
duced in the computational domain. The presence of upstream entropy
fluctuations enhances the amplification of the turbulent kinetic energy
and transverse vorticity variances across the shock compared to the
solenoidal case. More reduction of the transverse Taylor microscale and
integral scale is observed in the vorticity-entropy case while no influence
can be seen on the longitudinal Taylor microscale. When acoustic and
vortical fluctuations are associated upstream, less amplification of the
kinetic energy, less reduction of the transverse microscale and more
amplification of the transverse vorticity variance are observed across
the shock.

New conclusions have also been drawn from the data obtained.
Fluctuating vorticity budgets have been computed and show that the
baroclinic torque is responsible for the additional production of trans-
verse vorticity in the vorticity/entropy case, in agreement with an
interpretation based on linear analysis given by Mahesh et al. [32].
Moreover, the classic estimation of Batchelor relating the dissipation
rate and the integral scale of the flow was seen to be invalid for the
modelisation of shock/turbulence interaction situations. LIA was also
conducted in the same interaction cases and proved to be in good agree-
ment with the simulation results. Thanks to the theory, the influence of

the acoustic mode on the amplification of the kinetic energy has been
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shown to be noticeable only for Mach numbers comprised between 1.25
and 1.8.

The description of the different mechanisms involved in the interac-
tion will be helpful to understand more complicated phenomena, like for
instance the interaction between a shock and a supersonic boundary
layer. In this situation, SRA is satisfied and the presence of entropy
fluctuations should strongly promote the amplification of turbulence
as reported in this work. The different conclusions of the preceding
analysis should also be useful for the development of more accurate
compressible turbulence models. Free turbulence-shock interaction is an
idealized situation that allows the influence of the compressible terms
in the budgets of the different statistics of the turbulent flow being
reliably evaluated. It thus appears as a good candidate to elaborate

and test closure schemes for these terms.
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Appendix

Due to its moderate order of accuracy, the ability of the code to resolve
shock-turbulence interaction problems needs to be demonstrated. In
a first step, we concentrate on temporal and spatial simulations of
isotropic, decaying turbulence. Then, a more interesting situation is to

consider the two-dimensional interaction between a shock and a plane
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vorticity-entropy wave since it allows a direct comparison with LIA

results.

TEMPORAL SIMULATIONS OF ISOTROPIC, DECAYING TURBULENCE.

We first checked the behaviour of the code regarding turbulence: tem-
poral and spatial simulations of isotropic, decaying turbulence without
shock were thus conducted. The computational domain is a cube with
dimensions of 27 in each direction. For temporal simulations, periodic
boundary conditions are applied in all three directions. As stated in
Section 2.3, the initialization of the flow results from the superposition
of a random velocity field generated with the algorithm of Erlebacher et
al. [7] on the following mean field:

1
u = U U =u3 =0 D= ——= o=1. 15
Uy 1, U2 = U3 y P M2 p (15)

r

In the simulations presented hereafter: x = 0 (solenoidal initial tur-
bulence). The remaining parameters are the following: Re, = 13.4,
M, =0.1, Pr =0.7, M; = 1.5, ug = 1, kg = 4. They are associated to
a microscale Reynolds number Re) = 6.7, which corresponds to a reso-
lution of 1283. The turbulent Mach number is M; = ¢/ = (u}u})'/?/c =
V3ug/c = 0.173. A correct behaviour of the three-dimensional ve-
locity spectra, turbulent length scales, microscale Reynolds number
and velocity derivative skewness has been observed (not shown here).
Moreover, three different grids (643, 1283 and 1923) were used with
the same parameters to check adequate resolution of the turbulent
flow. This evaluation was made through the one-dimensional velocity
spectra defined as: E,(ky) = tq(kz)0%(ky), where (A) stands for the
Fourier transform along zo and U denotes spatial averaging along x;

and zo. For incompressible isotropic turbulence, the following analytical
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relation is satisfied (see Hinze [14]):

0E5(k2)

1
Ei(ky) = E3(k2) = 5 | Ea(ka) — k2T€2

5 (16)

These spectra are presented in Figure 24 for the three cases at the
same time (¢/7 = 0.75, where 7, = Ag/up is a turbulence time scale).
A lack of resolution can be observed for the highest wavenumbers with
the 642 grid, while Equation (16) is correctly satisfied in the two other
configurations. The 1283 grid is therefore well suited for respectable
DNS of turbulence at Rey, = 6.7 with our second-order code. Grid
independence of the main statistics of the flow is also apparent in
Figures 25 and 26: no difference can be seen on the evolutions of the
turbulent kinetic energy ¢?/2 and the dissipation rate & of the flow

between the different cases.

SPATIAL SIMULATIONS OF ISOTROPIC, DECAYING TURBULENCE.

Proper simulation of spatially evolving turbulence is then the next step
before considering shock-turbulence interaction cases. In this configu-
ration, the inhomogeneity of the flow in the streamwise direction is the
main difficulty to overcome. In this direction, turbulent fluctuations are
prescribed as inflow conditions using Taylor’s hypothesis, and all vari-
ables are specified since the flow is supersonic. These data correspond to
several turbulent fields obtained from preliminary temporal simulations
of the decay of solenoidal isotropic turbulence (see Section 2.3). They
are superposed to the mean incoming flow (see Equation (15)) and
updated at each time step. The outflow is supersonic and no boundary
condition needs to be specified in the exit plane. The computational
domain is still a cubic geometry of (27)® with a regular grid of 1283

points. The parameters of the simulation are the same as in the tem-

kluwer_paper_revised.tex; 22/06/2002; 17:37; p.33



34 Jamme et al.
poral cases: Re, = 13.4, M, = 0.1, Pr = 0.7, M; = 1.5, Re) = 6.7,
M, =0.173.

Figure 27 compares the evolutions of the longitudinal (S;) and mean
velocity derivative skewness S = (S1 + S2 + S3)/3 in the temporal
and spatial simulations conducted with the same parameters (with

So = (0ul,/024)3/[(0ul,/014)2]>/?). Figures 28 and 29 present the

same comparisons for the kinetic energy and the dissipation rate. The
longitudinal and mean skewness factors reach a value of —0.4 in both
cases, which is characteristic of a well-developed isotropic turbulent
field (Orszag and Patterson [34]; Tavouralis, Bennet and Corrsin [39]).
This value is obtained after a short transition period in the tempo-
ral simulation corresponding to the time necessary for the artificial
initial conditions to become stationary solution of the Navier-Stokes
equations. In the spatial case, inflow turbulent data come from already
developed turbulent fields so that a much smaller transition period is
observed (for S; only). Good agreement between the two simulations
can also be noted on the evolutions of kinetic energy and dissipation.
For these statistics, comparison with theory is possible owing to the

following classical model of isotropic, decaying turbulence:

dk £

dt Re, (17)
€ _ _Cu2

dt  Re, k'

where k = ¢%/2 and C., is the usual modelling constant. Solution of

Equations (17) leads to the following analytical expressions:

1

k 5 oS,

roo [1+€—0~(052—1)t}1 2

E? 1%?Tk0 (Eg (18)
9 IS T—Ck.

- [1+ 0 (052—1)75} 2

€0 Re,ky

kluwer_paper_revised.tex; 22/06/2002; 17:37; p.34



DNS of shock-turbulence interaction 35

with kg = 1.5 and &y = 60. Perfect agreement between theory and the
spatial simulation is displayed in Figures 28 and 29 when C,, = 1.5.
This value is slightly different from the standard 1.92 (Launder and
Sharma [24]), however, Hanjali¢ and Launder [12] mentioned that C.,
should be a function of Ry = k?/ve according to: C., = 1.8 [1 —

2
0.4/1.8 e~ (58r) ]. This expression gives values between 1.8 and 1.4 for

Ce,, the latter corresponding to low Reynolds numbers. Two-point cor-

relations Qi o(r) = ui(x)ul(x + req) /ul(x)u;

'(x) and one-dimensional

power spectra E, (k) of the velocity field are finally plotted in Fig-
ures 30 and 31. The size of the computational domain as well as the

resolution are seen to be adequate.

VORTICITY-ENTROPY WAVE/SHOCK INTERACTION.

An interesting elementary case of shock-turbulence interaction is now
described. This test consists of a two-dimensional interaction between
a plane vorticity-entropy wave and a Mach 1.5 shock wave. The param-
eters of the computations are still: Re, = 13.4, M, = 0.1 and Pr = 0.7.
The computational domain has dimensions of 27 in both directions.
A non-uniform grid that clusters points near the shock is used in the
streamwise direction (z1) while a uniform mesh of 32 points is used
in the transverse direction (z2). The flow is initialized with a steady
normal shock wave (obtained with a preliminary calculation) over which

the fluctuating vorticity-entropy wave is superposed at ¢t = 0:

(

uy = Ui Ay siney cos(kyz + kyy)
v = —U1 Ay cos iy cos(kzx + kyy)
P = p1Ae cos(kyz + kyy)

"
\pl_O
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where the subscript ‘1’ refers to upstream values and the overbars

denote mean quantities. The wavenumbers £, and k, are given by:
ky = kcos, ky = ksiny,

where k is the magnitude of the wavenumber vector and v; denotes
the angle between the wavenumber vector and x;. The variables A,
and A, correspond to the intensity of velocity and density upstream
of the shock wave. They were both equal to 0.025. Periodic boundary
conditions are specified in the transverse direction and non-reflecting
boundary conditions are used at the outflow in the streamwise direc-
tion. At the inflow (z; = 0), an unsteady wave is superposed to the

mean flow. This wave takes the following form:

,

= U Ay sintpy cos(kyy — Urkyt)
= —Uj Ay cos 1 cos(kyy — Urkyt)

_—~

U

° (20)

~ =~

p| = PrAe cos(kyy — Urkat)

(i =0

Several values for 1); are considered inside the interval [0; 7/2]. For each
case, the wavenumber k is chosen so that we have one wavelength in

the x9 direction:
ky = ksinyy =1, ky =1/ tan ;.

The statistics of the flow are gathered after one flow-through time
in order to let the initial transient exit the domain and cover one
period of the incident disturbance. The behaviour of the code during

the interaction is evaluated by comparing the values obtained for the

amplification of vorticity fluctuations (wh?/w}?) to the linear analysis
results. Figure 32 shows the comparison for two cases: the first one

corresponds to a solenoidal incident wave (A, = 0, A, = 2.5%) and the
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second one to a vorticity-entropy wave (A, = A, = 2.5%). Excellent
agreement between computation and analysis is seen away from the
critical angle ¢, = 61.36°: the difference between the two approaches
never exceeds 5%. When 11 comes close to 1., Mahesh et al. [31] showed
that LTA may be questionable: the deviation around the critical angle
is thus a limitation of the linear analysis, not of the computation. The
same test was also conducted for M = 1.2, and the agreement between

DNS and LIA was found even better than what has been shown here.

Considering the good results of all the different test cases, it can be
concluded that reliable DNS of shock-turbulence interaction is possi-
ble using the second-order-accurate numerical scheme of MacCormack.
This numerical method is however limited to moderate upstream Mach
numbers and small microscale Reynolds numbers as shown by the grid

resolutions needed in this work.
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Table I. Summary of the main parameters used in the different works on shock/turbulence
interaction. For experimental works, Rens stands for a Reynolds number based on the mesh
size of the turbulence grid. The nature of the upstream turbulent flow (dominant modes)
are only conjectured in the experiments. “sol, ent, ac” are abbreviations for solenoidal,
entropic and acoustic modes respectively.

DNS
upstream
M M Rex turbulence
Rotman [38] 1.34 n.r. n.r. sol
Lee [27] 1.05-1.2 0.0567-0.11 11.9-21.6 sol
Lee [28] 1.5;2;3 0.0897-0.11 15.7-19.7 sol
Mahesh [32] 1.29 ;1.8 0.14 19.1-19.5 sol/ent
Hannappel [13] 2 0.1 5-6.7 sol/ac
Present work 12515 0.173 5-6.7 sol/ent/ac
LES
Ducros [6] 1.2 0.075 n.r. sol
Garnier [11] 12:2  0.136;0.108 11.9 ; 19 sol
Dubois [5] 1.29 0.137-0.152 17.29-33.2 sol
Experiments (wind tunnels)
upstream
My M, Reu Rex turbulence
Debieve [4] 2.3 n.r. n.r. n.r. sol/ac
Jacquin [18] 1.4 =~ 0.05 97215 122.8 sol/ac
Jacquin [20] 1.6 ~ 0.07-0.123 n.r. n.r. sol/ent
Barre [1] 3 ~ 0.011 57301 15.5 sol/ac
Experiments (shock tubes)
1.115 35000
Keller [22] 1.18 n.r 58000 n.r sol/ac
1.22 74000
Honkan [15] 1.62 =~ 0.05 30480 =~ 1000 sol/ac
Honkan [16] 1.62 ~ 0.033 30480 =~ 1000 sol/ac
Honkan [17] 1.62 =~ 0.04 30480 =~ 1000 sol/ac
Briassulis [3] 1.551-2.183 =~ 0.02-0.06  37138-577040 162-735 sol/ac
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Table II. Turbulence features in the inflow plane and immediately before the shock (between
brackets) for the different simulations performed.

I1.5s0l I1.5ent I1.5ac I1.2s0l I1.2ent I1.2ac
Rey = Re, “Lima? 6.7 6.7 5 6.7 6.7 5
(5.5) (5.6) (5.3) (5.1) (5.15) (5.15)
Re; = Re, “as? 21 21 21 21 21 21
(161)  (16.2)  (17.5) (15.6)  (15.7)  (16.9)
M, =4 0173 0173 0173 0173 0173  0.173
(0.133)  (0.134)  (0.134) (0.127)  (0.128)  (0.126)
/2 15 15 15 15 15 15
0.89)  (0.9)  (0.89) 0.81)  (082)  (0.8)
S 045 043 -046 045  -043  -0.46
(-0.43)  (-043)  (-0.44) (-0.43)  (-0.43)  (-0.36)
) s/ U 0.067  0.067  0.067 0.083  0.083  0.083
(0.051)  (0.051)  (0.055) (0.061)  (0.061)  (0.066)
Pons/T 0.021 002  0.146 0.022 002  0.143
(0.019)  (0.019)  (0.089) (0.025)  (0.026)  (0.08)
Plns/P 0.017  0.058  0.103 0.017  0.048  0.102
(0.014)  (0.041)  (0.064) (0.012)  (0.031)  (0.057)
T/ T 0.006  0.056  0.042 0.006  0.045  0.041
(0.0057)  (0.04)  (0.025) (0.021)  (0.036)  (0.03)
(7 = 1) M2ty s /U 0.06 0.06 0.06 0.048  0.048  0.048
(0.046)  (0.046)  (0.049) (0.035)  (0.035)  (0.038)
U [t pins T 0.008  -0.91  -0.02 0.012 091  -0.021
(0295)  (-0.86)  (0.393) (0257)  (-0.8)  (0.372)
Shms/ S 0.001 00182  0.0014 0.0027  0.0149  0.0029
(0.0009) (0.0126) (0.0011)  (0.0026)  (0.01)  (0.0028)
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Figure 1. Schematic representation of the flow configuration.
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Figure 2. Evolution of the normal components of the Reynolds-stress tensor

throughout the computational domain - DNS; I1.5s0l. All the curves are normalized

by the value immediately upstream of the shock. (——) (- Y uld?; (= =)

"2
uy .
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Figure 3. Amplification factor of the streamwise [Ri1-(a)] and transverse [Raz-(b)]

Reynolds-stress components across the shock wave. (——) LIA; () Present work;
(x) Lee et al. [27]; (¢) Lee et al. [28]; (vv) Mahesh et al. [32]; (*) Hannappel &
Friedrich [13]; (A) Ducros et al. [6]; (<) Garnier et al. [11]; (>) Barre et al. [1].
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Figure 4. Different terms in the budget equation for Ri; - DNS, I1.5s0l. (o o o)

advection (I); (——) production by the mean strain (II); (— — —) production by

the mass-flux fluctuations (III); (-----) pressure work (IV); (— —) turbulent diffusion

(V); (= - —) viscous dissipation (VI).
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Figure 5. Pressure work decomposition in the budget equation for k- DNS, I1.5s0l.
O(p'uf) , Ouyf

nor _ W)

ko1

Figure 6. Evolution of vorticity fluctuations variances throughout the computational

domain - DNS, I1.5s0l. All the curves are normalized by the value immediately

upstream of the shock. (——) w}%; (- -+ ) wh?; (= =) wh?.
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Figure 7. Amplification factor of the transverse vorticity variance w)” across the
shock wave. (——) LIA; (o) Present work; (x) Lee et al. [27]; () Lee et al. [28];
(v) Mahesh et al. [32]; (*) Hannappel & Friedrich [13]; (A) Ducros et al. [6]; (<)
Garnier et al. [11]; (+) Dubois et al. [5].
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Figure 8. Different terms in the w_iz (a) and uTZZ (b) budget equations - DN, I1.5sol.

(oo0o0) advection (I); (— — —) stretching by the mean flow (II); ( ) stretching by

turbulence (III); (----- ) compression by the mean flow (IV); (* * *) compression by
turbulence (V); (x x x) baroclinic torque (VI); (— —) turbulent diffusion (VII);
(=« —) viscous terms (VIII).
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Figure 9. Change of the transverse Taylor microscale A2 across the shock wave.
(——) LIA; (o) Present work; (x) Lee et al. [27]; () Lee et al. [28]; () Hannappel
& Friedrich [13].
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Figure 10. Downstream value of the polytropic exponents. (
ner LIA; (®) ny, present work; (o) n,r present work; (x) np, Lee et al. [27]; ()

ny, Lee et al. [28]; (A) n,r Lee et al. [28].
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Figure 11. Influence of the different modes of turbulence on the evolutions of R
(up) and R2» (down) across the shock wave - DNS, M; = 1.5 (a) and M; = 1.2
(b). All the curves are normalized by the value immediately upstream of the shock.

(——) I1.5s0l (a) or I1.2s0l (b), (—-—) I1.5ent (a) or I1.2ent (b), (----- ) I1.5ac (a)
or I1.2ac (b).
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Figure 12. Influence of the different modes of turbulence on the evolutions of R
(up) and R»» (down) across the shock wave - LIA, M; = 1.5 (a) and M; = 1.2
(b). All the curves are normalized by the value immediately upstream of the shock.

(——) pure vorticity case, (—-—) vorticity /entropy case, (----- ) pure acoustic case.
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My
Figure 13. Far-field amplification factor of the velocity variances as predicted by
linear analysis in the pure acoustic case. (——) ¢3/q}; (— — =) wh?/u}?; (- - - )
v Jv)2.
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kox1 koz1
Figure 14. Influence of the different modes of turbulence on the evolutions of w—f
(up) and w)? (down) across the shock wave - DNS, M; = 1.5 (a) and M; = 1.2
(b). All the curves are normalized by the value immediately upstream of the shock.

(——) I1.5s0l (a) or I1.2s0l (b), (—-—) I1.5ent (a) or I1.2ent (b), (----- ) I1.5ac (a)
or I1.2ac (b).
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Figure 15. Different terms in the w_22 budget equations - DNS, I1.5s0l (a) and I1.5ent

(b). (c00) advection (I); (———) stretching by the mean flow (II); ( ) stretching

by turbulence (III); (- - - - ) compression by the mean flow (IV); (* # %) compression
by turbulence (V); (X X x) baroclinic torque (VI); (— —) turbulent diffusion (VII);
(— - —) viscous terms (VIII).
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Figure 16. Comparison of the baroclinic torque in the budget equations for w!?

e
(——) Il.5s0l, (— - —) I1.5ent, (- - - - ) I1.5ac.
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12

My
Figure 17. Far-field amplification ratio of the kinetic energy obtained in LIA for
a pure acoustic incident turbulence. (——) total kinetic energy; (— — —) vortical
component; (---- - ) acoustic component.

2.0 15

kox1 kox1

Figure 18. Influence of the different modes of turbulence on the evolutions of A; (a)
and A2 (b) across the shock wave - DNS, M; = 1.5. All the curves are normalized by
the value immediately upstream of the shock. (——) I1.5s0l, (—-—) Il.5ent, (----- )
I1.5ac.
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Figure 19. Influence of entropy fluctuations on the evolutions of A11,2 (a) and Asz 2
(b) across the shock wave - DNS, M; = 1.5. All the curves are normalized by the
value immediately upstream of the shock. (——) I1.5s0l, (— - —) I1.5ent.

ko1

Figure 20. Influence of the different modes of turbulence on the evolutions of I.
across the shock wave - DNS, M; = 1.5. All the curves are normalized by the value

immediately upstream of the shock. (——) I1.5s0l, (— - —) Il1.5ent, (----- ) I1.5ac.
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Figure 21. Influence of the different modes of turbulence on the evolutions of pl
(2), prms (b) and Tty (c) across the shock wave - DNS, My = 1.5. All the curves are
normalized by the value immediately upstream of the shock. (——) I1.5s0l, (—-—)

I1.5ent, (- - -) I1.5ac.
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Figure 22. Evolution of rms values of the thermodynamic properties throughout
the computational domain - DNS, I1.5ac. (——) plms/P; (— — =) YPems/P; (- - - )
VT ms /(v = 1)T.
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Figure 23. Evolution of rms values of the thermodynamic properties throughout the

computational domain - DNS (up), I1.5ent (a) or I1.2ent (b) and LIA (down). All

the curves are normalized by the value of pi.,/p immediately upstream of the shock.
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Figure 24. One-dimensional power spectra of velocity in the temporal simulations
at t/7e = 0.75. M1 = 1.5, up = 1, ko = 4, x = 0. 64® (a), 128% (b), 1923 (c). (—- —)
Ei(k2); (——) Ea(ka2); (----- ) E3(k2); (x X x) Ei(k2) from E>(k2) using equation
(16).
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Figure 25. Evolution of the turbulent kinetic energy in the temporal decay of
isotropic turbulence. My = 1.5, uo =1, ko =4, x = 0. (--- -~ ) 64%; (——) 128%;
(—-—) 1923
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Figure 26. Evolution of the dissipation rate in the temporal decay of isotropic tur-
bulence. M1 = 1.5, up = 1, ko = 4, x = 0. (-- - -~ ) 64% (——) 128%; (— - —)
1923

kluwer_paper_revised.tex; 22/06/2002; 17:37; p.59



60 Jamme et al.

S1; S

ooooé S~

§0000002Q%0 6
04 - * ** ** ©00000
* gk

000000000000 ’**’%***
009Qed &%
* * 335558

05 Y Y S
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Z
Uimy
Figure 27. Evolution of the longitudinal (S1) and mean (S) velocity derivative
skewness in the simulations of isotropic, decaying turbulence. M; = 1.5. (x * x)
S1 spatial simulation; (— — —) S; temporal simulation with 128 grid points; (oo o)
S spatial simulation; (——) S temporal simulation with 128° grid points.
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Figure 28. Evolution of the kinetic energy in the simulations of isotropic, decaying
turbulence. M; = 1.5. (o o o) spatial simulation; (——) temporal simulation with

1282 grid points; (— - —) theory with Cs, = 1.92; (-- - - ) theory with C., = 1.5.
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Figure 29. Evolution of the dissipation rate in the simulations of isotropic, decaying
turbulence. M; = 1.5. (o o o) spatial simulation; (——) temporal simulation with

1283 grid points; (— - —) theory with Cs, = 1.92; (-- - - ) theory with C., = 1.5.
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Figure 30. Two-points correlations in the (x1 = ) plane of the spatial simulation

of isotropic, decaying turbulence. (— - —) Q11,2; (——) Q22,2; (- - - ) Qs3,2-
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Figure 31. One-dimensional power spectra of velocity in the (z1 = m) plane of the
spatial simulation of isotropic, decaying turbulence. (— - —) E1(k2); (——) E2(k2);
(- ) E3(k2); (x x x) E1(k2) from E>(k2) using equation (16).
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Y1

Figure 32. Amplification of vorticity (wTZZ/uTIZ) across the shock as a function
of the angle of incidence - M; = 1.5. Comparison DNS/LIA : (——) LIA
[Ac =0, A, = 2.5%]; (o) DNS [4. =0, A, = 2.5%]; (———) LIA [A. = A, = 2.5%];
(*) DNS [A. = 4, = 2.5%].
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